Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2021yoneda.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2021yoneda.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2021yoneda.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2021yoneda.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2021yoneda.pdf")) % (defun e () (interactive) (find-LATEX "2021yoneda.tex")) % (defun u () (interactive) (find-latex-upload-links "2021yoneda")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2021yoneda.pdf")) % (code-eec-LATEX "2021yoneda") % (find-pdf-page "~/LATEX/2021yoneda.pdf") % (find-sh0 "cp -v ~/LATEX/2021yoneda.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2021yoneda.pdf /tmp/pen/") % file:///home/edrx/LATEX/2021yoneda.pdf % file:///tmp/2021yoneda.pdf % file:///tmp/pen/2021yoneda.pdf % http://angg.twu.net/LATEX/2021yoneda.pdf % (find-LATEX "2019.mk") % (find-lualatex-links "2021yoneda") % «.page-1» (to "page-1") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % «page-1» (to ".page-1") % (y21p 1 "page-1") % (y21a "page-1") %D diagram Yoneda-functors %D 2Dx 100 +30 %D 2D 100 A1 %D 2D | %D 2D +25 A2 - A3 %D 2D | | %D 2D +25 A4 - A5 %D 2D | | %D 2D +25 A6 - A7 %D 2D | | %D 2D +25 A8 - A9 %D 2D %D 2D +15 B0 - B1 %D 2D %D ren A1 ==> A %D ren A2 A3 ==> C RC %D ren A4 A5 ==> D RD %D ren A6 A7 ==> E RE %D ren A8 A9 ==> F RF %D ren B0 B1 ==> \catB \catA %D %D (( A1 A3 -> .plabel= r η %D A2 A3 |-> %D A2 A4 -> .plabel= l f %D A3 A5 -> .plabel= r Rf %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D A4 A6 -> .plabel= l g %D A5 A7 -> .plabel= r Rg %D A4 A7 harrownodes nil 20 nil |-> %D A6 A7 |-> %D A6 A8 -> .plabel= l m %D A7 A9 -> .plabel= r Rm %D A6 A9 harrownodes nil 20 nil |-> %D A8 A9 |-> %D %D A1 A5 -> .slide= 20pt .plabel= r h %D A1 A7 -> .slide= 35pt .plabel= r ℓ %D A2 A6 -> .slide= -15pt .plabel= l k %D %D B0 B1 -> .plabel= a R %D )) %D enddiagram %D $$\pu \diag{Yoneda-functors} $$ \sa{catB(C,idD)}{ \scalebox{0.7}{$ \begin{array}{l} \catB(C,\id_D) \\ = λf.\;\id_D∘f \\ = λf.\;f \\ = \id_{\catB(C,D)} \\ \end{array} $} } \sa{catB(C,g)}{ \scalebox{0.7}{$ \begin{array}{l} \catB(C,g) \\ = λf.\;g∘f \\ \end{array} $} } \sa{catB(C,m)}{ \scalebox{0.7}{$ \begin{array}{l} \catB(C,m) \\ = λk.\;m∘k \\ \end{array} $} } \sa{catB(C,mog)}{ \scalebox{0.7}{$ \begin{array}{l} (λk.\;m∘k)∘(λf.\;g∘f) \\ = λf.\;((λk.\;m∘k)∘(λf.\;g∘f))(f) \\ = λf.\;(λk.\;m∘k)((λf.\;g∘f)(f)) \\ = λf.\;(λk.\;m∘k)(g∘f) \\ = λf.\;m∘(g∘f) \\ = λf.\;(m∘g)∘f \\ = \catB(C,m∘g) \\ \end{array} $} } %D diagram Yoneda-functor-left %D 2Dx 100 +30 +55 +30 %D 2D 100 LA0 - LA1 LB0 - LB1 %D 2D | | | | %D 2D +25 | | LB2 - LB3 %D 2D | | | | %D 2D +25 LA2 - LA3 LB4 - LB5 %D 2D %D 2D +15 LC0 - LC1 LD0 - LD1 %D 2D %D ren LA0 LA1 ==> D \catB(C,D) %D ren LA2 LA3 ==> D \catB(C,D) %D ren LB0 LB1 ==> D \catB(C,D) %D ren LB2 LB3 ==> E \catB(C,E) %D ren LB4 LB5 ==> F \catB(C,F) %D ren LC0 LC1 ==> \catB \Set %D ren LD0 LD1 ==> \catB \Set %D %D (( LA0 LA1 |-> %D LA0 LA2 -> .plabel= l \id_D %D LA1 LA3 -> .plabel= r \ga{catB(C,idD)} %D LA0 LA3 harrownodes nil 20 nil |-> %D LA2 LA3 |-> %D %D LB0 LB1 |-> %D LB0 LB2 -> .plabel= l g %D LB1 LB3 -> .plabel= r \ga{catB(C,g)} %D LB0 LB3 harrownodes nil 20 nil |-> %D LB2 LB3 |-> %D LB2 LB4 -> .plabel= l m %D LB3 LB5 -> .plabel= r \ga{catB(C,m)} %D LB2 LB5 harrownodes nil 20 nil |-> %D LB4 LB5 |-> %D %D LB0 LB4 -> .slide= -15pt .plabel= l m∘g %D LB1 LB5 -> .slide= 60pt .plabel= r \ga{catB(C,mog)} %D %D LC0 LC1 -> .plabel= a \catB(C,-) %D LD0 LD1 -> .plabel= a \catB(C,-) %D )) %D enddiagram %D $$\pu \diag{Yoneda-functor-left} $$ \sa{catA(A,RidD)}{ \scalebox{0.7}{$ \begin{array}{l} \catA(A,R\id_D) \\ = λh.\;R\id_D∘h \\ = λh.\;\id_{RD}∘h \\ = λh.\;h \\ = \id_{\catA(A,RD)} \\ \end{array} $} } \sa{catA(A,Rg)}{ \scalebox{0.7}{$ \begin{array}{l} \catA(A,Rg) \\ = λh.\;Rg∘h \\ \end{array} $} } \sa{catA(A,Rm)}{ \scalebox{0.7}{$ \begin{array}{l} \catA(A,Rm) \\ = λℓ.\;Rm∘ℓ \\ \end{array} $} } \sa{catA(A,R(log))}{ \scalebox{0.7}{$ \begin{array}{l} (λℓ.\;Rm∘ℓ)∘(λh.\;Rg∘h) \\ = λh.\;((λℓ.\;Rm∘ℓ)∘(λh.\;Rg∘h))(h) \\ = λh.\;(λℓ.\;Rm∘ℓ)((λh.\;Rg∘h)(h)) \\ = λh.\;(λℓ.\;Rm∘ℓ)(Rg∘h) \\ = λh.\;Rm∘(Rg∘h) \\ = λh.\;(Rm∘Rg)∘h \\ = \catA(A,R(m∘g)) \\ \end{array} $} } %D diagram Yoneda-functor-right %D 2Dx 100 +30 +55 +30 %D 2D 100 RA0 - RA1 RB0 - RB1 %D 2D | | | | %D 2D +25 | | RB2 - RB3 %D 2D | | | | %D 2D +25 RA2 - RA3 RB4 - RB5 %D 2D %D 2D +15 RC0 - RC1 RD0 - RD1 %D 2D %D ren RA0 RA1 ==> D \catA(A,RD) %D ren RA2 RA3 ==> D \catA(A,RD) %D ren RB0 RB1 ==> D \catA(A,RD) %D ren RB2 RB3 ==> E \catA(A,RE) %D ren RB4 RB5 ==> F \catA(A,RF) %D ren RC0 RC1 ==> \catB \Set %D ren RD0 RD1 ==> \catB \Set %D %D (( RA0 RA1 |-> %D RA0 RA2 -> .plabel= l \id_D %D RA1 RA3 -> .plabel= r \ga{catA(A,RidD)} %D RA0 RA3 harrownodes nil 20 nil |-> %D RA2 RA3 |-> %D %D RB0 RB1 |-> %D RB0 RB2 -> .plabel= l g %D RB1 RB3 -> .plabel= r \ga{catA(A,Rg)} %D RB0 RB3 harrownodes nil 20 nil |-> %D RB2 RB3 |-> %D RB2 RB4 -> .plabel= l m %D RB3 RB5 -> .plabel= r \ga{catA(A,Rm)} %D RB2 RB5 harrownodes nil 20 nil |-> %D RB4 RB5 |-> %D %D RB0 RB4 -> .slide= -15pt .plabel= l m∘g %D RB1 RB5 -> .slide= 60pt .plabel= r \ga{catA(A,R(log))} %D %D RC0 RC1 -> .plabel= a \catA(A,R-) %D RD0 RD1 -> .plabel= a \catA(A,R-) %D )) %D enddiagram %D $$\pu \diag{Yoneda-functor-right} $$ \newpage New diagrams for the Yoneda Lemma. See M-x fav for the old ones. %D diagram ?? %D 2Dx 100 +30 +50 +35 +40 +35 %D 2D 100 A1 %D 2D | %D 2D +25 A2 - A3 %D 2D | | %D 2D +25 A4 - A5 %D 2D | | %D 2D +25 A6 - A7 %D 2D | | %D 2D +25 A8 - A9 %D 2D %D 2D +15 B0 - B1 %D 2D %D 2D +20 C0 D0 - D1 F0 - F1 F1r %D 2D | | | | F3a %D 2D +25 C1 D2 - D3 F2 - F3 F3r %D 2D F2b F3b %D 2D +15 E0 - E1 %D 2D %D 2D +20 %D 2D %D ren A1 ==> A %D ren A2 A3 ==> C RC %D ren A4 A5 ==> D RD %D ren A6 A7 ==> E RE %D ren A8 A9 ==> F RF %D ren B0 B1 ==> \catB \catA %D ren C0 C1 ==> D E %D ren D0 D1 ==> \catB(C,D) \catA(A,RD) %D ren D2 D3 ==> \catB(C,E) \catA(A,RE) %D ren E0 E1 ==> \catB(C,-) \catA(A,R-) %D %D newnode: F3a at: @F3+v(0,-8) .TeX= Rg∘(Rf∘η) %D newnode: F2b at: @F2+v(0,8) .TeX= h %D newnode: F3b at: @F3+v(0,8) .TeX= Rh∘η %D # newnode: F1r at: @F1+v(10,0) %D # newnode: F3r at: @F3+v(10,0) %D %D ren F0 F1 F2 F3 ==> f Rf∘η g∘f R(g∘f)∘η %D ren F1r F3r ==> k Rg∘k %D %D (( A1 A3 -> .plabel= r η %D A2 A3 |-> %D A2 A4 -> .plabel= l f %D A3 A5 -> .plabel= r Rf %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D A4 A6 -> .plabel= l g %D A5 A7 -> .plabel= r Rg %D A4 A7 harrownodes nil 20 nil |-> %D A6 A7 |-> %D A6 A8 -> .plabel= l g %D A7 A9 -> .plabel= r Rg %D A6 A9 harrownodes nil 20 nil |-> %D A8 A9 |-> %D %D A1 A5 -> .slide= 20pt .plabel= r k %D A2 A6 -> .slide= -15pt .plabel= l h %D %D B0 B1 -> .plabel= a R %D %D C0 C1 -> .plabel= l g %D D0 D1 -> .plabel= a \sm{TC=\\λf.(Rf∘η)} %D D0 D2 -> .plabel= l \sm{\catB(C,g)=\\λf.(g∘f)} %D D1 D3 -> .plabel= r \sm{\catA(A,Rg)=\\λk.(Rg∘k)} %D D2 D3 -> .plabel= a \sm{TD=\\λh.(Rh∘η)} %D E0 E1 -> .plabel= a T %D %D F0 F1 |-> F1 F3a |-> %D F0 F2 |-> F2 F3 |-> %D F2b F3b |-> F1r F3r |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ $$T_0 = (λC.λf.(Rf∘η)) = (λD.λh.(Rh∘η))$$ % (favp 33 "basic-example-full") % (fava "basic-example-full") \newpage %D diagram ?? %D 2Dx 100 +45 %D 2D 100 A1 %D 2D | %D 2D +25 A2 - A3 %D 2D %D 2D +15 B0 - B1 %D 2D +10 C0 - C1 %D 2D +10 D0 - D1 %D 2D %D ren A1 ==> A %D ren A2 A3 ==> B RB %D ren B0 B1 ==> \id (TB)(\id) %D ren C0 C1 ==> \catB(B,B) \catA(A,RB) %D ren D0 D1 ==> \catB(B,-) \catA(A,R-) %D %D (( A1 A3 -> .plabel= r η %D A2 A3 |-> %D B0 B1 |-> %D C0 C1 -> .plabel= a TB %D D0 D1 -> .plabel= a T %D %D )) %D enddiagram %D $$\pu \diag{??} $$ % (favp 31 "basic-example-bij") % (fava "basic-example-bij") %\printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2021yoneda veryclean make -f 2019.mk STEM=2021yoneda pdf % Local Variables: % coding: utf-8-unix % ee-tla: "y21" % End: