Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2022-1-C3-P2.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2022-1-C3-P2.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2022-1-C3-P2.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2022-1-C3-P2.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2022-1-C3-P2.pdf")) % (defun e () (interactive) (find-LATEX "2022-1-C3-P2.tex")) % (defun o () (interactive) (find-LATEX "2022-1-C3-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2022-1-C3-P2")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2022-1-C3-P2.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2022-1-C3-P2") % (find-pdf-page "~/LATEX/2022-1-C3-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2022-1-C3-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2022-1-C3-P2.pdf /tmp/pen/") % (find-xournalpp "/tmp/2022-1-C3-P2.pdf") % file:///home/edrx/LATEX/2022-1-C3-P2.pdf % file:///tmp/2022-1-C3-P2.pdf % file:///tmp/pen/2022-1-C3-P2.pdf % http://angg.twu.net/LATEX/2022-1-C3-P2.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/") % (find-CN-aula-links "2022-1-C3-P2" "3" "c3m221p2" "c3p2") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.title» (to "title") % «.questoes-1-e-2» (to "questoes-1-e-2") % «.questoes-1-e-2-gab» (to "questoes-1-e-2-gab") % «.questoes-3-e-4» (to "questoes-3-e-4") % «.questao-3-gab» (to "questao-3-gab") % «.questao-4-gab» (to "questao-4-gab") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c3m221p2" "2022-1-C3-P2") % (code-eevvideo "c3m221p2" "2022-1-C3-P2") % (code-eevlinksvideo "c3m221p2" "2022-1-C3-P2") % (find-c3m221p2video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L dofile "QVis1.lua" -- (find-LATEX "QVis1.lua") %L dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua") %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") %L Pict2e.__index.suffix = "%" \pu \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\u#1{\par{\footnotesize \url{#1}}} \def\drafturl{http://angg.twu.net/LATEX/2022-1-C3.pdf} \def\drafturl{http://angg.twu.net/2022.1-C3.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % «defs-T-and-B» (to ".defs-T-and-B") % (c3m202p1p 6 "questao-2") % (c3m202p1a "questao-2") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c3m221p2p 1 "title") % (c3m221p2a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 3 - 2022.1} \bsk P2 (Segunda prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://angg.twu.net/2022.1-C3.html} \end{center} \newpage % (find-LATEX "edrx21defs.tex" "firstcol-anothercol") \long\def\anothercol#1{\qquad\quad\firstcol{#1}} \newpage % «questoes-1-e-2» (to ".questoes-1-e-2") % (c3m221p2p 2 "questoes-1-e-2") % (c3m221p2a "questoes-1-e-2") \scalebox{0.5}{ \def\colwidth{10cm}\firstcol{ {\bf Questão 1} \T(Total: 1.0 pts) Digamos que: % $$\begin{array}{rcl} F(x,y) &=& a \\ &+& bx + cy \\ &+& dx^2 + exy + fy^2 \\ \end{array} $$ a) \B(0.2 pts) Calcule $F_x$, $F_y$, $F_{xx}$, $F_{xy}$ e $F_{yy}$ nos pontos $(x,y)$ e $(0,0)$. \ssk b) \B(0.8 pts) Mostre como reescrever $F(x,y)$ como % $$\def\uu{\_\_} \begin{array}{rcl} F(x,y) &=& \uu \\ &+& \uu x + \uu y \\ &+& \uu x^2 + \uu xy + \uu y^2 \\ \end{array} $$ onde em cada lacuna você vai pôr uma expressão que depende só das derivadas parciais de $F(x,y)$ no ponto $(0,0)$. }\anothercol{ {\bf Questão 2} \T(Total: 3.0 pts) Digamos que: % $$\begin{array}{rcl} G(x_0+Δx,y_0+Δy) &=& a \\ &+& bΔx + cΔy \\ &+& d(Δx)^2 + eΔxΔy + f(Δy)^2 \\ \end{array} $$ a) \B(0.6 pts) Calcule $G_x$, $G_y$, $G_{xx}$, $G_{xy}$ e $G_{yy}$ nos pontos $(x,y)$ e $(0,0)$. \ssk b) \B(2.4 pts) Mostre como reescrever $G(x,y)$ como % $$\def\uu{\_\_} \begin{array}{rcl} G(x,y) &=& \uu \\ &+& \uu Δx + \uu Δy \\ &+& \uu Δx^2 + \uu ΔxΔy + \uu Δy^2 \\ \end{array} $$ onde em cada lacuna você vai pôr uma expressão que depende só das derivadas parciais de $G(x,y)$ no ponto $(x_0,y_0)$. }} \newpage % «questoes-1-e-2-gab» (to ".questoes-1-e-2-gab") % (c3m221p2p 3 "questoes-1-e-2-gab") % (c3m221p2a "questoes-1-e-2-gab") {\bf Gabarito das questões 1 e 2} \scalebox{0.45}{\def\colwidth{9cm}\firstcol{ $$\begin{array}{rcl} F(x,y) &=& a + bx + cy + dx^2 + exy + fy^2 \\ F_x(x,y) &=& b + 2dx + ey \\ F_{xx}(x,y) &=& 2d \\ F_{xy}(x,y) &=& e \\ F_y(x,y) &=& c + ex + 2fy \\ F_{yx}(x,y) &=& e \\ F_{yy}(x,y) &=& 2f \\ \\ F(0,0) &=& a \\ F_x(0,0) &=& b \\ F_{xx}(0,0) &=& 2d \\ F_{xy}(0,0) &=& e \\ F_y(0,0) &=& c \\ F_{yx}(0,0) &=& e \\ F_{yy}(0,0) &=& 2f \\ \\ F(x,y) &=& F(0,0) \\ &+& F_x(0,0)x + F_y(0,0)y \\ &+& \frac12 F_{xx}(0,0)x^2 + F_{xy}(0,0)xy + \frac12 F_{yy}(0,0)y^2 \\ \\ \multicolumn{3}{l}{\text{Se $(x_0,y_0)=(0,0)$,}} \\ z(x,y) &=& z \\ &+& z_x x + z_y y \\ &+& \frac12 z_{xx}x^2 + z_{xy}xy + \frac12 z_{yy}y^2 \\ \end{array} $$ }\anothercol{ $$\begin{array}{rcl} F(x_0+Δx,y_0+Δy) &=& a + bΔx + cΔy + dΔx^2 + eΔxΔy + fΔy^2 \\ F_x(x_0+Δx,y_0+Δy) &=& b + 2dΔx + eΔy \\ F_{xx}(x_0+Δx,y_0+Δy) &=& 2d \\ F_{xy}(x_0+Δx,y_0+Δy) &=& e \\ F_y(x_0+Δx,y_0+Δy) &=& c + eΔx + 2fΔy \\ F_{yx}(x_0+Δx,y_0+Δy) &=& e \\ F_{yy}(x_0+Δx,y_0+Δy) &=& 2f \\ \\ F(x_0,y_0) &=& a \\ F_x(x_0,y_0) &=& b \\ F_{xx}(x_0,y_0) &=& 2d \\ F_{xy}(x_0,y_0) &=& e \\ F_y(x_0,y_0) &=& c \\ F_{yx}(x_0,y_0) &=& e \\ F_{yy}(x_0,y_0) &=& 2f \\ \\ F(x_0+Δx,y_0+Δy) &=& F(x_0,y_0) \\ &+& F_x(x_0,y_0)Δx + F_y(x_0,y_0)Δy \\ &+& \frac12 F_{xx}(x_0,y_0)Δx^2 + F_{xy}(x_0,y_0)ΔxΔy + \frac12 F_{yy}(x_0,y_0)Δy^2 \\ \\ % \multicolumn{3}{l}{\text{Se $(x_0,y_0)=(0,0)$,}} \\ z(x_0+Δx,y_0+Δy) &=& z \\ &+& z_x Δx + z_y Δy \\ &+& \frac12 z_{xx}Δx^2 + z_{xy}ΔxΔy + \frac12 z_{yy}Δy^2 \\ \end{array} $$ }} \newpage % «questoes-3-e-4» (to ".questoes-3-e-4") % (c3m221p2p 4 "questoes-3-e-4") % (c3m221p2a "questoes-3-e-4") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\bf Questão 3} \T(Total: 5.0 pts) \ssk Seja $H(x,y) = \sqrt{x^2 + 3y^2}$ e seja $(x_0,y_0)=(1,1)$. Encontre as aproximações de Taylor de ordem 1 e 2 para $H(x_0+Δx,y_0+Δy)$. \bsk \bsk \bsk {\bf Questão 4} \T(Total: 1.0 pts) \ssk Seja $M(x_0+Δx,y_0+Δy) = Δx(Δx+Δy)$. Digamos que $(x_0,y_0) = (4,3)$. Faça o diagrama de numerozinhos da $M(x,y)$ nos pontos com $Δx,Δy∈\{-2,-1,-0,1,2\}$. }\anothercol{ }} \newpage % «questao-3-gab» (to ".questao-3-gab") % (c3m221p2p 5 "questao-3-gab") % (c3m221p2a "questao-3-gab") % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T H : sqrt(x^2 + 3*y^2); %T Hx : diff(H, x); %T Hy : diff(H, y); %T Hxx : diff(Hx, x); %T Hxy : diff(Hx, y); %T Hyy : diff(Hy, y); %T rat(Hyy); %T s : sqrt(x^2 + 3*y^2); %T Hx_ : x / s; %T Hy_ : 3*y / s; %T Hxx_ : (s^2 - x^2) / s^3; %T Hxy_ : -3*x*y / s^3; %T Hyy_ : (3*s^2 - 9*y^2) / s^3; %T V : [H, Hx, Hy, Hxx, Hxy, Hyy]; %T V_ : [H, Hx_, Hy_, Hxx_, Hxy_, Hyy_]; %T V-V_; %T subst([x=1.23, y=4.56], V-V_); %T rat(V-V_); %T rat(Hyy-Hyy_); %T rat([Hxy, Hyy]); %T rat([Hx, Hx_]); %T rat([Hxx, Hxx_]); %T rat(Hxx - Hxx_); %T subst([x=1.23, y=4.56], [Hxx, Hxx_]); %T [x0,y0] : [1,1]; %T foo(sym) := [sym, rat(ev(sym)), subst([x=x0,y=y0],ev(sym))]; %T foo('H); %T foo('Hx); %T foo('Hy); %T foo('Hxx); %T foo('Hxy); %T foo('Hyy); %T [H0, Hx0, Hy0, Hxx0, Hxy0, Hyy0] : subst([x=x0,y=y0], [H, Hx, Hy, Hxx, Hxy, Hyy]); %T H1 : H0 + Hx0*Dx + Hy0*Dy; %T H2 : H0 + Hx0*Dx + Hy0*Dy + Hxx0*Dx^2/2 + Hxy0*Dx*Dy + Hyy0*Dy^2; \newpage {\bf Questão 3: gabarito} \scalebox{0.6}{\def\colwidth{15cm}\firstcol{ Seja $H(x,y) = \sqrt{x^2 + 3y^2} = S$. Então: % $$\begin{array}{rclrcl} H(x,y) &=& S & H(x_0,y_0) &=& 2 \\ H_x(x,y) &=& x / S & H_x(x_0,y_0) &=& 1/2 \\ H_y(x,y) &=& 3y / S & H_y(x_0,y_0) &=& 3/2 \\ H_{xx}(x,y) &=& (S^2-x^2) / S^3 & H_{xx}(x_0,y_0) &=& 3/8 \\ H_{xy}(x,y) &=& -3xy / S^3 & H_{xy}(x_0,y_0) &=& -3/8 \\ H_{yy}(x,y) &=& (3S^2-9y^2) / S^3 & H_{yy}(x_0,y_0) &=& 3/8 \\ \end{array} $$ Aproximação de Taylor de 1a ordem: % $$\begin{array}{rcl} H(x_0+Δx,y_0+Δy) &≈& H(x_0,y_0) \\ &+& H_x(x_0,y_0)Δx + H_y(x_0,y_0)Δy \\ &=& 2 \\ &+& \frac12 Δx + \frac32 Δy \\ \end{array} $$ Aproximação de Taylor de 2a ordem: % $$\begin{array}{rcl} H(x_0+Δx,y_0+Δy) &≈& H(x_0,y_0) \\ &+& H_x(x_0,y_0)Δx + H_y(x_0,y_0)Δy \\ &+& \frac12 H_{xx}(x_0,y_0)Δx^2 + H_{xy}(x_0,y_0)ΔxΔy + \frac12 H_{yy}(x_0,y_0)Δy^2 \\ &=& 2 \\ &+& \frac12 Δx + \frac32 Δy \\ &+& \frac3{16} Δx^2 - \frac3{8} ΔxΔy + \frac3{16} Δy^2 \\ \end{array} $$ }\anothercol{ }} \newpage % «questao-4-gab» (to ".questao-4-gab") % (c3m221p2p 6 "questao-4-gab") % (c3m221p2a "questao-4-gab") % (c3m221fhp 7 "exercicio-5") % (c3m221fha "exercicio-5") {\bf Questão 4: gabarito} %L Pict2e.bounds = PictBounds.new(v(0,0), v(6,5)) %L x0,y0 = 4,3 %L nff = function (str) %L return Code.vc("x,y => local Dx,Dy = x-x0,y-y0; return "..str) %L end %L p = Numerozinhos.fromf(v(x0-2,y0-2),v(x0+2,y0+2), nff "Dx*(Dx+Dy)") %L p:pgat("pN"):preunitlength("11pt"):sa("Questao 4 gab"):output() \pu $$\ga{Questao 4 gab}$$ % (c3m221fha "title") % (c3m221fha "title" "Aula 29: funções homogêneas") % Funções homogêneas: % fora da origem % diagrama de numerozinhos % demonstrar homogeneidade % Taylor de ordem 2 % (c3m221tudop 2 "parts") % (c3m221tudoa "parts") % (find-pdf-page "~/2022.1-C3/C3-quadros.pdf" 23) \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2022.1-C3/") # (find-fline "~/LATEX/2022-1-C3/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2022.1-C3/ cp -fv $1.pdf ~/LATEX/2022-1-C3/ cat <<%%% % (find-latexscan-links "C3" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2022-1-C3-P2 veryclean make -f 2019.mk STEM=2022-1-C3-P2 pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c3p2" % ee-tla: "c3m221p2" % End: