```
Notes on Saunders MacLane's [CWM], a.k.a.:

"Categories for the Working Mathematician (2nd ed.)" (Springer, 1998)

https://link.springer.com/book/10.1007/978-1-4612-9839-7

https://en.wikipedia.org/wiki/Categories_for_the_Working_Mathematician

https://ncatlab.org/nlab/show/Categories+Work

These notes are at:

http://angg.twu.net/LATEX/2020cwm.pdf
```

III. Universals and Limits

1. Universal Arrows

Definition. If $S: D \to C$ is a functor and c an object of C, a universal arrow from c to S is pair $\langle r, u \rangle$ such that... (see the diagram at the left below; formally and minus the types, $\forall d. \forall f. \exists ! f'. sf' \circ u = f$).

Equivalently, $u:c\to Sr$ is universal from c to S when the pair $\langle r,u\rangle$ is an initial object in the comma category $(c\downarrow S)...$ (diagram at the right below).

$$\begin{array}{c|c}
c & & \begin{pmatrix} c & \downarrow u \\
r \longmapsto Sr \end{pmatrix} \\
\exists!f' \downarrow & \downarrow Sf' \downarrow \\
\forall d \longmapsto Sd & \forall \begin{pmatrix} c \\
\downarrow \exists!f' \\
d \longmapsto Sd \end{pmatrix} \\
D \stackrel{S}{\longrightarrow} C & (c \downarrow S)$$

(p.57):

The idea of universality is sometimes expressed in terms of "universal elements". If D is a category and $H:D\to\mathbf{Set}$ a functor, a universal element of the functor H is a pair $\langle r,e\rangle$ consisting of an object $r\in D$ and an element $e\in Hr$ such that for every pair $\langle d,x\rangle$ with $x\in Hd$ there is a unique arrow $f:r\to d$ of D with (Hf)e=x.

(p.57):

Many familiar constructions (...) consider an equivalence relation E on a set S, the corresponding quotient set S/E (...) and the projection $p: S \to S/E$. (...)

Definitions (mine): if $E \subseteq S \times S$ then we say that $f: S \to X$ respects E iff $\forall s, s' \in E.sEs' \to fs = fs'$, and $H(X) := \{ f: S \to X \mid f \text{ respects } E \}.$

(p.58):

The notion "universal element" is a special case of the notion "universal arrow". Indeed, if * is the set with one point... Indeed if $S:D\to C$ is a functor and $c\in C$ is an object, then $\langle r,u:c\to Sr\rangle$ is a universal arrow from c to S is and only if the pair $\langle r,u\in C(c,Sr)\rangle$ is a universal element of the functor H=C(c,S-). This is the functor which acts on objects d and arrows h of D by:

$$d \mapsto C(c, Sd)$$
, $h \mapsto C(c, Sh)$.

2. The Yoneda Lemma

Proposition 1:

$$D(r, -) \xrightarrow{\varphi} C(c, S -)$$

Definition. Let D have small hom-sets. A representation of a functor $K: D \to \mathbf{Set}$ is....

Proposition 2:

2020cwm July 30, 2020 07:18

(Original text + missing diagrams)

III.1. Universal Arrows

(Page 55):

1. Universal Arrows

Definition. if $S: D \to C$ is a functor and c an object of C, a universal arrow from c to S is a pair $\langle r, u \rangle$ consisting of an object r of D and an arrow $u: c \to Sr$ of C, such that to every pair $\langle d, f \rangle$ with d an object of D and $f: c \to Sd$ an arrow of C, there is a unique arrow $f': r \to d$ of D with $Sf' \circ u = f$. In other words, every arrow f to S factors uniquely through the universal arrow u, as in the commutative diagram

(Page 57):

The idea of universality is sometimes expressed in terms of "universal elements". If D is a category and $H:D\to\mathbf{Set}$ a functor, a universal element of the functor H is a pair $\langle r,e\rangle$ consisting of an object $r\in D$ and an element $e\in Hr$ such that for every pair $\langle d,x\rangle$ with $x\in Hd$ there is a unique arrow $f:r\to d$ of D with (Hf)e=x.

2020cwm July 30, 2020 07:18

(Page 58, middle paragraph):

The notion "universal element" is a special case of the notion "universal arrow". Indeed, if * is the set with one point, then any element $e \in Hr$ can be regarded as an arrow $e : * \to Hr$ in **Ens**. Thus a universal element $\langle r, e \rangle$ for H is exactly a universal arrow from * to H.

$$\begin{array}{c|c} * & & \\ \downarrow^e & \\ \hline r \longmapsto Hr & \forall f & \langle r, e \in Hr \rangle \text{ is a} \\ \exists !g \middle| \longmapsto \bigvee_{Hg} \bigvee_{} & \text{universal element} & \Rightarrow & \text{universal arrow} \\ \forall d \longmapsto Hd & \text{of the functor } H & \text{from } r \text{ to } H \\ \hline D \stackrel{H}{\Longrightarrow} \mathbf{Set} \\ \end{array}$$

(Page 58, middle paragraph, 2nd part):

Conversely, if C has small hom-sets, the notion "universal arrow" is a special case of the notion "universal element". Indeed, if $S:D\to C$ is a functor and $c\in C$ is an object, then $\langle r,u:c\to Sr\rangle$ is a universal arrow from c to S if and only if the pair $\langle r,u\in C(c,Sr)\rangle$ is a universal element of the functor H=C(c,S-).

(Page 58, middle paragraph, 3rd part):

This — i.e., the functor C(c, S-) — is the functor which acts on objects d and arrows h of D by

$$d \mapsto C(c, Sd), \qquad h \mapsto C(c, Sh).$$

2. The Yoneda Lemma

(Page 59):

Proposition 1. For a functor $S:D\to C$ a pair $\langle r,u:c\to Sr\rangle$ is universal from c to S if and only if the function sending each $f':r\to d$ into $Sf'\circ u:c\to Sd$ is a bijection of hom-sets

$$D(r,d) \cong C(c,Sd).$$

$$\begin{array}{c|c}
c & \downarrow u \\
\downarrow u & \downarrow s \\
Sr & \downarrow Sr
\end{array}$$

$$\begin{array}{c|c}
d & \longrightarrow Sd \\
h \downarrow & \longmapsto & \downarrow Sh \\
d' & \longmapsto & Sd'
\end{array}$$

$$\begin{array}{c|c}
D & \xrightarrow{S} & C$$

$$D(r,d) & \longleftrightarrow & C(c,Sd)$$

$$f' & \longmapsto & Sf' \circ u \\
f' & \longleftrightarrow & f$$

(Page 59, Proposition 1, cont.) This bijection is natural in D.

$$\begin{array}{ccc}
c & \downarrow u \\
r \longmapsto Sr \\
f' \downarrow \longmapsto \downarrow Sf' \\
d \longmapsto Sd & d \longmapsto D(r,d) & f' \\
h \downarrow \longmapsto \downarrow Sh & h \downarrow \longmapsto \downarrow D(r,h) & \downarrow \\
d' \longmapsto Sd' & d' \longmapsto D(r,d') & h \circ f'
\end{array}$$

$$D \stackrel{S}{\Longrightarrow} C \qquad D \stackrel{D(r,-)}{\Longrightarrow} \mathbf{Set}$$

3. Coproducts and colimits

(Page 67):

Cone and limiting cone:

We call μ the limiting cone or the universal cone (from F).

4. Products and limits

(Page 68):

A limit for a functor $F: J \to C$ is a universal arrow $\langle r, \nu \rangle$ from Δ to F.

(Page 69):

... and its limiting cone $\nu: \operatorname{Lim} F \to F...$ (or more precisely $\nu: \Delta(\operatorname{Lim} F) \to F)$

V. Limits

5. Adjoints on Limits

(Page 118):

One of the most useful properties of adjoints is this: A functor which is a right adjoint preserves all the limits which exist in its domain:

Theorem 1. If the functor $G:A\to X$ has a left adjoint, while the functor $T:J\to A$ has a limiting cone $\tau:a\stackrel{\bullet}{\to} T$ in A, then GT has the limiting cone $G\tau:Ga\stackrel{\bullet}{\to} GT$ in X.

$$\begin{array}{c|c} \Delta a \longmapsto \Delta G a \\ \stackrel{\tau}{(\mathrm{univ})} \downarrow & \longmapsto & \downarrow \stackrel{G\tau}{(\mathrm{univ})} \\ T \longmapsto GT \\ A \stackrel{F}{\Longleftrightarrow} X \end{array}$$

This proof can also be cast in a more sophisticated form by using the fact that Lim is right adjoint to the diagonal functor .1. In fact, given an adjunction...

X. Kan Extensions

3. The Kan Extension

