Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2022-2-C2-P2.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2022-2-C2-P2.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2022-2-C2-P2.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2022-2-C2-P2.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2022-2-C2-P2.pdf")) % (defun e () (interactive) (find-LATEX "2022-2-C2-P2.tex")) % (defun o () (interactive) (find-LATEX "2022-1-C2-P2.tex")) % (defun u () (interactive) (find-latex-upload-links "2022-2-C2-P2")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2022-2-C2-P2.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2022-2-C2-P2") % (find-pdf-page "~/LATEX/2022-2-C2-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2022-2-C2-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2022-2-C2-P2.pdf /tmp/pen/") % (find-xournalpp "/tmp/2022-2-C2-P2.pdf") % file:///home/edrx/LATEX/2022-2-C2-P2.pdf % file:///tmp/2022-2-C2-P2.pdf % file:///tmp/pen/2022-2-C2-P2.pdf % http://angg.twu.net/LATEX/2022-2-C2-P2.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/") % (find-CN-aula-links "2022-2-C2-P2" "2" "c2m222p2" "c2p2") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.title» (to "title") % «.links» (to "links") % «.links-edovs» (to "links-edovs") % «.links-edolcc» (to "links-edolcc") % «.questao-1» (to "questao-1") % «.edovs» (to "edovs") % «.questao-2» (to "questao-2") % «.edolccs» (to "edolccs") % «.questao-3» (to "questao-3") % «.questao-1-gab» (to "questao-1-gab") % «.questao-2-gab» (to "questao-2-gab") % «.questao-3-gab» (to "questao-3-gab") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c2m222p2" "2022-2-C2-P2") % (code-eevvideo "c2m222p2" "2022-2-C2-P2") % (code-eevlinksvideo "c2m222p2" "2022-2-C2-P2") % (find-c2m222p2video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") \usepackage{emoji} % (find-es "tex" "emoji") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L -- dofile "QVis1.lua" -- (find-LATEX "QVis1.lua") %L -- dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua") %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") %L dofile "Lazy5.lua" -- (find-LATEX "Lazy5.lua") %L dofile "2022-1-C2-P2.lua" -- (find-LATEX "2022-1-C2-P2.lua") %L Pict2e.__index.suffix = "%" \pu \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\u#1{\par{\footnotesize \url{#1}}} \def\drafturl{http://angg.twu.net/LATEX/2022-2-C2.pdf} \def\drafturl{http://angg.twu.net/2022.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} \sa{[M]}{\CFname{M}{}} \sa{[F]}{\CFname{F}{}} \sa{[S]}{\CFname{S}{}} % (find-LATEXgrep "grep --color=auto -nH --null -e mname 202{1,2}*.tex") \def\sumiN#1{\sum_{i=1}^N #1 (b_i-a_i)} \def\mname#1{\text{[#1]}} \def\Smile{\emoji{slightly-smiling-face}} % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m222p2p 1 "title") % (c2m222p2a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2022.2} \bsk P2 (Segunda prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://angg.twu.net/2022.2-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m222p2p 2 "links") % (c2m222p2a "links") % (c2m222dp2p 2 "links") % (c2m222dp2a "links") % «links-edovs» (to ".links-edovs") % (c2m222p2p 2 "links-edovs") % (c2m222p2a "links-edovs") % (c2m222edovsp 2 "links") % (c2m222edovsa "links") % (c2m221vsbp 5 "questao-4") % (c2m221vsba "questao-4") % (find-es "maxima" "separable-2") % «links-edolcc» (to ".links-edolcc") % (c2m222edolsp 2 "links") % (c2m222edolsa "links") % (c2m222dp2p 3 "somas-de-riemann") % (c2m222dp2a "somas-de-riemann") \newpage % _ _____ ____ _____ ______ % / | | ____| _ \ / _ \ \ / / ___| % | | | _| | | | | | | \ \ / /\___ \ % | |_ | |___| |_| | |_| |\ V / ___) | % |_(_) |_____|____/ \___/ \_/ |____/ % % «questao-1» (to ".questao-1") % (c2m222p2p 2 "questao-1") % (c2m222p2a "questao-1") % «edovs» (to ".edovs") % (c2m222p2p 2 "edovs") % (c2m222p2a "edovs") % (find-es "maxima" "separable-2") % (find-es "maxima" "2022-2-C2-P2-edovs") {\bf Questão 1} %L namedang("EDOVSintro", "", [[ %L \begin{array}{rcl} %L \ga{[M]} &=& <EDOVSG> \\ \\[-5pt] %L \ga{[F]} &=& <EDOVSP> \\ %L \end{array} %L ]]) %L EDOVSintro:sa("FOO"):output() \pu \scalebox{0.55}{\def\colwidth{10cm}\firstcol{ \vspace*{-0.4cm} \T(Total: 6.0 pts) Lembre que nós vimos que o ``método'' para resolver EDOs com variáveis separáveis --- ``EDOVSs'' --- pode ser escrito como a demonstração $\ga{[M]}$ abaixo, e a ``fórmula'' para resolver EDOVSs pode ser escrita como $\ga{[F]}$: \bsk $\ga{FOO}$ }\anothercol{ Quando a gente quer criar exercícios de EDOVSs que sejam fácil de resolver a gente começa escolhendo $G(x)$ e $H(y)$, não $g(x)$ e $h(y)$. Digamos que $G(x)=x^4+5$ e $H(y)=y^2+3$. \msk a) \B (0.5 pts) Diga qual é a EDO da forma $\frac{dy}{dx} = \frac{g(x)}{h(y)}$ associada a esta escolha de $G(c)$ e $H(y)$. Chame-a de $(*)$. Não esqueça do ``Seja''! \ssk b) \B (0.5 pts) Escolha uma função $H^{-1}$ adequada. Defina ela com um ``Seja'' e verifique que ela obedece o que esperamos dela. \ssk c) \B (1.0 pts) Encontre a solução geral da EDO $(*)$. Chame-a de $f(x)$ e defina ela com um ``Seja''. \ssk d) \B (1.5 pts) Verifique que essa função $f(x)$ obedece $(*)$. \ssk e) \B (1.0 pts) Encontre uma solução $f_1(x)$ que passe pelo ponto $(x_1,y_1)=(1,2)$. Defina-a com um ``Seja''. \ssk f) \B (1.5 pts) Teste a sua solução $f_1(x)$. % (find-es "maxima" "2022-2-C2-P2") }} \newpage % ____ _____ ____ ___ _ ____ ____ % |___ \ | ____| _ \ / _ \| | / ___/ ___|___ % __) | | _| | | | | | | | | | | | | / __| % / __/ _ | |___| |_| | |_| | |__| |__| |___\__ \ % |_____(_) |_____|____/ \___/|_____\____\____|___/ % % «questao-2» (to ".questao-2") % (c2m222p2p 3 "questao-2") % (c2m222p2a "questao-2") % «edolccs» (to ".edolccs") % (c2m222p2p 3 "edolccs") % (c2m222p2a "edolccs") % (find-es "maxima" "2022-2-C2-P2-edolccs") {\bf Questão 2} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \vspace*{-0.4cm} \T(Total: 3.0 pts) No curso nós vimos um modo de resolver EDOs lineares com coeficientes constantes --- ``EDOLCCs'' --- no qual a gente traduzia a EDO ``pra Álgebra Linear'', fatorava uma ``matriz'', e aí encontrava as soluções básicas dessa EDO e tratava elas como ``vetores''... por exemplo, % $$\begin{array}{rcl} y'' + 5y' + 6y &=& 0 \\ (D^2 + 5D + 6)f &=& 0 \\ (D+2)(D+3)f &=& 0 \\ M &=& (D+2)(D+3) \\ M e^{-2x} &=& 0 \\ M e^{-3x} &=& 0 \\ M e^{-2x} &=& 0 \\ M(42e^{-2x} + 99e^{-3x}) &=& 0 \\ \end{array} $$ Seja $(*)$ esta EDO: % $$y'' + y' - 20y \;=\; 0 \qquad (*) $$ }\anothercol{ a) \B (0.2 pts) Traduza a EDO $(*)$ para ``Álgebra Linear'' e fatore-a. Chame essa versão fatorada de $(**)$, e defina-a com um ``Seja''. \msk b) \B (0.3 pts) Encontre as duas soluções básicas para a EDO $(*)$. Chame elas de $f_1$ e $f_2$. Não esqueça o ``Sejam''! \msk c) \B (0.5 pts) Encontre a solução geral para a EDO $(*)$ e chame-a de $f$. Não esqueça o ``Seja''! \msk d) \B (2.0 pts) Encontre uma solução $g$ para a EDO $(*)$ que obedeça $g(0)=7$ e $g'(0)=1$. Defina esta $g$ com um ``seja'' e verifique que ela realmente obedece $g(0)=7$ e $g'(0)=1$. % (find-es "maxima" "2022-2-C2-P2") }} \newpage % ___ _ _____ % / _ \ _ _ ___ ___| |_ __ _ ___ |___ / % | | | | | | |/ _ \/ __| __/ _` |/ _ \ |_ \ % | |_| | |_| | __/\__ \ || (_| | (_) | ___) | % \__\_\\__,_|\___||___/\__\__,_|\___/ |____/ % % «questao-3» (to ".questao-3") % (c2m222p2p 4 "questao-3") % (c2m222p2a "questao-3") %L Pict2e.bounds = PictBounds.new(v(0,0), v(7,6)) %L spec = "(0,1)--(1,1)--(2,4)--(3,5)--(4,4)o (4,3)c (4,1)o--(6,3)--(7,3)" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("F(x)"):output() \pu \unitlength=10pt {\bf Questão 3} \scalebox{0.55}{\def\colwidth{10.5cm}\firstcol{ \vspace*{-0.25cm} \T(Total: 1.5 pts) Lembre que nós vimos estes tipos de Somas de Riemann, % $$\scalebox{0.95}{$ \begin{array}{ccl} \mname{L} &=& \sumiN {f(a_i)} \\[2pt] \mname{R} &=& \sumiN {f(b_i)} \\[2pt] \mname{Trap} &=& \sumiN {\frac{f(a_i) + f(b_i)}{2}} \\[2pt] \mname{M} &=& \sumiN {f(\frac{a_i+b_i}{2})} \\[2pt] \mname{min} &=& \sumiN {\min(f(a_i), f(b_i))} \\[2pt] \mname{max} &=& \sumiN {\max(f(a_i), f(b_i))} \\[2pt] \mname{inf} &=& \sumiN {\inf(f([a_i,b_i]))} \\[2pt] \mname{sup} &=& \sumiN {\sup(f([a_i,b_i]))} \\ \end{array} $} $$ e vimos que o $\mname{Trap}$ pode ser interpretado tanto como uma soma de trapézios como como uma soma de retângulos. \msk Seja $f(x)$ a função dos gráficos à direita. Represente graficamente: \msk a) $\mname{inf}_{\{1,2,3,4\}}$ b) $\mname{sup}_{\{1,2,3,4\}}$ c) $\mname{M}_{\{1,3,5\}}$ d) $\mname{Trap}_{\{1,3,5\}}$ usando retângulos e) $\mname{Trap}_{\{1,3,5\}}$ usando trapézios \msk Indique claramente qual desenho é a resposta final de cada item e quais desenhos são rascunhos. }\anothercol{ \vspace*{0cm} \def\Fx{\scalebox{1.2}{$\ga{F(x)}$}} $\begin{matrix} \Fx & \Fx & \Fx \\ \\[-5pt] \Fx & \Fx & \Fx \\ \\[-5pt] \Fx & \Fx & \Fx \\ \\[-5pt] \Fx & \Fx & \Fx \\ \end{matrix} $ }} \newpage % «questao-1-gab» (to ".questao-1-gab") % (c2m222p2p 5 "questao-1-gab") % (c2m222p2a "questao-1-gab") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\bf Questão 1: gabarito} A substituição é: % $$\ga{[S]} \;=\; \bmat{ G(x) := x^4 + 5 \\ H(y) := y^2 + 3 \\ g(x) := 4x^3 \\ h(y) := 2y \\ H^{-1}(x) := \sqrt{x-3} \\ } $$ a) Seja: % $$\frac{dy}{dx} = \frac{4x^3}{2y} \qquad (*)$$ b) % $\begin{array}[t]{lrcl} \text{Seja:} & H^{-1}(x) &=& \sqrt{x-3}. \\ \text{Temos:} & H^{-1}(H(y)) &=& \sqrt{H(y)-3} \\ & &=& \sqrt{(y^2+3)-3} \\ & &=& y. \\ \end{array} $ \msk c) $\begin{array}[t]{lrcl} & y &=& H^{-1}(G(x)+C_3) \\ &&=& \sqrt{(G(x)+C_3)-3} \\ &&=& \sqrt{((x^4+5)+C_3)-3} \\ &&=& \sqrt{x^4+2+C_3} \\ \text{Seja:} & f(x) &=& \sqrt{x^4+2+C_3}. \\ \end{array} $ }\anothercol{ \vspace*{0cm} d) $\begin{array}[t]{l} \text{Será que $f(x)$ obedece $(*)$?} \\ \text{Temos } f'(x) = \frac{2x^3}{\sqrt{x^4 + 2 + C_3}}, \text{ e com isso:} \\ \\[-5pt] \left( f'(x) = \frac{4x^3}{2f(x)} \right) \bmat{ f(x) = \sqrt{x^4+2+C_3} \\ f'(x) = \frac{2x^3}{\sqrt{x^4 + 2 + C_3}} \\ } \\ = \;\; \left( \frac{2x^3}{\sqrt{x^4 + 2 + C_3}} = \frac{4x^3}{2\sqrt{x^4+2+C_3}} \right) \qquad \smile \\ \end{array} $ \bsk e) $\begin{array}[t]{lrcl} \text{Se} & f(x_1) &=& y_1, \\ \text{i.e.,} & f(1) &=& 2, \\ \text{então} & f(1) &=& \sqrt{1^4+2+C_3} \\ &&=& \sqrt{3+C_3} \\ &&=& 2 \\ & 2^2 &=& \sqrt{3+C_3}^2 \\ & 4 &=& 3+C_3 \\ & C_3 &=& 1 \\ & f(x) &=& \sqrt{x^4+2+C_3} \\ & &=& \sqrt{x^4+3} \\ \text{Seja:} & f_1(x) &=& \sqrt{x^4+3}. \\ \end{array} $ \bsk f) $\begin{array}[t]{lrcl} \text{Será que} & f_1(x_1) &=& y_1, \\ \text{i.e.,} & f_1(1) &=& 2? \\ & \sqrt{1^4+3} &=& \sqrt{4} \\ &&=& 2 \qquad \smile \\ \end{array} $ }} \newpage % «questao-2-gab» (to ".questao-2-gab") % (c2m222p2p 6 "questao-2-gab") % (c2m222p2a "questao-2-gab") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\bf Questão 2: gabarito} \msk a) Temos: $D^2 + D - 20 = (D+5)(D-4)$. \phantom{a)} Seja $(**)$ esta EDO: % $$(D+5)(D-4)f \; = \; 0. \qquad (**) $$ \msk b) Sejam $f_1(x) = e^{4x}$, $f_2(x) = e^{-5x}$, \msk c) Seja % $$\begin{array}{rcl} f(x) &=& af_1(x) + bf_2(x) \\ &=& ae^{4x} + be^{-5x}. \\ \end{array} $$ d) % $\begin{array}[t]{lrcl} \text{Digamos que} & g(x) &=& af_1(x) + bf_2(x) \\ &&=& ae^{4x} + be^{-5x}, \\ & g(0) &=& 7, \\ & g'(0) &=& 1. \\ \text{Então:} & g(0) &=& ae^0 + be^0, \\ &&=& a + b, \\ & g'(0) &=& a·4e^0 + b·(-5)e^0, \\ &&=& 4a -5b, \\ & a &=& 4, \\ & b &=& 3, \\ & g(x) &=& 4e^{4x} +3e^{-5x}, \\ & g(0) &=& 4 + 3 \;\;=\;\; 7, \qquad \smile \\ & g'(0) &=& 16 - 15 \;\;=\;\; 1, \quad\, \smile. \\ \end{array} $ }\anothercol{ % «questao-3-gab» (to ".questao-3-gab") % (c2m222p2p 6 "questao-3-gab") % (c2m222p2a "questao-3-gab") {\bf Questão 3: gabarito (sem desenhos)} \bsk \def\Item#1{\text{#1) }} $\begin{array}{lcl} \Item{a} \mname{inf}_{\{1,2,3,4\}} &=& 1(2-1) + 4(3-2) + 3(4-3) \\ \Item{b} \mname{sup}_{\{1,2,3,4\}} &=& 4(2-1) + 5(3-2) + 5(4-3) \\ \Item{c} \mname{M} _{\{1,3,5\}} &=& 4(3-1) + 3(5-3) \\ \Item{d} \mname{Trap}_{\{1,3,5\}} &=& 3(3-1) + 3.5(5-3) \\ \Item{e} \mname{Trap}_{\{1,3,5\}} &=& \frac{1+5}{2}(3-1) + \frac{5+2}{2}(5-3) \\ \end{array} $ \bsk \bsk $$\unitlength=20pt \ga{F(x)} $$ }} %L Pict2e.bounds = PictBounds.new(v(0,0), v(7,6)) %L spec = "(0,1)--(1,1)--(2,4)--(3,5)--(4,4)o (4,3)c (4,1)o--(6,3)--(7,3)" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("F(x)"):output() \pu %\printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2022.2-C2/") # (find-fline "~/LATEX/2022-2-C2/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2022.2-C2/ cp -fv $1.pdf ~/LATEX/2022-2-C2/ cat <<%%% % (find-latexscan-links "C2" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2022-2-C2-P2 veryclean make -f 2019.mk STEM=2022-2-C2-P2 pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c2p2" % ee-tla: "c2m222p2" % End: