The Logic for Children Project

(is trying to translate its
categorical diagrams
to Type Theory)

By:
Eduardo Ochs —

Selana Ochs — <




Note: this presentation is a kind of

mini-rehearsal for a longer presentation titled

“Category Theory as An Excuse to Learn Type Theory”
that I submitted to the

“Encontro Brasileiro em Teoria das Categorias”.

For more information on it, see:
http://angg.twu.net/math-b.html#2021-excuse-tt


http://angg.twu.net/math-b.html#2021-excuse-tt

Logic for Children / Categories for Children
Here I will refer a lot to:

1. [PH1]: “Planar Heyting Algebras for Children” (E. Ochs,
SAJL, 2019). From its abstract:

In a wider context these ZHAs are interest-
ing because toposes of the form Set ™4 are
one of the basic tools for doing “Topos Theory
for Children”, in the following sense. We can
define “children” as people who think mathe-
matically in a certain way — as people who
prefer to start from particular cases and finite
examples that can be drawn explicitly, and



only then generalize — and we can define a
method for working on a particular case (less
abstract, “for children”) and on a general case
(“for adults”) in parallel, using parallel dia-
grams with similar shapes; we have some ways
of transfering knowledge from the general case
to the particular case, and back. This method
is sketched in the introduction.

2. [FavC]: “On my favorite conventions for drawing the
missing diagrams in Category Theory”. Published on
Arxiv in 2020... unpublishable? From its abstract:

People in CT usually only share their ways of
visualizing things when their diagrams cross



some threshold of mathematical relevance —
and this usually happens when they prove new
theorems with their diagrams, or when they
can show that their diagrams can translate cal-
culations that used to be huge into things that
are much easier to visualize. The diagram-
matic language that I present here lies below
that threshold — and so it is a “private” di-
agrammatic language, that I am making pub-
lic as an attempt to establish a dialogue with
other people who have also created their own
private diagrammatic languages.



3. [CWM]: Mac Lane’s “Categories for the Working Math-
ematician”. The standard text on CT. Very hard to read
— should have 100 times more diagrams that it has, but
they are left to the reader. “Normal” people start from
a state in which CWM is impossible, then they switch to
a state in which CWM is obvious. I got stuck studying
it in many. many, many times. One of the main themes
of [FavC] is formalizing “notions of obviousness”, and it
ends with:

I am especially interested in how people write
when they turn their level-of-detail knob to a
very high position.



4. Proof assistants based of Type Theory. From the intro-
duction of [HOTT]:

Type theory (...) Although it is not generally
regarded as the foundation for classical mathe-
matics, set theory being more customary, type
theory still has numerous applications, espe-
cially in computer science and the theory of
programming languages (...) This is the ba-
sis of the system that we consider here; it was
originally intended as a rigorous framework for
the formalization of constructive mathematics.



5. Haskell. From its Wikipedia page:

At the conference on Functional Programming
Languages and Computer Architecture (FPCA
'87) in Portland, Oregon, there was a strong
consensus that a committee be formed to de-
fine an open standard for such languages. The
committee’s purpose was to consolidate exist-
ing functional languages into a common one to
serve as a basis for future research in functional-
language design.

Haskell is based on a Type Theory that is simpler than
the one in HOTT, and many universities in Europe teach



Haskell to first-year students... so there is a lot of very
readable material on it.

. Idris: essentially Haskell plus dependent types and other
bells and whistles. Its type system is close enough to
the one in HOTT (from my beginner’s point of view).
Idris can be used as a proof assistant, and the authors of
[IdrisCT] have formalized some CT in Idris.

. Discrete Mathematics. I taught DM for years, and a
good part of my students entered the university without
knowing how to use variables, and without knowing what
is a theorem.

Their difficulties with learning new levels of abstraction



10

were very similar to my difficulties trying to learn Cate-
gory Theory and Type Theory.

I also gave some seminar courses whose pre-requisites
were only Discrete Mathematics (or not even that). I
only found the right approach for writing [PH1] after
these seminars — they were on A-calculus, Heyting Al-
gebras, S4, and Intuitionistic Logic “for children”, using
finite examples everywhere...

(PVQ)— (PAQ) is not a tautology:
103 vV Q — ]03 A Q
1 1




Two classical tautologies that are not
intuitionistic tautologies:

32
22
21 12
20 11 02
10 01
00

11



The connection with S4 and (order) topologies

(-= P )—>_P (= P )—> P
~~ —~— ~—~ ~~
10 10 0 0

— °g 98

02 N /
0

20 01
01

12 N——
100

10




13

A trick for teaching Discrete Mathematics

A is our set of atoms:
the integers plus T and F (and later also ascii strings)

B is our set of basic mathematical objects:
B contains A, and is closed by

forming finite sets and by forming finite lists
(a finite number of times)

In the first part of the course all objects that we build
are elements of B. We use N, Z, Q and R sometimes,
but expressions like N x N and a € N.a? > a only appear
in the second part of the course.

Why?



Layer 1: Calculating things

...in a system with numbers, truth-values, sets and lists
where everything can be calculated in a finite number
of steps with almost no creativity required.

Example:
(Va € {2,3,5}.a®> < 10) =

Note the substituion operator:
(a? < 10)[a := 3] = (32 < 10).

14



15

Layer 1: Set Comprehensions

I wrote a lengthy explanation of set comprehensions,
using “generators”, “filters” and a “result expression”.
The students started by learning how to calculate things
like these (note the ‘;” instead of a ‘|’; these ‘{...;...}’s
are calculated from left to right!):

{a €{1,2},b€{2,3},a # b;(a,b)}
gen gen expr

= {(1,2),(1,3),(2,3)}

..then {a € {2,3,4} |a® <10}



and {10a+0b|a € {1,2},b € {3,4} }.

16



17

In the rest of the talk I will use diagrams from...

[[DARCT]:
http://angg.twu.net/math-b.html#idarct
http://angg.twu.net/LATEX/idarct-preprint.pdf

[PH1]:
http://angg.twu.net/math-b.html#zhas-for-children-2
http://angg.twu.net/LATEX/2017planar-has-1.pdf

[FavC]:
http://angg.twu.net/math-b.html#favorite-conventions
http://angg.twu.net/LATEX/2020favorite-conventions.pdf


http://angg.twu.net/math-b.html#idarct
http://angg.twu.net/LATEX/idarct-preprint.pdf
http://angg.twu.net/math-b.html#zhas-for-children-2
http://angg.twu.net/LATEX/2017planar-has-1.pdf
http://angg.twu.net/math-b.html#favorite-conventions
http://angg.twu.net/LATEX/2020favorite-conventions.pdf

REFERENCES 18

[HOTT] [Zav20] [KLNO04] [Som00]

References

[CWM] S. Mac Lane. Categories for the Working Mathe-
matician (2nd ed.) Springer, 1997.

[FavC] E. Ochs. “On my favorite conventions for drawing
the missing diagrams in Category Theory”. http:
/ /angg . twu . net /math-b . html # favorite -
conventions. 2020.

[HOTT] The Univalent Foundations Program. Homotopy
Type Theory: Univalent Foundations of Mathe-
matics. http://saunders.phil.cmu.edu/book/


http://angg.twu.net/math-b.html#favorite-conventions
http://angg.twu.net/math-b.html#favorite-conventions
http://angg.twu.net/math-b.html#favorite-conventions
http://saunders.phil.cmu.edu/book/hott-online.pdf
http://saunders.phil.cmu.edu/book/hott-online.pdf

REFERENCES 19

[IDARCT]

[IdrisCT]

[KLNO4]

[PH1]

hott-online.pdf. Institute for Advanced Study,
2013.

E. Ochs. “Internal Diagrams and Archetypal Rea-
soning in Category Theory”. In: Logica Universalis
7.3 (Sept. 2013). http://angg.twu.net/math-
b.html#idarct, pp. 291-321.

F. Genovese et al. idris-ct: A Library to do Cat-
egory Theory in Idris. 2019. arXiv: 1912.06191
[cs.LO].

F. Kamareddine, T. Laan, and R. Nederperlt. A
Modern Perspective on Type Theory. Kluwer, 2004.

E. Ochs. “Planar Heyting Algebras for Children”.
In: South American Journal of Logic 5.1 (2019).


http://saunders.phil.cmu.edu/book/hott-online.pdf
http://saunders.phil.cmu.edu/book/hott-online.pdf
http://angg.twu.net/math-b.html#idarct
http://angg.twu.net/math-b.html#idarct
https://arxiv.org/abs/1912.06191
https://arxiv.org/abs/1912.06191

REFERENCES 20

http://angg.twu.net/math-b.html#zhas-
for-children-2, pp. 125—164.

[Som00] G. Sommaruga. History and Philosophy of Con-
structive Type Theory. Springer, 2000.

[Zav20) V. Zavialov. “Haskell to Core: Understanding Haskell
Features Through Their Desugaring”. https://
youtu.be/fty9QL4aSRc. 2020.


http://angg.twu.net/math-b.html#zhas-for-children-2
http://angg.twu.net/math-b.html#zhas-for-children-2
https://youtu.be/fty9QL4aSRc
https://youtu.be/fty9QL4aSRc

