Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2022-2-C3-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2022-2-C3-P1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2022-2-C3-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2022-2-C3-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2022-2-C3-P1.pdf")) % (defun e () (interactive) (find-LATEX "2022-2-C3-P1.tex")) % (defun o () (interactive) (find-LATEX "2022-1-C3-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2022-2-C3-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2022-2-C3-P1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun oe () (interactive) (find-2a '(o) '(e))) % (code-eec-LATEX "2022-2-C3-P1") % (find-pdf-page "~/LATEX/2022-2-C3-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2022-2-C3-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2022-2-C3-P1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2022-2-C3-P1.pdf") % file:///home/edrx/LATEX/2022-2-C3-P1.pdf % file:///tmp/2022-2-C3-P1.pdf % file:///tmp/pen/2022-2-C3-P1.pdf % http://angg.twu.net/LATEX/2022-2-C3-P1.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v tikz1.lua Cabos2.lua ~/LATEX/") % (find-CN-aula-links "2022-2-C3-P1" "3" "c3m222p1" "c3p1") % (find-MM-aula-links "2022-2-C3-P1" "3" "c3m222p1" "c3p1") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.title» (to "title") % «.links» (to "links") % «.barranco-defs» (to "barranco-defs") % «.questao-1-grids» (to "questao-1-grids") % «.questao-1» (to "questao-1") % «.questao-2» (to "questao-2") % «.questao-1-gab» (to "questao-1-gab") % «.questao-2-gab» (to "questao-2-gab") % <videos> % Video (not yet): % (find-ssr-links "c3m222p1" "2022-2-C3-P1") % (code-eevvideo "c3m222p1" "2022-2-C3-P1") % (code-eevlinksvideo "c3m222p1" "2022-2-C3-P1") % (find-c3m222p1video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") \usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L dofile "QVis1.lua" -- (find-LATEX "QVis1.lua") %L dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua") %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") %L Pict2e.__index.suffix = "%" \pu \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\u#1{\par{\footnotesize \url{#1}}} \def\drafturl{http://angg.twu.net/LATEX/2022-2-C3.pdf} \def\drafturl{http://angg.twu.net/2022.2-C3.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % «defs-T-and-B» (to ".defs-T-and-B") % (c3m202p1p 6 "questao-2") % (c3m202p1a "questao-2") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c3m222p1p 1 "title") % (c3m222p1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 3 - 2022.2} \bsk P1 (Primeira prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://angg.twu.net/2022.2-C3.html} \end{center} \newpage % «links» (to ".links") % (c3m222p1p 99 "links") % (c3m222p1a "links") % (c3m222dicasp1p 2 "links") % (c3m222dicasp1a "links") % «barranco-defs» (to ".barranco-defs") % (c3m222p1p 2 "barranco-defs") % (c3m222p1p 5 "barranco-defs") % (c3m222p1a "barranco-defs") % * (eepitch-lua51) % * (eepitch-kill) % * (eepitch-lua51) % -- (find-angg "LUA/lua50init.lua" "Path") % -- (find-angg "GNUPLOT/2022-2-C3-P1.dem" "show") %L -- Path.prepend("path", "~/LUA/?.lua") %L require "tikz1" -- (find-angg "LUA/tikz1.lua") %L require "Cabos2" -- (find-angg "LUA/Cabos2.lua" "StrGrid-tests") %L -- (find-angg "LUA/tikz1.lua" "texbody") %L tikzpicture = tikz [=[ %L \begin{tikzpicture}<<options>> %L <<tikzbody>> %L \end{tikzpicture} %L ]=] %L sa0 = function (name, body) return format("\\sa{%s}{%s}", name, body) end %L sa = function (name, body) output(sa0(name, body)) end %L tikzsa0 = function (name) return sa0(name, bitrim(tostring(tikzpicture))) end %L tikzsa = function (name) output(tikzsa0(name)) end %L %L sg_numbers = StrGrid.from [[ %L 6 6 6 6 6 6 6 6 6 6 %L 6 6 6 6 6 6 6 6 6 6 %L 6 6 6 6 6 6 6 6 6 6 %L 5 5 5 5 4 4 4 4 4 4 %L 4 4 4 4 3 2 2 2 2 2 %L 3 3 3 3 2 1 0 0 0 0 %L 2 2 2 2 1 0 0 0 0 0 %L 1 1 1 1 0 0 0 0 0 0 %L 0 0 0 0 0 0 0 0 0 0 %L 0 0 0 0 0 0 0 0 0 0 %L 0 0 0 0 0 0 0 0 0 0 %L ]] %L sg_reta = StrGrid.from [[ %L . 10 . . . . . . . . %L . . 8 . . . . . . . %L . . . 6 . . . . . . %L . . . . 4 . . . . . %L . . . . . 2 . . . . %L . . . . . . 0 . . . %L . . . . . . . -2 . . %L . . . . . . . . -4 . %L . . . . . . . . . -6 %L . . . . . . . . . . %L . . . . . . . . . . %L ]] %L sg_letters = StrGrid.from [[ %L N N N N N N N N N N %L N N N N N N N N N N %L x x x x x x x x x x %L W W W x x E E E E E %L W W W x C x E E E E %L W W W x C C x x x x %L W W W x C x S S S S %L W W W x x S S S S S %L x x x x S S S S S S %L S S S S S S S S S S %L S S S S S S S S S S %L ]] %L sa("barranco: numeros", sg_numbers:drawnodes()) %L sa("barranco: reta ns", sg_reta :drawnodes()) %L sa("barranco: letras", sg_letters:drawletters()) %L tikzbody = tikz [=[ %L [scale=0.8] %L \draw [color=gray!30] (0,0) grid (9,10); %L \ga{barranco: numeros} %L \ga{barranco: letras} %L <<orangelines>> %L ]=] %L tikzsa("barranco") %L orangelines = [=[ %L \draw [color=orange, very thick] %L (0,8) -- (9,8) %L (3,2) -- (3,8) -- (6,5) %L (0,2) -- (3,2) -- (6,5) -- (9,5); %L \draw [color=red, very thick] (0,4) -- ++(6,6); %L \draw [color=red, very thick] (0,2) -- ++(8,8); %L \draw [color=red, very thick] (0,0) -- ++(9,9); %L ]=] %L tikzsa("barranco com linhas") \pu %%L tikzbody = tikz [=[ %%L [scale=0.8] %%L \draw [color=gray!30] (0,0) grid (9,10); %%L \ga{barranco: numeros} %%L \ga{barranco: letras} %%L <<orangelines>> %%L ]=] \sa{barranco: orange lines}{ \draw [color=orange, very thick] (0,8) -- (9,8) (3,2) -- (3,8) -- (6,5) (0,2) -- (3,2) -- (6,5) -- (9,5); } \sa{barranco: red lines}{ \draw [color=red, very thick] (0,4) -- ++(6,6); } \def\drawx (#1,#2);{\node at (#1,#2) {$×$};} \def\drawN (#1,#2);{\node at (#1,#2) {$\bullet$};} \def\drawS (#1,#2);{\node at (#1,#2) {$\bullet$};} \def\drawW (#1,#2);{\draw [->] (#1,#2) -- ++ (0,0.33);} \def\drawC (#1,#2);{\draw [->] (#1,#2) -- ++ (-0.33,0.33);} \def\drawE (#1,#2);{\draw [->] (#1,#2) -- ++ (0,0.66);} \sa{barranco: grid}{ \draw [color=gray!30] (0,0) grid (9,10); } \sa{barranco}{\begin{tikzpicture}% [scale=0.8] \ga{barranco: grid} \ga{barranco: numeros} \end{tikzpicture}} \sa{barranco gab item a}{\begin{tikzpicture}% [scale=0.8] \ga{barranco: grid} \ga{barranco: numeros} \ga{barranco: orange lines} \end{tikzpicture}} \sa{barranco gab item c}{\begin{tikzpicture}% [scale=0.8] \ga{barranco: grid} \ga{barranco: reta ns} \ga{barranco: orange lines} \end{tikzpicture}} \sa{barranco gab item e}{\begin{tikzpicture}% [scale=0.8] \ga{barranco: grid} \ga{barranco: orange lines} \ga{barranco: letras} \end{tikzpicture}} \sa{barranco gab item f}{\begin{tikzpicture}% [scale=0.8] \ga{barranco: grid} \ga{barranco: numeros} \ga{barranco: orange lines} \ga{barranco: red lines} \end{tikzpicture}} \sa{barranco gab item f parte 2}{\begin{tikzpicture}% [scale=0.8] \draw [color=gray!30] (0,0) grid (6,7); \draw [color=red, very thick] (0,2) -- (3,5) -- (3.5,5) -- (4,6) -- (6,6); \end{tikzpicture}} \newpage % «questao-1-grids» (to ".questao-1-grids") % (c3m222p1p 2 "questao-1-grids") % (c3m222p1a "questao-1-grids") \def\barra {\scalebox{0.4}{$\ga{barranco}$}} \def\barral{\ga{barranco com linhas}} $\begin{matrix} \barra & \barra & \barra \\ \\ \barra & \barra & \barra \\ \end{matrix} $ % $\barral$ %$\ga{barranco}$ % Idéias: % Na questão sobre curvas de nivel e campos gradientes % usar primeiro uma hiperbole careta e depois uma % hiperbole torta. \newpage % ___ _ _ % / _ \ _ _ ___ ___| |_ __ _ ___ / | % | | | | | | |/ _ \/ __| __/ _` |/ _ \ | | % | |_| | |_| | __/\__ \ || (_| | (_) | | | % \__\_\\__,_|\___||___/\__\__,_|\___/ |_| % % «questao-1» (to ".questao-1") % (c3m222p1p 3 "questao-1") % (c3m222p1a "questao-1") {\bf Questão 1} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \vspace*{-0.5cm} \T(Total: 6.0 pts) O diagrama de numerozinhos da folha anterior corresponde a uma superfície $z=F(x,y)$ que tem 5 faces. Também é possível interpretá-lo como uma superfície com 6 ou mais faces, mas vamos considerar que a superfície com só 5 faces é que é a correta. \msk a) \B (1.0 pts) Mostre como dividir o plano em 5 polígonos que são as projeções destas faces. \msk b) \B (1.0 pts) Chame estas faces de face N (``norte''), S (``sul''), W (``oeste''), C (``centro''), E (``leste''), e chame as equações dos planos delas de $F_N(x,y)$, $F_S(x,y)$, $F_W(x,y)$, $F_C(x,y)$, e $F_E(x,y)$. Dê as equações destes planos. \msk c) \B (1.0 pts) Sejam: % $$\begin{array}{rcl} P_C &=& \setofxyzst{z = F_C(x,y)}, \\ P_E &=& \setofxyzst{z = F_E(x,y)}, \\ r &=& P_C ∩ P_E. \\ \end{array} $$ Represente a reta $r$ graficamente como numerozinhos. }\anothercol{ d) \B (0.5 pts) Dê uma parametrização para a reta do item anterior. Use notação de conjuntos. \msk e) \B (1.0 pts) Seja % $$A \;=\; \{0,1,\ldots,9\} × \{0,1,\ldots,10\};$$ note que os numerozinhos do diagrama de numerozinhos estão todos sobre pontos de $A$. Para cada ponto $(x,y)∈A$ represente graficamente $(x,y)+\frac13 \vec∇F(x,y)$. \ssk Obs: quando $\vec∇F(x,y)=0$ desenhe uma bolinha preta sobre o ponto $(x,y)$, e quando $\vec∇F(x,y)$ não existir faça um `$×$' sobre o numerozinho que está no ponto $(x,y)$. \msk f) \B (1.5 pts) Sejam % $$\begin{array}{rcl} Q(t) &=& (0,4) + t\VEC{1,1}, \\ (x(t),y(t)) &=& Q(t), \\ h(t) &=& F(x(t),y(t)). \\ \end{array} $$ Faça o gráfico da função $h(t)$. Considere que o domínio dela é o intervalo $[0,6]$. }} \newpage % ___ _ ____ % / _ \ _ _ ___ ___| |_ __ _ ___ |___ \ % | | | | | | |/ _ \/ __| __/ _` |/ _ \ __) | % | |_| | |_| | __/\__ \ || (_| | (_) | / __/ % \__\_\\__,_|\___||___/\__\__,_|\___/ |_____| % % «questao-2» (to ".questao-2") % (c3m222p1p 4 "questao-2") % (c3m222p1a "questao-2") {\bf Questão 2} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \vspace*{-0.5cm} \T(Total: 4.5 pts) Seja % $$F(x,y) = 2x^2 -xy -y^2.$$ Nesta questão você vai ter que fazer várias cópias do diagrama de numerozinhos da função $F(x,y)$ para os pontos com $x,y∈\{-2,-1,0,1,2\}$. Os numerozinhos vão ser estes aqui: % $$\begin{array}{rrrrr} 8 & 0 & -4 & -4 & 0 \\ 9 & 2 & -1 & 0 & 5 \\ 8 & 2 & 0 & 2 & 8 \\ 5 & 0 & -1 & 2 & 9 \\ 0 & -4 & -4 & 0 & 8 \\ \end{array} $$ a) \B (1.0 pts) Desenhe o ``campo gradiente'' da função $F$ nestes pontos, mas multiplicando cada $\vec∇F(x,y)$ por $\frac{1}{10}$ pros vetores não ficarem uns em cima dos outros. Deixa eu traduzir isso pra termos mais básicos: faça uma cópia do diagrama de numerozinhos da $F(x,y)$, e sobre cada $(x,y)$ com $x,y∈\{-2,-1,0,1,2\}$ desenhe a seta $(x,y)+\frac{1}{10}\vec∇F(x,y)$. }\anothercol{ b) \B (3.5 pts) Faça uma outra cópia desse diagrama de numerozinhos e desenhe sobre ela as curvas de nível da função $F(x,y)$ para $z=0$, $z=2$, $z=5$, $z=-1$ e $z=-2$. \bsk {\bf Dicas:} 1) O vetor gradiente num ponto $(x,y)$ é sempre ortogonal à curva de nível que passa pelo ponto $(x,y)$. 2) Faça quantos rascunhos quiser. Eu só vou corrigir seus desenhos pros itens (a) e (b) que disserem ``versão final'', e eles têm que ser os mais caprichados possíveis. }} \newpage % ___ _ _ _ % / _ \ _ _ ___ ___| |_ __ _ ___ / | __ _ __ _| |__ % | | | | | | |/ _ \/ __| __/ _` |/ _ \ | | / _` |/ _` | '_ \ % | |_| | |_| | __/\__ \ || (_| | (_) | | | | (_| | (_| | |_) | % \__\_\\__,_|\___||___/\__\__,_|\___/ |_| \__, |\__,_|_.__/ % |___/ % «questao-1-gab» (to ".questao-1-gab") % (c3m222p1p 5 "questao-1-gab") % (c3m222p1a "questao-1-gab") {\bf Questão 1: gabarito} \def\sb#1{\scalebox{0.3}{#1}} \def\sb#1{\ensuremath{\myvcenter{$\scalebox{0.6}{#1}$}}} \scalebox{0.48}{\def\colwidth{8cm}\firstcol{ \vspace*{0cm} a) \sb{\ga{barranco gab item a}} \msk b) $\begin{array}[c]{rcl} F_N(x,y) &=& 6 \\ F_W(x,y) &=& -2 + y \\ F_C(x,y) &=& 1 - x + y \\ F_E(x,y) &=& -10 + 2y \\ F_S(x,y) &=& 0 \\ \end{array} $ \msk c) \sb{\ga{barranco gab item c}} \msk d) $\setofst{(6,5,0) + t\VEC{-1,1,2}}{t∈\R}$ }\anothercol{ \vspace*{0cm} e) \sb{\ga{barranco gab item e}} \msk f) \hbox{% \sb{\ga{barranco gab item f}} $⇒$ \sb{\ga{barranco gab item f parte 2}} \hss } }} \newpage % ___ _ ____ _ % / _ \ _ _ ___ ___| |_ __ _ ___ |___ \ __ _ __ _| |__ % | | | | | | |/ _ \/ __| __/ _` |/ _ \ __) | / _` |/ _` | '_ \ % | |_| | |_| | __/\__ \ || (_| | (_) | / __/ | (_| | (_| | |_) | % \__\_\\__,_|\___||___/\__\__,_|\___/ |_____| \__, |\__,_|_.__/ % |___/ % «questao-2-gab» (to ".questao-2-gab") % (find-es "maxima" "2022-2-C3-P1") % 3fT85: (c3m222p1p 6 "questao-2-gab") % (c3m222p1a "questao-2-gab") {\bf Questão 2: gabarito} \bsk %L F = function (x,y) return 2*x^2 - x*y - y^2 end %L F_x = function (x,y) return 4*x - y end %L F_y = function (x,y) return - x - 2*y end %L so_numbers = StrOut.new() %L so_arrows = StrOut.new() %L for y=2,-2,-1 do %L for x=-2,2 do %L so_numbers:printf("\\node at (%d,%d) {%d};\n", x, y, F(x,y)) %L so_arrows :pprintf("\\draw [color=red, ->] (%s,%s) -- ++ (%s,%s);\n", %L x, y, F_x(x,y)/10, F_y(x,y)/10) %L end %L end %L sa("questao 2: numeros", so_numbers:tostring00()) %L sa("questao 2: setas", so_arrows:tostring00()) \pu % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T F : 2*x^2 - x*y - y^2; %T sols : solve(F-z, x); %T sol1 : rhs(sols[1]); %T sol2 : rhs(sols[2]); %T display2d:false$ %T sol1; %T sol2; %T display2d:true$ \sa{level curve for z=0}{ (-2,-2)--(2,2) (1,-2)--(-1,2) } \sa{level curve for z=-1}{ (-0.823,2)--(-0.791,1.947)--(-0.759,1.894)--(-0.726,1.841)--(-0.693,1.789)--(-0.659,1.736)--(-0.625,1.683)--(-0.59,1.63)--(-0.554,1.577)--(-0.517,1.524)--(-0.479,1.472)--(-0.44,1.419)--(-0.4,1.366)--(-0.357,1.313)--(-0.312,1.26)--(-0.264,1.207)--(-0.211,1.154)--(-0.152,1.102)--(-0.082,1.049)--(0.008,0.996)--(0.222,0.943)-- (0.25,0.943)--(0.489,0.996)--(0.607,1.049)--(0.703,1.102)--(0.788,1.154)--(0.867,1.207)--(0.942,1.26)--(1.014,1.313)--(1.083,1.366)--(1.15,1.419)--(1.215,1.471)--(1.279,1.524)--(1.343,1.577)--(1.405,1.63)--(1.466,1.683)--(1.527,1.736)--(1.587,1.789)--(1.647,1.841)--(1.706,1.894)--(1.765,1.947)--(1.823,2) (-1.823,-2)--(-1.765,-1.947)--(-1.706,-1.894)--(-1.647,-1.841)--(-1.587,-1.789)--(-1.527,-1.736)--(-1.466,-1.683)--(-1.405,-1.63)--(-1.343,-1.577)--(-1.279,-1.524)--(-1.215,-1.472)--(-1.15,-1.419)--(-1.083,-1.366)--(-1.014,-1.313)--(-0.942,-1.26)--(-0.867,-1.207)--(-0.788,-1.154)--(-0.703,-1.102)--(-0.607,-1.049)--(-0.489,-0.996)--(-0.25,-0.943)-- (-0.222,-0.943)--(-0.008,-0.996)--(0.082,-1.049)--(0.152,-1.102)--(0.211,-1.154)--(0.264,-1.207)--(0.312,-1.26)--(0.357,-1.313)--(0.4,-1.366)--(0.44,-1.419)--(0.479,-1.471)--(0.517,-1.524)--(0.554,-1.577)--(0.59,-1.63)--(0.625,-1.683)--(0.659,-1.736)--(0.693,-1.789)--(0.726,-1.841)--(0.759,-1.894)--(0.791,-1.947)--(0.823,-2) } \sa{level curve for z=-2}{ (-0.618,2)--(-0.593,1.967)--(-0.567,1.933)--(-0.54,1.9)--(-0.513,1.867)--(-0.486,1.833)--(-0.457,1.8)--(-0.428,1.767)--(-0.398,1.734)--(-0.366,1.7)--(-0.334,1.667)--(-0.3,1.634)--(-0.264,1.6)--(-0.226,1.567)--(-0.185,1.534)--(-0.141,1.501)--(-0.092,1.467)--(-0.037,1.434)--(0.029,1.401)--(0.115,1.367)--(0.302,1.334)-- (0.365,1.334)--(0.569,1.367)--(0.672,1.401)--(0.754,1.434)--(0.826,1.467)--(0.891,1.501)--(0.952,1.534)--(1.009,1.567)--(1.064,1.6)--(1.116,1.634)--(1.167,1.667)--(1.216,1.7)--(1.264,1.734)--(1.311,1.767)--(1.357,1.8)--(1.402,1.833)--(1.447,1.867)--(1.49,1.9)--(1.533,1.933)--(1.576,1.967)--(1.618,2) (-1.618,-2)--(-1.576,-1.967)--(-1.533,-1.933)--(-1.49,-1.9)--(-1.447,-1.867)--(-1.402,-1.833)--(-1.357,-1.8)--(-1.311,-1.767)--(-1.264,-1.734)--(-1.216,-1.7)--(-1.167,-1.667)--(-1.116,-1.634)--(-1.064,-1.6)--(-1.009,-1.567)--(-0.952,-1.534)--(-0.891,-1.501)--(-0.826,-1.467)--(-0.754,-1.434)--(-0.672,-1.401)--(-0.569,-1.367)--(-0.365,-1.334)-- (-0.302,-1.334)--(-0.115,-1.367)--(-0.029,-1.401)--(0.037,-1.434)--(0.092,-1.467)--(0.141,-1.501)--(0.185,-1.534)--(0.226,-1.567)--(0.264,-1.6)--(0.3,-1.634)--(0.334,-1.667)--(0.366,-1.7)--(0.398,-1.734)--(0.428,-1.767)--(0.457,-1.8)--(0.486,-1.833)--(0.513,-1.867)--(0.54,-1.9)--(0.567,-1.933)--(0.593,-1.967)--(0.618,-2) } \sa{level curve for z=2}{ (-1.995,-1.64)--(-1.846,-1.458)--(-1.703,-1.276)--(-1.567,-1.094)--(-1.44,-0.912)--(-1.323,-0.73)--(-1.218,-0.548)--(-1.128,-0.366)--(-1.055,-0.184)--(-1.001,-0.002)--(-0.964,0.18)--(-0.946,0.362)--(-0.944,0.544)--(-0.957,0.726)--(-0.983,0.908)--(-1.019,1.09)--(-1.064,1.272)--(-1.116,1.454)--(-1.174,1.636)--(-1.236,1.818)--(-1.303,2) (1.303,-2)--(1.236,-1.818)--(1.174,-1.636)--(1.116,-1.454)--(1.064,-1.272)--(1.019,-1.09)--(0.983,-0.908)--(0.957,-0.726)--(0.944,-0.544)--(0.946,-0.362)--(0.964,-0.18)--(1.001,0.002)--(1.055,0.184)--(1.128,0.366)--(1.218,0.548)--(1.323,0.73)--(1.44,0.912)--(1.567,1.094)--(1.703,1.276)--(1.846,1.458)--(1.995,1.64) } \sa{level curve for z=5}{ (-2,-1)--(-1.917,-0.85)--(-1.841,-0.7)--(-1.772,-0.55)--(-1.709,-0.4)--(-1.655,-0.25)--(-1.608,-0.1)--(-1.569,0.05)--(-1.538,0.2)--(-1.515,0.35)--(-1.5,0.5)--(-1.492,0.65)--(-1.491,0.8)--(-1.497,0.95)--(-1.508,1.1)--(-1.526,1.25)--(-1.548,1.4)--(-1.575,1.55)--(-1.606,1.7)--(-1.641,1.85)--(-1.679,2) (1.679,-2)--(1.641,-1.85)--(1.606,-1.7)--(1.575,-1.55)--(1.548,-1.4)--(1.526,-1.25)--(1.508,-1.1)--(1.497,-0.95)--(1.491,-0.8)--(1.492,-0.65)--(1.5,-0.5)--(1.515,-0.35)--(1.538,-0.2)--(1.569,-0.05)--(1.608,0.1)--(1.655,0.25)--(1.709,0.4)--(1.772,0.55)--(1.841,0.7)--(1.917,0.85)--(2,1) } \sa{level curves}{ \ga{level curve for z=0} \ga{level curve for z=-1} \ga{level curve for z=-2} \ga{level curve for z=2} \ga{level curve for z=5} } \sa{questao 2a}{\begin{tikzpicture}% [scale=1.2] \draw [color=gray!20] (-2,-2) grid (2,2); \draw [color=orange] \ga{level curve for z=0}; \ga{questao 2: numeros} \ga{questao 2: setas} \end{tikzpicture}} \sa{questao 2b}{\begin{tikzpicture}% [scale=1.2] \draw [color=gray!20] (-2,-2) grid (2,2); \draw [color=orange] \ga{level curves}; % \ga{questao 2: numeros} \ga{questao 2: setas} \end{tikzpicture}} \scalebox{0.75}{ \ga{questao 2a} \qquad \ga{questao 2b} } %\printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % (find-pdfpages2-links "~/LATEX/" "2022-2-C3-P1") % Local Variables: % coding: utf-8-unix % ee-tla: "c3p1" % ee-tla: "c3m222p1" % End: