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Abstract

Every topos admits several “notions of sheafness” on it; for exam-
ple, one is associated to booleanizing its logic, and for any propositions
P and Q on it there is one associated to “forcing P → Q to be true”.
How can we visualize them? Or, better: how can we visualize them
when we know very little Topos Theory?

Let D be a finite 2-column graph. Let E be the topos SetD, and
let H be its Heyting Algebra of truth-values: H = Sub(1E). Then H
is a finite Planar Heyting Algebra (a “ZHA”), and [PH1] shows how
to use these ZHAs to visualize how Intuitionistic Propositional Logic
works. A nucleus on a Heyting Algebra H is an operation ·∗ : H → H
that obeys P ≤ P ∗ = P ∗∗ and (P ∧ Q)∗ = P ∗ ∧ Q∗; we will show to
visualize these nuclei on Heyting Algebras that are ZHAs, and how to
use that as a first step towards understanding the bijection between
nuclei and notions of sheafness.

We will use the term J-operator for a nucleus that acts on a ZHA,
and the first sections of this paper will be dedicated to: seeing in
elementary terms how these J-operators work, proving that each J-
operator on a ZHA H corresponds to a way to slash H by diagonal
cuts that do not stop midway, and seeing how to visualize some famous
J-operators, like booleanization and forcing.

In the last two sections we will see how to start from this knowledge
of J-operators to learn some Topos Theory. If the reader is willing to
believe a small list of (provable) statements then he will be able to
convert any J-operator (·)∗ to the a Lawvere-Tierney topology j and
a sheafification functor on our topos E = SetD, and to visualize in
particular cases what many theorems in, say, [Bel88], “mean” — and
to understand the theory by working on a particular case and on the
general case in parallel, using the techniques for doing “categories for
children” explained in [FavC].
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0 Background
One of the main constructions of [PH1] is a bijection between (proper) 2-
column graphs and Planar Heyting Algebras. For example, in

(P,A) =


1_

2_

3_

_1

_2

_3

_4

_5


H = OA(P ) =
32
33
34
35

22
23
24
25

10
11
12
13

00
01
02
03

the 2-column graph (P,A) has left height 3 and right height 5; its set of
points is

P = {3_, . . . , 1_, _1, . . . ,_5}

and its set of arrows A is made of all the vertical, or intra-column, arrows
going one step down plus two intercolumn arrows: 2_← _4 and 2_→ _2.
We will use the 2-column graph (P,A) above in all examples in this section.

A pile is a subset of P of the form:

pile(ab) = {a_, . . . , 1_, _1, . . . ,_b}

We say that a subset U ⊆ P obeys an arrow v → w when it obeys v ∈ U →
w ∈ U ; for example, pile(14) obeys 2_ → _2 but violates 2_ ← _4. The
subsets of P that obey all the vertical arrows are exactly the piles.

The order topology OA(P ) is the set:

OA(P ) = {U ⊆ P | ∀(v → w) ∈ A. U obeys v → w }
= {U ⊆ P | U obeys all arrows in A }

In contexts in which a 2CG (P,A) is defined the letter H will always
denote the order topology OA(P ) regarded as a Heyting Algebra.

Section 3 of [PH1] defines a way to interpret each ab ≡ pile(ab) as a point
of Z2, by:

ab ≡ (0, 0) + a
−−−−→
(−1, 1) + b

−−−→
(1, 1)

i.e.: start at (0, 0), then walk a steps northwest and b steps northeast. The
‘≡’ here is pronounced “can be interpreted as”.
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It is easy to see that 22 ∈ OA(P ) but 21 6∈ OA(P ); the arrow 2_→ _2
forbids 21, and all the piles that can be obtained by walking southwest and
northwest from 21 — let’s denote the set of those piles by swnw(21) — are
also forbidden. Similarly, 24 is open but 14 is not, and 2_ ← _4 forbids
all piles in the set sene(14). If we draw all piles and then erase the ones
forbidden by 2_ → _2 and 2_ ← _4 we get exactly all the piles in the
OA(P ) of the example above, and this holds in general.

We say that two piles ab and cd in OA(P ) are neighbors — notation:
ab ∼1 cd — when they differ by exactly one element; for example, 24 ∼1 25
but 34 6∼1 25 and 25 6∼1 25. Let ∼∗

1 be the transitive-reflexive closure of
∼1, and let’s say that OA(P ) is ∼∗

1-connected if all piles of OA(P ) are ∼∗
1-

equivalent. Section 15 of [PH1] shows an OA(P ) is ∼∗
1-connected iff (P,A)

is acyclic.
We will say that a 2-column graph (P,A) is proper iff it is finite and

acyclic. A Planar Heyting Algebra (or: a “ZHA”) is a finite subset of Z2

that “is” the order topology for a proper 2CG. From here onwards all our
2CGs will be implicitly proper.

Here are some examples of ZHAs (drawn with bullets insted of with
2-digit numbers):

•
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• ••
•

••
•
••

•
••

•
•
••

•
••

•
••

•
••

••

••
••

••
••

••
••

••
••

•

••
••

•

••
••

••
••

• ••
••

••
•

••
••

••
•

••
••

••
•

••
••

••
•

••
••

••
•

The two basic themes in [PH1] are that we can interpret Intuitionistic
Propositional Logic on ZHAs and that we can use ZHAs to develop visual
intuition about IPL. Here we will take that one step ahead. Take IPL and
add a modal operator ·∗ to it, with axioms that assert that P ≤ P ∗ ≤ P ∗∗

and (P ∧ Q)∗ = P ∗ ∧ Q∗. Call this new logic IPL∗. Here we will see how
to use ZHAs with slashings to develop visual intuition about IPL∗, and in
the last sections we will see how to use this visual intuition to learn some
ideas about toposes and sheaves, and we will see how to formalize what this
“visual intuition” works.

1 Question marks and slashings
A set of question marks on a 2CG (P,A) is a subset Q ⊆ P . We write a 2CG
with question marks as ((P,A), Q), and we represent this Q graphically by
writing a ‘?’ close to each element of P that belongs to Q, as in the figure
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below. The intended meaning of these question marks is that we want
to forget the information on them and then see which elements of OA(P )
become indistinguishable after this forgetting: two elements ab, cd ∈ H
are Q-equivalent, written as ab ∼Q cd, iff pile(ab)\Q = pile(cd)\Q. In the
((P,A), Q) of the figure below we have 23 ∼Q 13 6∼Q 14.

A slashing S on a ZHA H is a set of diagonal cuts on H “that do not
stop midway”. These cuts are interpreted as fences that divide H in separate
regions, and two elements ab, cd ∈ H are S-equivalent, written as ab ∼S cd,
if they belong to the same region. In the slashing at the right in the figure
below we have 11 ∼S 23 6∼S 14.

1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

?

?

?

?

?

?

?



45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

In [PH1] we used the notation (P,A) H to say that H is the ZHA
associated to the 2CG (P,A); this “is associated to” was interpreted formally
as OA(P ) = H. We are now extending this to ((P,A), Q) (H,S)
— a 2CG with question marks ((P,A), Q) is associated to the ZHA with
slashing (H,S) when we have OA(P ) = H and the equivalence relations
∼Q,∼S⊆ H×H coincide. Note that the two ‘ ’s are both pronounced
as “is associated to”, but they have different formal meanings.

1.1 Piccs and slashings

A picc (“partition into contiguous classes”) of a “discrete interval” I =
{0, . . . , n} is a partition P of I that obeys this condition (“picc-ness”):

∀a, b, c ∈ {0, . . . , n}. (a < b < c ∧ a ∼P c)→ (a ∼P b ∧ b ∼P c).

So P = {{0}, {1, 2, 3}, {4, 5}} is a picc of {0, . . . , 5}, and

P ′ = {{0}, {1, 2, 4, 5}, {3}}

is a partition of {0, . . . , 5} that is not a picc.
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CONTENTS 6

A short notation for piccs is this:

0|123|45 ≡ {{0}, {1, 2, 3}, {4, 5}}

we list all digits in the (discrete) interval in order, and we put bars to indicate
where we change from one equivalence class to another.

We will represent a slashing S formally as pairs of piccs, one for the left
digit and one for the right digit. Our notation for slashings as pairs will be
based on this figure:

0
1

2
3

4

0
1
2
3
4
5
6

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

The slashing S that we are using in our examples will be represented as:

S = (L,R)
= ({{0}, {1, 2, 3, 4}}, {{0, 1, 2, 3}, {4, 5}, {6}})
= (0|1234, 0123|45|6)
= (4321/0, 0123\45\6)

We use ‘/’s and ‘\’s instead of ‘|’s to remind us of the direction of the cuts:
the ‘/’s correspond to cuts that go northeast and the ‘\’s to cuts that go
northwest.

We can now define the equivalence relation ∼S formally: if S = (L,R)
then ab ∼S cd iff a ∼L c and c ∼R d.

The expression “S = (L,R) is a slashing on H” will mean: H is a ZHA,
L is a picc on {0, . . . , l}, and R a picc on {0, . . . , r}, where lr is the top
element of H. The domain of the equivalence relation ∼S will be considered
to be H, not {0, . . . , l} × {0, . . . , r}.

1.2 Slash-operators

When S = (L,R) is a slashing on H we will use the notations [·]L, [·]R,
[·]S for the equivalence classes of L, R, S and the notations ·L, ·R, ·S for
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the highest element in those equivalence classes. In our example we have
[2]L = {1, 2, 3, 4}, [2]R = {0, 1, 2, 3}, [22]S = {11, 12, 13, 22, 23}, 2L = 4,
2R = 4, 2S = 23. Note that [a]L × [b]R, that we define as

[a]L × [b]R = { cd | c ∈ [a]L, d ∈ [b]R }

is a rectangle (tilted 45◦) that may contain piles that are not open; for
example, 04 ∈ [2]L × [2]R, and [22]S ( [2]L × [2]R.

A slash-operator on a ZHA H is a function ·F : H → H that is equal
to some ·S . Let’s do that more explicitly. A function ·F : H → H if a
slash-operator iff there exists a slashing S on the ZHA H such that ·F = ·S .

Supppose that we have a ZHA H and an arbitrary function ·F : H → H
on it. Suppose that the top element of H is lr. We can define ∼L, ∼R, L,
R from that ·F in the following way.

First we define a relation LF ⊂ {1, . . . , l}2 in which aLF c is true if and
only if there are ab, cd ∈ H with abF = cd. We then define ∼L as the
transitive-reflexive closure of LF , and we define the partition L of {1, . . . , l}
as the set of equivalence classes of ∼L. We do the same to define RF ⊂
{1, . . . , r}2, ∼R, and R. If this L is not a picc on {1, . . . , l}, or if this R is
not a picc on {1, . . . , r}, we stop: our original ·F is not a slash-operator. If
both L and R are piccs, we define ·L, ·R, and ·S as in the beginning of the
section, and we test if this ·S if equal to our original ·F . If they are equal
then our ·F is a slash-operator; if ·S 6= ·F then our ·F is not a slash-operator.

1.3 From slashings to question marks and vice-versa

Let’s write A4 B for the symmetric difference between two sets, and H2
u

for the subset of H2 formed by the pairs of neighboring points of H whose
difference is exactly u:

H2
u = { (ab, cd) ∈ H2 | ab4 cd = {u} }

There are several ways to convert a slashing to question marks and vice-
versa. They are all based on this idea: if one pair (ab, cd) ∈ H2

u is S-
equivalent, then all the other pairs will also be, and this means that all
these pairs have to be Q-equivalent — which means u ∈ Q. So:

Q = {u ∈ P | ∃(ab, cd) ∈ H2
u. ab ∼S cd }

= {u ∈ P | ∀(ab, cd) ∈ H2
u. ab ∼S cd }

Here is a simple way to do that conversion visually. Choose any path
from the bottom element of the ZHA to its top element that is made of one
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unit steps northwest or northeast — for example, this one:

(a0b0, a1b1, . . . a10b10) = (00, 01, 02, 03, 04, 14, 24, 34, 35, 36, 46)

If we are converting from a slashing to question marks, then for each step
from one element of the ZHA to the next one, say, from ab to cd, check if we
have crossed one of the cuts of the slashing; if we haven’t then we’ve moved
between two S-equivalent points, and as they should also be Q-equivalent
we add their difference ab 4 cd to Q. If we are converting from question
marks to slashings then every time that we move from a point ab to a point
cd and their difference ab4 cd is not a question mark point then we draw a
cut separating ab and cd.

In a diagram:


1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

?

?

?

?

?

?

?

 00
01
02
03
04

14
24

34
35
36

46

To convert from slashings to question marks:
We have 00 ∼S 01 ∼S 02 ∼S 03, so _1,_2,_3 ∈ Q.
We have 14 ∼S 24 ∼S 34 and 34 ∼S 35, so 2_, 3_ ∈ Q and _5 ∈ Q.
We have 36 ∼S 46, so _4 ∈ Q.

To convert from question marks to slashings:
We have 03 6∼Q 04, so we draw a cut between 03 and 04 (3\4).
We have 04 6∼Q 14, so we draw a cut between 04 and 14 (1/0).
We have 35 6∼Q 36, so we draw a cut between 35 and 36 (5\6).
Our slashing is 4321/0 0123\45\6.
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2 J-operators
A J-operator on a Heyting Algebra H ≡ (H,≤,>,⊥,∧,∨,→,↔,¬) is a
function J : H → H that obeys the axioms J1, J2, J3 below; we usually
write J as ·∗ : H → H, and write the axioms as rules.

P ≤ P ∗ J1
P ∗ = P ∗∗ J2

(P ∧Q)∗ = P ∗ ∧Q∗ J3

J1 says that the operation ·∗ is non-decreasing.
J2 says that the operation ·∗ is idempotent.
J3 is a bit mysterious but will have interesting consequences.
A J-operator induces an equivalence relation and equivalence classes on

H, like slashings do:

P ∼J Q iff P ∗ = Q∗

[P ]J := {Q ∈ H | P ∗ = Q∗ }

The equivalence classes of a J-operator J are called J-regions.
The axioms J1, J2, J3 have many consequences. The first ones are listed

in Figure 1 as derived rules, whose names mean:
Mop (monotonicity for products): a lemma used to prove Mo,
Mo (monotonicity): P ≤ Q implies P ∗ ≤ Q∗,
Sand (sandwiching): all truth values between P and P ∗ are equivalent,
EC&: equivalence classes are closed by ‘&’,
EC∨: equivalence classes are closed by ‘∨’,
ECS: equivalence classes are closed by sandwiching,

Take a J-equivalence class, [P ]J , and list its elements: [P ]J = {P1, . . . , Pn}.
Let P∧ := ((P1 ∧ P2) ∧ . . .) ∧ Pn and P∨ := ((P1 ∨ P2) ∨ . . .) ∨ Pn. Clearly
P∧ ≤ Pi ≤ P∨ for each i, so [P ]J ⊆ [P∧, P∨]. We will use the interval
notation [P,R] to mean the set of all elements of H obeying P ≤ Q ≤ R:

[P,R] = {Q ∈ H | P ≤ Q ≤ R }.

Using EC& and EC∨ several times we see that:

P1 ∧ P2 ∼J P P1 ∨ P2 ∼J P
(P1 ∧ P2) ∧ P3 ∼J P (P1 ∨ P2) ∨ P3 ∼J P

...
...

((P1 ∧ P2) ∧ . . .) ∧ Pn ∼J P ((P1 ∨ P2) ∨ . . .) ∨ Pn ∼J P
P∧ ∼J P P∨ ∼J P

P∧ ∈ [P ]J P∨ ∈ [P ]J

2021planar-HAs-2 August 9, 2021 00:28
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(P ∧Q)∗ ≤ Q∗ Mop
:=

(P ∧Q)∗ = P ∗ ∧Q∗ J3
P ∗ ∧Q∗ ≤ Q∗

(P ∧Q)∗ ≤ Q∗

P ≤ Q

P ∗ ≤ Q∗ Mo
:=

P ≤ Q

P = P ∧Q

P ∗ = (P ∧Q)∗ (P ∧Q)∗ ≤ Q∗ Mop

P ∗ ≤ Q∗

P ≤ Q ≤ P ∗

P ∗ = Q∗ Sand
:=

P ≤ Q

P ∗ ≤ Q∗ Mo

Q ≤ P ∗

Q∗ ≤ P ∗∗ Mo
P ∗∗ = P ∗ J2

Q∗ ≤ P ∗

P ∗ = Q∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∧Q)∗
EC&

:=

P ∗ = Q∗

P ∗ = Q∗ = P ∗ ∧Q∗ P ∗ ∧Q∗ = (P ∧Q)∗
J3

P ∗ = Q∗ = (P ∧Q)∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∨Q)∗
EC∨

:=

P ∗ = Q∗

P ≤ P ∨Q

P ≤ P ∗ J1
Q ≤ Q∗ J1

P ∗ = Q∗

Q∗ = P ∗

Q ≤ P ∗

P ∨Q ≤ P ∗

P ≤ P ∨Q ≤ P ∗

P ∗ = (P ∨Q)∗
Sand

P ∗ = Q∗ = (P ∨Q)∗

P ≤ Q ≤ R P ∗ = R∗

P ∗ = Q∗ = R∗ ECS
:=

P ≤ Q ≤ R R ≤ R∗ J1
P ∗ = R∗

R∗ = P ∗

P ≤ Q ≤ P ∗

P ∗ = Q∗ Sand
P ∗ = R∗

P ∗ = Q∗ = R∗

Figure 1: J-operators: basic derived rules
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and using ECS we can see that all elements between P∧ and P∨ are J-
equivalent to P :

P∧ ≤ Q ≤ P∨

P∧ ∼J P

P∧
∗ = P ∗

P∨ ∼J P

P∨
∗ = P ∗

P∧
∗ = P∨

∗

P∧
∗ = Q∗ = P∨

∗ ECS
P∨

∗ = P ∗

Q∗ = P ∗

Q ∼J P

so [P∧, P∨] ⊆ [P ]J . This means that J-regions are intervals.

3 Cuts stopping midway
Look at the figure at the left below, that shows a partition of a ZHA A =
[00, 66] into five regions, each region being an interval; this partition does
not come from a slashing, as it has (four) cuts that stop midway. They
are detailed at the right; the ones in which the cuts look like a ‘Y’ will be
called Y-cuts, and the ones that look like ‘λ’s will be called λ-cuts. Define
an operation ‘·∗’ on A, that works by taking each truth-value P in it to the
top element of its region; for example, 30∗ = 61.

60
61
62
63
64
65
66

50
51
52
53
54
55
56

40
41
42
43
44
45
46

30
31
32
33
34
35
36

20
21
22
23
24
25
26

10
11
12
13
14
15
16

00
01
02
03
04
05
06

λ-cuts:
55

54 45
44

25
24 15

14

Y-cuts:
52

51 42
41

22
21 12

11

It is easy to see that ‘·∗’ obeys J1 and J2; however, it does not obey J3 —
we will prove that in sec.3.1. As we will see, the partitions of a ZHA into
intervals that obey J1, J2, J3 ae exactly the slashings; or, in other words,
every J-operator comes from a slashing.

2021planar-HAs-2 August 9, 2021 00:28



CONTENTS 12

3.1 The are no Y-cuts and no λ-cuts

Let’s start with these particular cases of a λ-cut and a Y-cut:

λ-cut:

P∨Q

P Q

P∧Q

Y-cut:

P∨Q

P Q

P∧Q

One way to prove that λ-cuts can’t happen when J1, J2, and J3 all hold
is to show a proof of (P ∼J P∨Q) → (P∧Q ∼J Q) that uses only J1, J2,
J3 and the axioms of Heyting Algebras; and similarly, we can prove that
Y -cuts can’t happen by showing a proof of (P ∼J P∨Q) ← (P∧Q ∼J Q).
Here are the proofs, with the proof of “λ-cuts can’t happen” first:

P ∗ = (P ∨Q)∗

P ∗ ∧Q∗ = (P ∨Q)∗ ∧Q∗

(P ∧Q)∗ = ((P ∨Q) ∧Q)∗
J3

(P ∨Q) ∧Q = Q

(P ∧Q)∗ = Q∗

P = P ∨ (P ∧Q)

(P ∧Q)∗ = Q∗

P ∨ (P ∧Q)∗ = P ∨Q∗

(P ∨ (P ∧Q)∗)∗ = (P ∨Q∗)∗

(P ∨ (P ∧Q))∗ = (P ∨Q)∗
66 = 64

P ∗ = (P ∨Q)∗

The expansion of the double bar labeled ‘66 = 64’ uses (twice) a derived
rule with that name, that can be obtained from the ‘6-cubes’ of sec.4.
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4 How J-operators interact with connectives
The axiom J3 says that (P ∧ Q)∗ = P ∗ ∧ Q∗ — it says something about
how ‘·∗’ interacts with ‘∧’. Let’s introduce a shorter notation. There are
eight ways to replace each of the ‘?’s in (P ? ∧ Q?)? by either nothing or a
star. We establish that the three ‘?’s in (P ? ∧Q?)? are “worth” 1, 2 and 4
respectively, and we use P 7n Q to denote (P ? ∧ Q?)? with the bits “that
belong to n” replaced by stars. So:

70 = P ∧Q, 74 = (P ∧Q)∗,
71 = P ∗ ∧Q, 75 = (P ∗ ∧Q)∗,
72 = P ∧Q∗, 76 = (P ∧Q∗)∗,
73 = P ∗ ∧Q∗, 77 = (P ∗ ∧Q∗)∗.

We omit the arguments of 7n when they are P and Q — so we can
rewrite (P ∧Q)∗ = P ∗ ∧Q∗ as 74 = 73. These conventions also hold for 6
and 	→.

It is easy to prove each one of the arrows in the cubes below (A // B
means A ≤ B):

P∧Q

P ∗∧QddJJJJJJJ

P∧Q∗

P ∗∧Q∗
ddJJJJJJJ

(P∧Q)∗

(P ∗∧Q)∗
ddJJJJJJ

(P∧Q∗)∗

(P ∗∧Q∗)∗
ddJJJJJJ

P∧Q

P∧Q∗
::ttttttt

P ∗∧Q

P ∗∧Q∗
::ttttttt

(P∧Q)∗

(P∧Q∗)∗
::tttttt

(P ∗∧Q)∗

(P ∗∧Q∗)∗
::tttttt

P∧Q

(P∧Q)∗
OO

P ∗∧Q

(P ∗∧Q)∗
OO

P∧Q∗

(P∧Q∗)∗
OO

P ∗∧Q∗

(P ∗∧Q∗)∗
OO

P∨Q

P ∗∨QddJJJJJJJ

P∨Q∗

P ∗∨Q∗
ddJJJJJJJ

(P∨Q)∗

(P ∗∨Q)∗
ddJJJJJJ

(P∨Q∗)∗

(P ∗∨Q∗)∗
ddJJJJJJ

P∨Q

P∨Q∗
::ttttttt

P ∗∨Q

P ∗∨Q∗
::ttttttt

(P∨Q)∗

(P∨Q∗)∗
::tttttt

(P ∗∨Q)∗

(P ∗∨Q∗)∗
::tttttt

P∨Q

(P∨Q)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO

P→Q

P ∗→Q

$$

JJJJJJJ

P→Q∗

P ∗→Q∗

$$

JJJJJJJ

(P→Q)∗

(P ∗→Q)∗

$$

JJJJJJ

(P→Q∗)∗

(P ∗→Q∗)∗

$$

JJJJJJ

P→Q

P→Q∗
::ttttttt

P ∗→Q

P ∗→Q∗
::ttttttt

(P→Q)∗

(P→Q∗)∗
::tttttt

(P ∗→Q)∗

(P ∗→Q∗)∗
::tttttt

P→Q

(P→Q)∗
OO

P ∗→Q

(P ∗→Q)∗
OO

P→Q∗

(P→Q∗)∗
OO

P ∗→Q∗

(P ∗→Q∗)∗
OO

Let’s write their sets of elements as 70...7 := {70, . . . ,77}, 60...7 :=
{60, . . . ,67}, and 	→0...7 := {	→0, . . . ,	→7}. The cubes above — we will
call them the “obvious and-cube”, the “obvious or-cube”, and the “obvious
implication-cube” — can be interpreted as directed graphs (70...7,OCube∧),
(60...7,OCube∨), (	→0...7,OCube→).

The “extended cubes” will be the directed graphs with the arrows above

2021planar-HAs-2 August 9, 2021 00:28



CONTENTS 14

plus the ones coming from these derived rules:

(P ∗ ∧Q∗)∗ = P ∗ ∧Q∗ = (P ∧Q)∗
77 = 73 = 74

:=

P ∗∗ = P ∗ J2
Q∗∗ = Q∗ J2

(P ∗ ∧Q∗)∗ = P ∗∗ ∧Q∗∗ = P ∗ ∧Q∗ = (P ∧Q)∗
J3

(P ∗ ∧Q∗)∗ = P ∗ ∧Q∗ = (P ∧Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
67 ≤ 63

:=

P ≤ P ∨Q

P ∗ ≤ (P ∨Q)∗
Mo

Q ≤ P ∨Q

Q∗ ≤ (P ∨Q)∗
Mo

P ∗ ∨Q∗ ≤ (P ∨Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗∗
Mo

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
J2

(P → Q∗)∗ ≤ P ∗ → Q∗ 	→6 ≤ 	→3
:=

P → Q∗ ≤ P → Q∗

(P → Q∗) ∧ P ≤ Q∗

((P → Q∗) ∧ P )∗ ≤ Q∗∗ Mo

((P → Q∗) ∧ P )∗ ≤ Q∗ J2

(P → Q∗)∗ ∧ P ∗ ≤ Q∗ J3

(P → Q∗)∗ ≤ P ∗ → Q∗

where 77 = 73 = 74 will be interpreted as these arrows:

(P ∗ ∧Q∗)∗ oo // P ∗ ∧Q∗ oo // (P ∧Q)∗

The directed graphs of these “extended cubes” will be called (70...7,ECube∧),
(60...7,ECube∨), (	→0...7,ECube→). We are interested in the (non-strict) par-
tial orders that they generate, and we want an easy way to remember these
partial orders. The figure below shows these extended cubes at the left,
and at the right the “simplified cubes”, SCube∧, SCube∨, and SCube→, that
generate the same partial orders that the extended cubes.
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70

71 ddJJJJJJJJ

72

73 ddJJJJJJJJ
74

75 ddJJJJJJJJ

76

77 ddJJJJJJJJ

70

72::tttttttt

71

73::tttttttt
74

76::tttttttt

75

77::tttttttt

70

74OO71

75OO

72

76OO73

77OO

73

77

��
73

74

��

73

74

OO



∗

=


70

71 ddJJJJJJJJ

72

73 ddJJJJJJJJ
74

75 JJJJJJJJ

JJJJJJJJ

76

77 JJJJJJJJ

JJJJJJJJ

70

72::tttttttt

71

73::tttttttt
74

76tttttttt

tttttttt

75

77tttttttt

tttttttt

70

74OO71

75OO

72

76OO73

77



∗


60

61 ddJJJJJJJJ

62

63 ddJJJJJJJJ
64

65 ddJJJJJJJJ

66

67 ddJJJJJJJJ

60

62::tttttttt

61

63::tttttttt
64

66::tttttttt

65

67::tttttttt

60

64OO61

65OO

62

66OO63

67OO67

64

��



∗

=


60

61 ddJJJJJJJJ

62

63 ddJJJJJJJJ
64

65 JJJJJJJJ

JJJJJJJJ

66

67 JJJJJJJJ

JJJJJJJJ

60

62::tttttttt

61

63::tttttttt
64

66tttttttt

tttttttt

65

67tttttttt

tttttttt

60

64OO61

65OO

62

66OO63

67OO


∗


	→0

	→1

$$

JJJJJJJ

	→2

	→3

$$

JJJJJJJ
	→4

	→5

$$

JJJJJJJ

	→6

	→7

$$

JJJJJJJ

	→0

	→2::ttttttt

	→1

	→3::ttttttt
	→4

	→6::ttttttt

	→5

	→7::ttttttt

	→0

	→4OO	→1

	→5OO

	→2

	→6OO	→3

	→7OO

	→6	→3
oo



∗

=


	→0

	→1

$$

JJJJJJJ

	→2

	→3 JJJJJJJ

JJJJJJJ
	→4

	→5

$$

JJJJJJJ

	→6

	→7 JJJJJJJ

JJJJJJJ

	→0

	→2::ttttttt

	→1

	→3::ttttttt
	→4

	→6::ttttttt

	→5

	→7::ttttttt

	→0

	→4OO	→1

	→5OO

	→2

	→6	→3

	→7



∗

From these cubes it is easy to see, for example, that we can prove 65 =
66 (as a derived rule).
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5 Valuations
Let H� and J� be a ZHA and a J-operator on it, and let v� be a function
from the set {P,Q} to H. By an abuse of language v� will also denote the
triple (H�, J�, v�) — and by a second abuse of language v� will also denote
the obvious extension of v� : {P,Q} → H to the set of all valid expressions
formed from P , Q, ·∗, >, ⊥, and the connectives.

Let i, j ∈ {0, . . . , 7}. Then (7i,7j) ∈ SCube∗∧ means that 7i ≤ 7j is a
theorem, and so v�(7i) ≤ v�(7j) holds; i.e.,

SCube∗∧ ⊆ { (7i,7j) | i, j ∈ {0, . . . , 7}, v�(7i) ≤ v�(7j) }

and the same for:

SCube∗∨ ⊆ { (6i,6j) | i, j ∈ {0, . . . , 7}, v�(6i) ≤ v�(6j) }
SCube∗→ ⊆ { (	→i,	→j) | i, j ∈ {0, . . . , 7}, v�(	→i) ≤ v�(	→j) }

Some valuations that turn these ‘⊆’s into ‘=’. Let

(H∧, J∧, v∧) = P
P ∗

Q
Q∗

(H∨, J∨, v∨) =

P
P ∗

Q
Q∗

(H→, J→, v→) =
P Q

then

SCube∗∧ = { (7i,7j) | i, j ∈ {0, . . . , 7}, v∧(7i) ≤ v∧(7j) }
SCube∗∨ = { (6i,6j) | i, j ∈ {0, . . . , 7}, v∨(6i) ≤ v∨(6j) }

SCube∗→ = { (	→i,	→j) | i, j ∈ {0, . . . , 7}, v→(	→i) ≤ v→(	→j) }

or, in more elementary terms:
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A very important fact. For any i and j,

7i ≤ 7j is a theorem iff it is true in P
P ∗

Q
Q∗

,

6i ≤ 6j is a theorem iff it is true in
P

P ∗

Q
Q∗ ,

	→i ≤ 	→j is a theorem iff it is true in
P Q

.

The very important fact, and the valuations v∧, v∨, v→, give us:

• a way to remember which sentences of the forms 7i ≤ 7j , 6i ≤ 6j ,
	→i ≤ 	→j are theorems;

• countermodels for all the sentences of these forms not in SCube∧,
SCube∨, SCube→. For example, 67 ≤ 64 is not in SCube∨; and
v∨(67) ≤ v∨(64), which shows that 67 ≤ 64 can’t be a theorem.

An observation. I arrived at the cubes ECube∗∧, ECube∗∨, ECube∗→ by
taking the material in the corollary 5.3 of chapter 5 in [Bel88] and trying to
make it fit into less mental space (as discussed in [IDARCT]); after that I
wanted to be sure that each arrow that is not in the extended cubes has a
countermodel, and I found the countermodels one by one; then I wondered
if I could find a single countermodel for all non-theorems in ECube∗∧ (and
the same for ECube∗∨ and ECube∗→), and I tried to start with a valuation
that distinguished some equivalence classes in ECube∗∧, and change it bit by
bit, getting valuations that distinguished more equivalence classes at every
step. Eventually I arrived at v∧, v∨ and at v→, and at the — surprisingly
nice — “very important fact” above.
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Note that this valuation

(H∧∨, J∧∨, v∧∨) =

P

P ∗

Q

Q∗

distinguishes all equivalence classes in ECube∗∧ and in ECube∗∨, but not in
ECube∗→... it “thinks” that P → Q and P ∗ → Q are equal.
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6 Polynomial J-operators
It is not hard to check that for any Heyting Algebra H and any Q,R ∈ H
the operations (¬¬), . . ., (∨Q ∧→R) below are J-operators:

(¬¬)(P ) = ¬¬P
(→→R)(P ) = (P→R)→R

(∨Q)(P ) = P ∨Q
(→R)(P ) = P→R

(∨Q ∧→R)(P ) = (P∨Q) ∧ (P→R)

Checking that they are J-operators means checking that each of them
obeys J1, J2, J3. Let’s define formally what are J1, J2 and J3 “for a given
F : H → H”:

J1F := (P ≤ F (P ))
J2F := (F (P ) = F (F (P ))
J3F := (F (P ∧ P ′) = F (P ) ∧ F (P ′))

and:
J123F := J1F ∧ J2F ∧ J3F .

Checking that (¬¬) obeys J1, J2, J3 means proving J123(¬¬) using only
the rules from intuitionist logic from section 10 of [PH1]; we will leave the
proof of this, of and J123(→→R), J123(∨Q), and so on, to the reader.

The J-operator (∨Q ∧→R) is a particular case of building more complex
J-operators from simpler ones. If J,K : H → H, we define:

(J ∧K) := λP :H.(J(P )∧K(P ))

it not hard to prove J123(J∧K) from J123J and J123K using only the rules
from intuitionistic logic.

The J-operators above are the first examples of J-operators in Fourman
and Scott’s “Sheaves and Logic” ([FS79]); they appear in pages 329–331,
but with these names (our notation for them is at the right):

(i) The closed quotient,

Jap = a ∨ p JQ = (∨Q).

(ii) The open quotient,

Jap = a→ p JR = (→R).
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(iii) The Boolean quotient.

Bap = (p→ a)→ a BR = (→→R).

(iv) The forcing quotient.

(Ja ∧ Jb)p = (a ∨ p) ∧ (b→ p) (JQ ∧ JR) = (∨Q ∧→R).

(vi) A mixed quotient.

(Ba ∧ Ja)p = (p→ a)→ p (BQ ∧ JQ) = (→→Q ∧→Q).

The last one is tricky. From the definition of Ba and Ja what we have is

(Ba ∧ Ja)p = ((p→ a)→ a) ∧ (a→ p),

but it is possible to prove

((p→ a)→ a) ∧ (a→ p) ↔ ((p→ a)→ p)

intuitionistically.
The operators above are “polynomials on P,Q,R,→,∧,∨,⊥” in the ter-

minology of Fourman/Scott: “If we take a polynomial in →,∧,∨,⊥, say,
f(p, a, b, . . .), it is a decidable question whether for all a, b, . . . it defines a
J-operator” (p.331).

When I started studying sheaves I spent several years without any visual
intuition about the J-operators above. I was saved by ZHAs and brute force
— and the brute force method also helps in testing if a polynomial (in the
sense above) is a J-operator in a particular case. For example, take the
operators λP :H.(P ∧ 22) and (∨22) on H = [00, 44]:

λP :H.(P ∧ 22) = 20
21
22
22
22

20
21
22
22
22

20
21
22
22
22

10
11
12
12
12

00
01
02
02
02

(∨22) = 42
42
42
43
44

32
32
32
33
34

22
22
22
23
24

22
22
22
23
24

22
22
22
23
24 = 22
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The first one, λP :H.(P ∧ 22), is not a J-operator; one easy way to see
that is to look at the region in which the result is 22 — its top element
is 44, and this violates the conditions on slash-operators in sec.1.2. The
second operator, (∨22), is a slash operator and a J-operator; at the right we
introduce a convenient notation for visualizing the action of a polynomial
slash-operator, in which we draw only the contours of the equivalence classes
and the constants that appear in the polynomial.

Using this new notation, we have:

(¬¬) = (→→00) =

00

(→→22) = 22

(∨42) = 42 (→24) = 24

(∨42 ∧→24) = 42 24

(→→22 ∧→22) =
22

Note that the slashing for (∨42 ∧ →24) has all the cuts for (∨42) plus
all the cuts for (→24), and (∨42 ∧ →24) “forces 42 ≤ 24” in the following
sense: if P ∗ = (∨42 ∧→24)(P ) then 42∗ ≤ 24∗.
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6.1 An algebra of piccs

We saw in the last section a case in which (J ∧K) has all the cuts from J
plus all the cuts from K; this suggests that we may have an operation dual
to that, that behaves as this: (J ∨K) has exactly the cuts that are both in
J and in K:

Cuts(J ∧K) = Cuts(J) ∪ Cuts(K)
Cuts(J ∨K) = Cuts(J) ∩ Cuts(K)

And it J1, . . . , Jn are all the slash-operators on a given ZHA, then

Cuts(J1 ∧ . . . ∧ Jn) = Cuts(J1) ∪ . . . ∪ Cuts(Jk) = (all cuts)
Cuts(J1 ∨ . . . ∨ Jn) = Cuts(J1) ∩ . . . ∩ Cuts(Jk) = (no cuts)

yield the minimal element and the maximal element, respectively, of an
algebra of slash-operators; note that the slash-operator with “all cuts” is
the identity map λP :H.P , and the slash-operator with “no cuts” is the
one that takes all elements to >: λP :H.>. This yields a lattice of slash-
operators, in which the partial order is J ≤ K iff Cuts(J) ⊇ Cuts(K). This
is somewhat counterintuitive if we think in terms of cuts — the order seems
to be reversed — but it makes a lot of sense if we think in terms of piccs
(sec.1.1) instead.

Each picc P on {0, . . . , n} has an associated function ·P that takes each
element to the top element of its equivalence class. If we define P ≤ P ′ to
mean ∀a ∈ {0, . . . , n}. aP ≤ aP

′ , then we have this:

0
1
2
3
4
5

012345
••

••
••

a

aP

≤
0
1
2
3
4
5

012345
••

••
••

a

aP
′

≤
0
1
2
3
4
5

012345
••

••••

a

aP
′′

≤
0
1
2
3
4
5

012345

••••••

a

aP
′′′

0|1|2|3|4|5 ≤ 01|23|45 ≤ 01|2345 ≤ 012345
P ≤ P ′ ≤ P ′′ ≤ P ′′′

This yields a partial order on piccs, whose bottom element is the identity
function 0|1|2| . . . |n, and the top element is 012 . . . n, that takes all elements
to n.

The piccs on {0, . . . , n} form a Heyting Algebra, where ⊥ = 0|1| . . . |n,
> = 01 . . . n, and ‘∧’ and ‘∨’ are the operations that we have discussed
above; it is possible to define a ‘→’ there, but this ‘→’ is not going to be
useful for us and we are mentioning it just as a curiosity. We have, for
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example:
01234

01|234

OO >

P ∨Q

OO

01|234

0|1|234

??

��
��
�
01|234

01|2|34

__
??

??
?

P ∨Q

P

??

��
��
��
P ∨Q

Q

__

??
??

?

0|1|234

0|1|2|34

__
??

??
?

01|2|34

0|1|2|34

??

��
��
�

P

P ∧Q

__

??
??

??
Q

P ∧Q

??

��
��
��

0|1|2|34

0|1|2|3|4

OO
P ∧Q

⊥

OO

6.2 An algebra of J-operators

Fourman and Scott define the operations ∧ and ∨ on J-operators in pages
325 and 329 ([FS79]), and in page 331 they list ten properties of the algebra
of J-operators:

(i) Ja ∨ Jb = Ja∨b (∨21) ∨ (∨12) = (∨22)
(ii) Ja ∨ Jb = Ja∧b (→32) ∨ (→23) = (→22)
(iii) Ja ∧ Jb = Ja∧b (∨21) ∧ (∨12) = (∨11)
(iv) Ja ∧ Jb = Ja∨b (→32) ∧ (→23) = (→33)
(v) Ja ∧ Ja = ⊥ (∨22) ∧ (→22) = (⊥)
(vi) Ja ∨ Ja = > (∨22) ∨ (→22) = (>)
(vii) Ja ∨K = K ◦ Ja
(viii) Ja ∨K = Ja ◦K
(ix) Ja ∨Ba = Ba

(x) Ja ∨Bb = Ba→b

The first six are easy to visualize; we won’t treat the four last ones. In
the right column of the table above we’ve put a particular case of (i), . . .,
(vi) in our notation, and the figures below put all together.

In Fourman and Scott’s notation,
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J22

J> = > = J⊥
??����������

J22

J> = > = J⊥
__??????????

J21

J22??������
J12

J22 __??????

J32

J22
??������

J23

J22
__??????

J11

J21 __??????

J11

J12??������
J11

J32
__??????

J11

J23
??������

J⊥ = ⊥ = J>

J11 __??????????

J⊥ = ⊥ = J>

J11
??����������

in our notation,

(22∨)

(>∨) = (λP.>) = (⊥→)
??������������

(22→)

(>∨) = (λP.>) = (⊥→)
__????????????

(21∨)

(22∨)
??�����

(12∨)

(22∨)
__?????

(32→)

(22→)
??�����

(23→)

(22→)
__?????

(11∨)

(21∨)
__?????

(11∨)

(12∨)
??�����

(33→)

(32→)
__?????

(33→)

(23→)
??�����

(⊥∨) = (λP.P ) = (>→)

(11∨)
__????????????

(⊥∨) = (λP.P ) = (>→)

(33→)
??������������
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and drawing the polynomial J-operators as in sec.6:

22 22

21 12

32

34

11

33

6.3 All slash-operators are polynomial

Here is an easy way to see that all slashings — i.e., J-operators on ZHAs
— are polynomial. Every slashing J has only a finite number of cuts; call
them J1, . . . , Jn. For example:

J =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J1 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J2 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J3 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

Each cut Ji divides the ZHA into an upper region and a lower region,
and Ji(00) yields the top element of the lower region. Also, (→→Ji(00)) is
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a polynomial way of expressing that cut:

J1 =
(→→ 04) = 04

J2 =
(→→ 23) =

23
J3 =

(→→ 45) =

45

The conjunction of these ‘(→→Ji(00))’s yields the original slashing:

(→→ 04) ∧ (→→ 23) ∧ (→→ 45) =
04

23

45

= J
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7 Toposes

Everything from here onwards will be rewritten!

7.1 Some bijections

7.2 A particular case

[TODO: rewrite everything from this point onwards]
Fix a 2-column graph (P,A), and let D be the DAG (P,A) regarded as

a posetal category. Let E be the topos SetD, and let H be the (planar)
Heyting Algebra of truth-values of E: H = CanSub(1E). From here on D,
E, and H will be our default 2CG, our default topos, and our default ZHA.
Let’s take this idea of “defaults” a bit further.


a set of
question
marks
Q ⊆ D0

 (
a subset
Y ⊆ D0

)
oo //__

(
a subset
Y ⊆ D0

) (
a nucleus

(·)∗ : H → H

)
oo

[Lin14]
Thm C4,

p.74

//

a Grothendieck
topology
J ⊂ Ω




a Lawvere-
Tierney
topology
j : Ω→ Ω

oo
[LM92]
Sec V.4
Thm 1
p.233

//


a Lawvere-

Tierney
topology
j : Ω→ Ω



 a closure operator:
for every E ∈ E a

(·)E : Incs(E)→ Incs(E)


��
[McL92, sec.21],
[Och20, sec.2.6]

OO

(
a subset
Y ⊆ D0

)

a Grothendieck
topology
J ⊂ Ω



OO

[Lin14]
Thm C4,

p.74

��

(
a nucleus

(·)∗ : H → H

)

 a closure operator:
for every E ∈ E a

(·)E : Incs(E)→ Incs(E)


OO

���
�
�


a set of
question
marks
Q ⊆ D0

 (
a nucleus

(·)∗ : H → H

)oo [PH2] //

In sections 2–4 we saw a bijection that converts each set of question
marks Q to a J-operator (·)∗ and vice-versa. The theorem C4 of [Lin14] de-
fines a bijection that converts every J-operator (·)∗ to a subset Y ⊂ D0

and vice-versa, and another bijection that converts each Y ⊂ D0 to a
Grothendieck topology J in SetD. Section V.4 of [LM92] how to convert
each J to a Lawvere-Tierney topology j and vice-versa, and [McL92] and
[Och20] show how to convert each j to a closure operator (·) and vice-versa.
Let’s refer to the operations that perform the conversions as (Q 7→ (·)∗),
((·)∗ 7→ Q), and so on; for example,
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(Y 7→ J) = λY ⊂ D0. λu ∈ D0. { S ∈ Ω(u) | Y ∩ ↓u ⊂ S }
(J 7→ Y) = λJ ∈ GrTops(E). {u ∈ D0 | J(u) = {↓u} }

This means that once we’ve chosen a value for Q, or for (·)∗, Y, J ,
j, or (·) the default values for the other ones become automatically deter-
mined. Here is an example. If we choose Q as in the top left below we get
this:


?

?

1_

2_

3_

_1

_2

_3



_3,

2_,
1_, _1

oo //____


_3,

2_,
1_, _1


32

33

20
21

22
23

10
11

12
13

00
01

02
03oo //

 [
1
·
·

·
·
·
]

[
1
1
·

·
·
·
]

[
1
1
?

1
?
·
]

[
·
·
·

1
·
·
]

[
·
·
·

1
?
·
]

[
·
·
·

1
?
1
] 


·

·

·
·

·
·

10
·

·
·

00
·

·
·

·
·

20
·
·

·

10
·

·
·

00
·

·
·

32
·
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21
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·
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11

12
·

00
01
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·

·
·

·
·
·

·

·
·

·
·

00
01

·
·

·
·

·
·
·

·

·
·

·
·

00
01
02

·

·
·

·
·
·

·

·
·

·
·

00
01

02
03



oo //


_3,

2_,
1_, _1



 [
1
·
·

·
·
·
]

[
1
1
·

·
·
·
]

[
1
1
?

1
?
·
]

[
·
·
·

1
·
·
]

[
·
·
·

1
?
·
]

[
·
·
·

1
?
1
] 
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·
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·
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·
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·
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·

·
·
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·

·
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·
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?

?

1_

2_

3_

_1

_2

_3


32
33

20
21

22
23

10
11

12
13

00
01

02
03

oo //

Note that I have dropped the (·) from the diagram. This is because I
don’t have (yet) a good way to draw closure operators.

This diagram — of a particular case! — suggests that the points in Y
are exactly the points of Q without question marks, and that each j(u) :
Ω(u) → Ω(u) is the slashing (·)∗ restricted to ↓u, or, more precisely, that
j(u)(v) = v∗ ∧ u. If we remake that diagram for the other 63 ‘Q’s, we see
that this still holds. If we do the same for some other 2CGs and for all ‘Q’s
in them, we will see that the same patterns still hold — but there infinitely
many 2CGs. We can obtain direct proofs that the ‘Y’s are always the points
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of D0 without question marks, and that the ‘(·)∗’s are exactly the slashings
and that the ‘j’s are obtained by restricting the ‘(·)∗’s, but some calculations
may be hairy.

Remember that we are looking for “visual intuition” on what are the
‘(·)∗’s and their associates j’s and J . Are these fully formalized proofs
really necessary? Answer: not if we formalize “visual intuition” in the way
that we do in the next section.

(·)∗ := λS ∈ H.
⋃
{R ∈ H | R ∩ Y = S ∩ Y }

Y := {u ∈ D0 | ↓−u ∈ H∗ }
= {u ∈ D0 | (↓−u)∗ = ↓−u }
= {u ∈ D0 | (↓u\{u})∗ = (↓u\{u}) }

J := λu ∈ D0. { S ∈ Ω(u) | (Y ∩ ↓u) ⊆ S }
Y := {u ∈ D0 | J(u) = {↓u} }
J := λu ∈ D0. { S ∈ Ω(u) | ↓u = S∗ ∩ ↓u }

= λu ∈ D0. { S ∈ Ω(u) | ↓u ⊂ S∗ }
= λu ∈ D0. { S ∈ Ω(u) | u ∈ S∗ }

(·)∗ := λS ∈ H. {u ∈ D0 | S ∩ ↓u ∈ J(u) }

j := λu ∈ D0. λS ∈ Ω(u).CST({ v ∈ ↓u | Ω
(

u
↓
v

)
(S) ∈ J(v) })

= λu ∈ D0. λS ∈ Ω(u).CST({ v ∈ ↓u | S ∩ ↓v ∈ J(v) })
J := λu ∈ D0. { S ∈ Ω(u) | j(u)(S) = >(u)(∗) }

= λu ∈ D0. { S ∈ Ω(u) | j(u)(S) = ↓u }

Hypotheses:
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J(u) := { S ∈ Ω(u) | S∗ ∩ ↓u = ↓u }
j(u)(S) := S∗ ∩ ↓u
u ∈ Q := ?

Jj(p) = {S ∈ D(↓p) : p ∈ j(S)}
Jj(u) = {S ∈ Ω(u) : u ∈ j(S)}
J(u) = {S ∈ Ω(u) : u ∈ S∗}

= {S ∈ Ω(u) : ↓u ⊂ S∗}
= {S ∈ Ω(u) : ↓u = S∗ ∩ ↓u}

J := λu ∈ D0. { S ∈ Ω(u) | ↓u = S∗ ∩ ↓u }
= λu ∈ D0. { S ∈ Ω(u) | ↓u ⊂ S∗ }
= λu ∈ D0. { S ∈ Ω(u) | u ∈ S∗ }

jJ(A) = {p ∈ P : A∩ ↓ p ∈ J(p)}
S∗ = {u ∈ D0 | S ∩ ↓u ∈ J(u) }
(·)∗ = λS ∈ H. {u ∈ D0 | S ∩ ↓u ∈ J(u) }

8 Visual intuition
This is an excerpt from a long blog post by Kevin Buzzard ([Buz21]):

Mathematicians think in pictures
I have a picture of the real numbers in my head. It’s a straight
line. This picture provides a great intuition as to how the real
numbers work. I also have a picture of what the graph of a dif-
ferentiable function looks like. It’s a wobbly line with no kinks
in. This is by no means a perfect picture, but it will do in many
cases. For example: If someone asked me to prove or disprove the
existence of a strictly increasing infinitely differentiable function
f : R → R such that f ′(37) = 0 and f ′′(37) < 0 then I would
start by considering a picture of a graph of a strictly increasing
function (monotonically increasing as we move from left to right),
and a second picture of a function whose derivative at x = 37
is zero and whose second derivative is negative (a function with
a local maximum). I then note that there are features in these
pictures which make them incompatible with each other. Work-
ing with these pictures in mind, I can now follow my intuition
and write down on paper a picture-free proof that such a func-
tion cannot exist, and this proof would be acceptable as a model
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solution to an exam question. My perception is that other work-
ing mathematicians have the same pictures in their head when
presented with the same problem, and would go through roughly
the same process if they were asked to write down a sketch proof
of this theorem.

Fulano talks of starting from visual intuition, and from that producing
conjectures and formal proofs; in sections 1 to 6 we developed visual intuition
for a well-known part of basic Topos Theory. How can we put these two
things in the same framework.

Q (·)∗
oo //

Y (·)∗oo //Y

J

OO

��
J joo // j

(·)

��

OO
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