Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-1-C2-prova-monitor.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-1-C2-prova-monitor.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-1-C2-prova-monitor.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-1-C2-prova-monitor.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-1-C2-prova-monitor.pdf")) % (defun e () (interactive) (find-LATEX "2023-1-C2-prova-monitor.tex")) % (defun o () (interactive) (find-LATEX "2023-1-C2-prova-monitor.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-1-C2-prova-monitor")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-1-C2-prova-monitor.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-1-C2-prova-monitor") % (find-pdf-page "~/LATEX/2023-1-C2-prova-monitor.pdf") % (find-sh0 "cp -v ~/LATEX/2023-1-C2-prova-monitor.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-1-C2-prova-monitor.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-1-C2-prova-monitor.pdf") % file:///home/edrx/LATEX/2023-1-C2-prova-monitor.pdf % file:///tmp/2023-1-C2-prova-monitor.pdf % file:///tmp/pen/2023-1-C2-prova-monitor.pdf % http://anggtwu.net/LATEX/2023-1-C2-prova-monitor.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Gram2.lua Tree1.lua Caepro5.lua ~/LATEX/") % (find-MM-aula-links "2023-1-C2-prova-monitor" "C2" "c2m231pm" "c2pm") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.title» (to "title") % «.links» (to "links") % <videos> % Video (not yet): % (find-ssr-links "c2m231pm" "2023-1-C2-prova-monitor") % (code-eevvideo "c2m231pm" "2023-1-C2-prova-monitor") % (code-eevlinksvideo "c2m231pm" "2023-1-C2-prova-monitor") % (find-c2m231pmvideo "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % \catcode`\^^J=10 % \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") % %L dofile "QVis1.lua" -- (find-LATEX "QVis1.lua") % %L dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua") % %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") % %L Pict2e.__index.suffix = "%" % \pu % \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} % \def\pictaxesstyle{\linethickness{0.5pt}} % \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} % \celllower=2.5pt % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\u#1{\par{\footnotesize \url{#1}}} \def\drafturl{http://anggtwu.net/LATEX/2023-1-C2.pdf} \def\drafturl{http://anggtwu.net/2023.1-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") %L dofile "Lazy5.lua" -- (find-LATEX "Lazy5.lua") %L dofile "2022-1-C2-P2.lua" -- (find-LATEX "2022-1-C2-P2.lua") %L Pict2e.__index.suffix = "%" % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m231pmp 1 "title") % (c2m231pma "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo C2 - 2023.1} \bsk Prova para seleção de monitor (17/abril/2023) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.1-C2.html} \end{center} \newpage % «links» (to ".links") % (find-LATEXfile "2023-C2-monitoria-edital.tex") % (find-LATEXfile "2023-C2-monitoria-edital.tex" "parciais") % % \item Métodos de integração: mudança de variável, substituição % trigonométrica, frações parciais. % \item Somas de Riemann. % \item Equações diferenciais com variáveis separáveis. % (c4m231introp 6 "exercicio-3") % (c4m231introa "exercicio-3") % (c4m231introa "exercicio-3" "L e R") %L namedang("EDOVSintro", "", [[ %L <EDOVSG> %L ]]) %L EDOVSintro:sa("FOO"):output() \pu \scalebox{0.55}{\def\colwidth{10cm}\firstcol{ {\bf Questão 1} \T(Total: 1.0 pts) \ssk Sejam: % $$\begin{array}{rcl} [L] &=& \sum_{i=1}^N f(x_{i-1})(x_i-x_{i-1}) \\{} [R] &=& \sum_{i=1}^N f(x_{i})(x_i-x_{i-1}) \\{} [sup] &=& \sum_{i=1}^N \sup_{x∈[x_{i-1},x_i]}f(x) (x_i-x_{i-1}) \\{} f(x) &=& 4-(x-2)^2 \\ P &=& \{0, 1, 2.5, 3\} \\ \end{array} $$ Faça várias cópias do gráfico da $f(x)$ em $x∈[0,4]$ e desenhe no eixo $x$ de cada uma delas a partição $P$. Depois represente sobre uma das cópias o $[L]$ como uma soma de retângulos, sobre outra cópia o $[R]$, e sobre outra o $[sup]$. \bsk \bsk {\bf Questão 2} \T(Total: 5.0 pts) \ssk Resolva esta integral % $$\intx{x^3 \sqrt{1-x^2}} $$ e teste o seu resultado. }\anothercol{ % (c2m222p2p 2 "edovs") % (c2m222p2a "edovs") {\bf Questão 3} \T(Total: 4.0 pts) O nosso ``método'' para resolver EDOs com variáveis separáveis era este aqui: $$\ga{FOO}$$ Digamos que $G(x) = x^4 + 3$ e $H(y) = y^2 + 1$. Diga qual é a EDO associada a este caso e chame-a de $(*)$. Encontre a solução geral da $(*)$ e encontre a solução particular que passa pelo ponto $(3,9)$. Teste tudo. }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "c2pm" % ee-tla: "c2m231pm" % End: