Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020institutions.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020institutions.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020institutions.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020institutions.pdf")) % (defun e () (interactive) (find-LATEX "2020institutions.tex")) % (defun u () (interactive) (find-latex-upload-links "2020institutions")) % (find-pdf-page "~/LATEX/2020institutions.pdf") % (find-sh0 "cp -v ~/LATEX/2020institutions.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020institutions.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020institutions.pdf % file:///tmp/2020institutions.pdf % file:///tmp/pen/2020institutions.pdf % http://angg.twu.net/LATEX/2020institutions.pdf % (find-LATEX "2019.mk") % «.title-page» (to "title-page") % «.comma-category» (to "comma-category") % «.indexed-cats-and-fibrations» (to "indexed-cats-and-fibrations") % «.typing-insts» (to "typing-insts") % «.drawing-insts-1» (to "drawing-insts-1") % «.drawing-insts-2» (to "drawing-insts-2") % «.drawing-insts-3» (to "drawing-insts-3") % «.drawing-insts-4» (to "drawing-insts-4") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") % (find-latexgeomtext "total={6.5in,8.75in},") %\usepackage[paperwidth=11.5cm, paperheight=9.5cm, % %total={6.5in,4in}, % %textwidth=4in, paperwidth=4.5in, % %textheight=5in, paperheight=4.5in, % %a4paper, % top=1.5cm, bottom=.5cm, left=1cm, right=1cm, includefoot % ]{geometry} % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-u.bib} % (find-LATEX "catsem-u.bib") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % ____ __ % | _ \ ___ / _|___ % | | | |/ _ \ |_/ __| % | |_| | __/ _\__ \ % |____/ \___|_| |___/ % % «defs» (to ".defs") \def\dnito{\lhookdownarrow} \def\Ords{\mathsf{Ords}} \def\psmi #1#2{ \psm {#1 \\ \dnito \\ #2}} \def\pmati #1#2{ \pmat{#1 \\ \dnito \\ #2}} \def\pmatin#1#2#3{\pmat{#1 \\ \dnito & #3 \\ #2}} \def \matin#1#2#3{ \mat{#1 \\ \dnito & #3 \\ #2}} \long\def\ColorRed #1{{\color{Red1}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorViolet#1{{\color{Violet!50!black}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGreen #1{{\color{SpringGreen4}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} \long\def\ColorGray #1{{\color{black!30!white}#1}} \def\calU{\mathcal{U}} \def\C{\mathbb{C}} \def\Cat{\mathbf{Cat}} \def\Sig{\mathsf{Sig}} \def\Sen{\mathsf{Sen}} \def\Mod{\mathsf{Mod}} \def\mfr{\mathfrak} \setlength{\parindent}{0pt} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % «title-page» (to ".title-page") % (find-books "__cats/__cats.el" "diaconescu") {\setlength{\parindent}{0em} \footnotesize Notes on Razvan Diaconescu's ``Institution-independent Model Theory'' (Birkhäuser, 2008) \url{http://www.springer.com/birkhauser/mathematics/book/978-3-7643-8707-5} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020institutions.pdf} } \bsk \bsk % «comma-category» (to ".comma-category") % (find-diaconescupage (+ 11 11) "comma category") % (find-diaconescutext (+ 11 11) "comma category") \subsection*{Comma categories} (Page 11): %D diagram ?? %D 2Dx 100 +25 +20 %D 2D 100 B1 %D 2D %D 2D +20 A0 B2 B3 %D 2D %D 2D +20 A1 B4 B5 %D 2D %D 2D +15 A2 C0 C1 %D 2D %D ren A0 A1 A2 ==> (f,B) (f',B') A/\calU %D ren B1 ==> A %D ren B2 B3 ==> B \calU(B) %D ren B4 B5 ==> B' \calU(B') %D ren C0 C1 ==> \C' \C %D %D (( A0 A1 -> .plabel= l h %D A2 place %D B1 B3 -> .plabel= r f %D B2 B3 |-> %D B2 B4 -> .plabel= l h %D B3 B5 -> .plabel= r \calU(h) %D B4 B5 |-> %D B1 B5 -> .slide= 25pt .plabel= r f' %D C0 C1 -> .plabel= a \calU %D %D )) %D enddiagram %D $$\pu \diag{??} $$ The construction of the functor $C \mapsto C/R$, that we will use in page 45: % %D diagram ?? %D 2Dx 100 +20 +35 +25 +20 %D 2D 100 E1 %D 2D | %D 2D +20 E3 %D 2D | %D 2D +20 B0 - B1 E4 - E5 %D 2D | | | | %D 2D +20 B2 - B3 E6 - E7 %D 2D %D 2D +15 A0 C0 - C1 F0 - F1 %D 2D | %D 2D +15 A1 D0 - D1 %D 2D %D ren E1 ==> C' %D ren E3 ==> C %D ren B0 B1 E4 E5 ==> (γ;f,D) (f,D) D RD %D ren B2 B3 E6 E7 ==> (γ;f',D') (f',D') D' RD' %D ren A0 C0 C1 F0 F1 ==> \Cat C'/R C/R \catB \catA %D ren A1 D0 D1 ==> \catA^\op C' C %D %D (( A0 A1 <- .plabel= l (-/R) %D B0 B1 <-| %D B0 B2 -> .plabel= l δ %D B1 B3 -> .plabel= r δ %D B2 B3 <-| %D B0 B3 harrownodes nil 20 nil <-| %D C0 C1 <-| %D D0 D1 -> .plabel= a γ %D E1 E3 -> .plabel= r γ %D E3 E5 -> .plabel= r f %D E4 E5 |-> %D E4 E6 -> .plabel= l δ %D E5 E7 -> .plabel= r Rδ %D E6 E7 |-> %D E3 E7 -> .slide= 20pt .plabel= r f' %D E4 E7 harrownodes nil 20 nil |-> %D F0 F1 -> .plabel= a R %D %D %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % «indexed-cats-and-fibrations» (to ".indexed-cats-and-fibrations") % (find-diaconescupage (+ 11 20) "2.5 Indexed Categories and Fibrations") % (find-diaconescutext (+ 11 20) "2.5 Indexed Categories and Fibrations") \section*{2.5. Indexed Categories and Fibrations} (Page 20): The Grothendieck category $B^♯$ of $B: I^\op → \Cat$: %D diagram ?? %D 2Dx 100 +20 +30 +25 +15 +20 %D 2D 100 B0 F0 %D 2D %D 2D +20 B2 B3 E0 F1 %D 2D %D 2D +15 A0 C0 C1 %D 2D %D 2D +15 A1 D0 D1 E1 G0 G1 %D 2D %D ren B0 F0 ==> Σ 〈i,Σ〉 %D ren B2 B3 E0 F1 ==> B(u)(Σ') Σ' B^♯ 〈i',Σ'〉 %D ren A0 C0 C1 ==> \Cat B(i) B(i') %D ren A1 D0 D1 E1 G0 G1 ==> I^\op i i' I i i' %D %D (( A0 A1 <- .plabel= l B %D B0 B2 -> .plabel= r φ %D B2 B3 <-| %D C0 C1 <- .plabel= a B(u) %D D0 D1 -> .plabel= a u %D E0 E1 -> .plabel= r p %D F0 F1 -> .plabel= r 〈u,φ〉 %D G0 G1 -> .plabel= a u %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % (find-diaconescupage (+ 10 45) "3.4 Institutions as Functors") % (find-diaconescutext (+ 10 45) "3.4 Institutions as Functors") \section*{3.4. Institutions as functors} (Page 45): \def\SS#1{\Set(#1,2)} \def\SB#1{[#1{→}2]} A room is a triple $(S,M,R)$ where: % $\pmat{S \text{ is a set,} \\ M \text{ is a category,} \\ R: |M| → \SS{S}} $. \ssk A room morphism $(s,m):(S',M',R')→(S,M,R)$ is: % %D diagram room-morphism-1 %D 2Dx 100 +45 %D 2D 100 A0 A1 %D 2D %D 2D +10 B0 B1 %D 2D %D 2D +20 B2 B3 %D 2D %D 2D +10 C0 C1 %D 2D %D 2D +20 D0 D1 %D 2D %D ren A0 A1 ==> M' M %D ren B0 B1 ==> |M'| |M| %D ren B2 B3 ==> \SB{S'} \SB{S} %D ren C0 C1 ==> S' S %D ren D0 D1 ==> (S',M',R') (S,M,R) %D %D (( A0 A1 -> .plabel= a m %D B0 B1 -> .plabel= a |m| %D B0 B2 -> .plabel= l R' %D B1 B3 -> .plabel= r R %D B2 B3 -> .plabel= a (s;-) %D C0 C1 <- .plabel= a s %D D0 D1 -> .plabel= a (s,m) %D )) %D enddiagram %D %D diagram room-morphism-2 %D 2Dx 100 +25 +20 +25 %D 2D 100 A1 %D 2D | \ %D 2D +25 | A3 %D 2D v | %D 2D +15 A4 |--> A5 | %D 2D \ \ v %D 2D +25 A6 |--> A7 %D 2D %D 2D +20 B0 ---> B1 %D 2D %D ren A1 A3 ==> |M'| |M| %D ren A4 A6 ==> S' S %D ren A5 A7 ==> \SB{S'} \SB{S} %D ren B0 B1 ==> \Set^\op \Set %D %D (( A1 A3 -> .plabel= a |m| %D A4 A6 <- .plabel= l s %D A5 A7 -> .plabel= m (s;-) %D %D A1 A5 -> .plabel= r R' %D A3 A7 -> .plabel= r R %D %D A4 A5 |-> %D A6 A7 |-> %D %D A4 A7 harrownodes nil 20 nil |-> %D B0 xy+= 10 0 %D B1 xy+= 10 0 %D B0 B1 -> .plabel= a \SS- %D )) %D enddiagram %D $$\pu \diag{room-morphism-1} \qquad \diag{room-morphism-2} $$ % (find-diaconescupage (+ 10 45) "3.4 Institutions as Functors") % (find-diaconescutext (+ 10 45) "3.4 Institutions as Functors") A room morphism is a morphism in the Grothendieck category blah: %D diagram ?? %D 2Dx 100 +35 +55 +45 +30 +30 %D 2D 100 B0 F0 %D 2D %D 2D +20 B2 B3 E0 F1 %D 2D %D 2D +15 A0 C0 C1 %D 2D %D 2D +20 A1 D0 D1 E1 G0 G1 %D 2D %D ren B0 F0 ==> (R',S') (M',(R',S')) %D ren B2 B3 E0 F1 ==> (|m|;R,S) (R,S) ((-)/\SS-)^♯ (M,(R,S)) %D ren A0 C0 C1 ==> \Cat^\op |M'|/\SS- |M|/\SS- %D ren A1 D0 D1 E1 G0 G1 ==> \Cat M' M \Cat M' M %D %D (( A0 A1 <- .plabel= m (-)/\SS- %D B0 B2 -> .plabel= l s %D B2 B3 <-| %D C0 C1 <- # .plabel= a B(u) %D D0 D1 -> .plabel= a m %D E0 E1 -> .plabel= r p %D F0 F1 -> .plabel= r (m,s) %D G0 G1 -> .plabel= a m %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +35 +55 +40 +35 %D 2D 100 E1 %D 2D | %D 2D +20 E3 %D 2D | %D 2D +20 B0 - B1 E4 - E5 %D 2D | | | | %D 2D +20 B2 - B3 E6 - E7 %D 2D %D 2D +20 A0 C0 - C1 F0 - F1 %D 2D | %D 2D +15 | D0 - D1 %D 2D | %D 2D +15 A1 D2 - D3 %D 2D %D ren E1 ==> |M'| %D ren E3 ==> |M| %D ren B0 B1 E4 E5 ==> (|m|;R,\,S) (R,S) S \Set(S,2) %D ren B2 B3 E6 E7 ==> (|m|;R',\,S') (R',S') S' \Set(S',2) %D ren C0 C1 F0 F1 ==> |M'|/\Set(-,2) |M|/\Set(-,2) \Set^\op \Set %D ren D0 D1 ==> |M'| |M| %D ren D2 D3 ==> M' M %D ren A0 A1 ==> \Cat \Cat^\op %D %D (( A0 A1 <- .plabel= m (|-|)/\Set(-,2) %D B0 B1 <-| %D B0 B2 <- .plabel= l s %D B1 B3 <- .plabel= r s %D B2 B3 <-| %D C0 C1 <-| %D D0 D1 -> .plabel= a |m| %D D2 D3 -> .plabel= a m %D E1 E3 -> .plabel= r |m| %D E3 E5 -> .plabel= r R %D E4 E5 |-> %D E4 E6 <- .plabel= l s %D E5 E7 -> .plabel= r (s;-) %D E6 E7 |-> %D E3 E7 -> .slide= 30pt .plabel= r R' %D F0 F1 -> .plabel= a \Set(-,2) %D %D %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % _____ _ % |_ _| _ _ __ (_)_ __ __ _ % | || | | | '_ \| | '_ \ / _` | % | || |_| | |_) | | | | | (_| | % |_| \__, | .__/|_|_| |_|\__, | % |___/|_| |___/ % % «typing-insts» (to ".typing-insts") {\bf Typing institutions} $$\begin{array}{rclcrcl} \Sig & 𝐭{is} & 𝐭{a category} \\ \Sen & : & \Sig → \Set \\ \Mod & : & \Sig → \Cat^\op \\ ⊨ & : & ? \\ ⊨ & : & (Σ:|\Sig|) → \Pts(|\Mod(Σ)|×\Sen(Σ)) \\ \end{array} $$ $$\begin{array}{rclcrcl} Σ &∈& |\Sig| \\ ⊨_Σ &⊆& |\Mod(Σ)|×\Sen(Σ) \\ ⊨_Σ &∈& \Pts(|\Mod(Σ)|×\Sen(Σ)) \\ ⊨ &∈& (Σ:|\Sig|) → \Pts(|\Mod(Σ)|×\Sen(Σ)) \\ ⊨ &∈& ΠΣ⠆|\Sig|.\Pts(|\Mod(Σ)|×\Sen(Σ)) \\ \end{array} $$ \newpage % ____ _ _ % | _ \ _ __ __ ___ _(_)_ __ __ _ / | % | | | | '__/ _` \ \ /\ / / | '_ \ / _` | | | % | |_| | | | (_| |\ V V /| | | | | (_| | | | % |____/|_| \__,_| \_/\_/ |_|_| |_|\__, | |_| % |___/ % % «drawing-insts-1» (to ".drawing-insts-1") {\bf Drawing institutions (1)} %D diagram inst-def-internal-1 %D 2Dx 100 +30 %D 2D 100 A0 A1 %D 2D %D 2D +30 A2 A3 %D 2D %D ren A0 A1 ==> \Mod(Σ) ⊨_Σ %D ren A2 A3 ==> Σ \Sen(Σ) %D %D (( A2 A0 |-> %D A2 A1 |-> %D A2 A3 |-> %D )) %D enddiagram %D %D diagram inst-def-external-1 %D 2Dx 100 +30 %D 2D 100 A0 A1 %D 2D %D 2D +30 A2 A3 %D 2D %D ren A0 A1 ==> \Cat^\op ? %D ren A2 A3 ==> \Sig \Set %D %D (( A2 A0 -> .plabel= l \Mod %D A2 A1 -> .plabel= r ⊨ %D A2 A3 -> .plabel= b \Sen %D )) %D enddiagram %D %D diagram inst-def-external-2 %D 2Dx 100 +50 %D 2D 100 A0 A1 %D 2D %D 2D +30 A2 A3 %D 2D %D ren A0 A1 ==> \Cat^\op \Pts(|\Mod(Σ)×\Sen(Σ)|) %D ren A2 A3 ==> (Σ:\Sig) \Set %D %D (( A2 A0 -> .plabel= l \Mod %D A2 A1 -> .plabel= r ⊨ %D A2 A3 -> .plabel= b \Sen %D )) %D enddiagram %D $$\pu \begin{array}{ccc} \diag{inst-def-external-1} \phantom{mmmmmmmm} & \hspace{-30pt} \diag{inst-def-internal-1} \\ \\ \diag{inst-def-external-2} \end{array} $$ \newpage % ____ _ ____ % | _ \ _ __ __ ___ _(_)_ __ __ _ |___ \ % | | | | '__/ _` \ \ /\ / / | '_ \ / _` | __) | % | |_| | | | (_| |\ V V /| | | | | (_| | / __/ % |____/|_| \__,_| \_/\_/ |_|_| |_|\__, | |_____| % |___/ % % «drawing-insts-2» (to ".drawing-insts-2") {\bf Drawing institutions (2)} % (find-books "__cats/__cats.el" "gaina-kowalski") % (find-fraissehintpage 3) Gaina-Kowalski, p.3: %D diagram ?? %D 2Dx 100 +20 +30 +45 %D 2D 100 ModU <----| U %D 2D | | %D 2D | <--| | %D 2D v v %D 2D +30 ModV <----| V %D 2D %D 2D +20 \Cat^\op \Cat ModSi <-- ModSi' %D 2D ^ %D 2D Mod| %D 2D | \phi %D 2D +20 \Sig Si ------> Si' %D 2D %D ren U ModU ==> \mfr{U'} \Mod(\mfr{U'}) %D ren V ModV ==> \mfr{V'} \Mod(\mfr{V'}) %D ren ModSi ModSi' ==> \Mod(Σ) \Mod(Σ') %D ren Si Si' ==> Σ Σ' %D %D (( ModU U ModV V %D @ 0 @ 1 <-| %D @ 0 @ 2 -> %D @ 1 @ 3 -> %D @ 2 @ 3 <-| %D @ 0 @ 3 harrownodes nil 20 nil <-| %D )) %D (( \Sig \Cat^\op -> .plabel= l \Mod %D \Cat place %D ModSi ModSi' <- .plabel= a \Mod(φ) %D Si Si' -> .plabel= a φ %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % ____ _ _____ % | _ \ _ __ __ ___ _(_)_ __ __ _ |___ / % | | | | '__/ _` \ \ /\ / / | '_ \ / _` | |_ \ % | |_| | | | (_| |\ V V /| | | | | (_| | ___) | % |____/|_| \__,_| \_/\_/ |_|_| |_|\__, | |____/ % |___/ % % «drawing-insts-3» (to ".drawing-insts-3") {\bf Drawing institutions (3)} %D diagram ?? %D 2Dx 100 +30 +45 %D 2D 100 e |-----> e' %D 2D %D 2D +25 \Set SenSi --> SenSi' %D 2D ^ %D 2D \Sen| %D 2D | \phi %D 2D +20 \Sig Si ------> Si' %D 2D %D ren e' ==> \Sen(φ)(e) %D ren SenSi SenSi' ==> \Sen(Σ) \Sen(Σ') %D ren Si Si' ==> Σ Σ' %D %D (( e e' |-> %D \Sig \Set -> .plabel= l \Sen %D SenSi SenSi' -> .plabel= a \Sen(φ) %D Si Si' -> .plabel= a \phi %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % ____ _ _ _ % | _ \ _ __ __ ___ _(_)_ __ __ _ | || | % | | | | '__/ _` \ \ /\ / / | '_ \ / _` | | || |_ % | |_| | | | (_| |\ V V /| | | | | (_| | |__ _| % |____/|_| \__,_| \_/\_/ |_|_| |_|\__, | |_| % |___/ % % «drawing-insts-4» (to ".drawing-insts-4") {\bf Drawing institutions (4)} %D diagram ?? %D 2Dx 100 +20 +25 +45 +40 +40 %D 2D 100 \Cat^\op \Cat ModSi <-- ModSi' U <-----| U' %D 2D %D 2D +25 \Set SenSi --> SenSi' e |-----> e' %D 2D ^ %D 2D | %D 2D | \phi %D 2D +25 \Sig Si ------> Si' %D 2D %D ren ModSi ModSi' ==> \Mod(Σ) \Mod(Σ') %D ren SenSi SenSi' ==> \Sen(Σ) \Sen(Σ') %D ren Si Si' ==> Σ Σ' %D ren e' ==> \Sen(φ)(e) %D ren U U' ==> \Mod(φ)(\mfr{U}') \mfr{U}' %D %D (( \Sig \Set -> .plabel= r \Sen %D \Sig \Cat^\op -> .slide= 10pt .plabel= l \Mod %D \Cat place %D ModSi ModSi' <- .plabel= a \Mod(φ) %D SenSi SenSi' -> .plabel= a \Sen(φ) %D Si Si' -> .plabel= a \phi %D )) %D (( U U' e e' %D @ 0 @ 1 <-| %D @ 0 @ 2 -> .plabel= l ⊨_Σ %D @ 1 @ 3 -> .plabel= r ⊨_{Σ'} %D @ 2 @ 3 |-> %D @ 0 @ 3 harrownodes nil 20 nil <-> sl_ .plabel= a \text{adj} %D %D )) %D enddiagram %D $$\pu \scalebox{0.8}{$ \diag{??} $} $$ \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "inst" % End: