|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-1-C2-volumes.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-1-C2-volumes.tex" :end))
% (defun C () (interactive) (find-LATEXsh "lualatex 2023-1-C2-volumes.tex" "Success!!!"))
% (defun D () (interactive) (find-pdf-page "~/LATEX/2023-1-C2-volumes.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-1-C2-volumes.pdf"))
% (defun e () (interactive) (find-LATEX "2023-1-C2-volumes.tex"))
% (defun o () (interactive) (find-LATEX "2023-1-C2-volumes.tex"))
% (defun u () (interactive) (find-latex-upload-links "2023-1-C2-volumes"))
% (defun v () (interactive) (find-2a '(e) '(d)))
% (defun d0 () (interactive) (find-ebuffer "2023-1-C2-volumes.pdf"))
% (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g))
% (code-eec-LATEX "2023-1-C2-volumes")
% (find-pdf-page "~/LATEX/2023-1-C2-volumes.pdf")
% (find-sh0 "cp -v ~/LATEX/2023-1-C2-volumes.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2023-1-C2-volumes.pdf /tmp/pen/")
% (find-xournalpp "/tmp/2023-1-C2-volumes.pdf")
% file:///home/edrx/LATEX/2023-1-C2-volumes.pdf
% file:///tmp/2023-1-C2-volumes.pdf
% file:///tmp/pen/2023-1-C2-volumes.pdf
% http://anggtwu.net/LATEX/2023-1-C2-volumes.pdf
% (find-LATEX "2019.mk")
% (find-Deps1-links "Caepro5 Piecewise1")
% (find-Deps1-cps "Caepro5 Piecewise1")
% (find-Deps1-anggs "Caepro5 Piecewise1")
% (find-MM-aula-links "2023-1-C2-volumes" "C2" "c2m231volumes" "c2vo")
% «.defs» (to "defs")
% «.defs-T-and-B» (to "defs-T-and-B")
% «.defs-caepro» (to "defs-caepro")
% «.defs-pict2e» (to "defs-pict2e")
% «.title» (to "title")
% «.links» (to "links")
%
% «.djvuize» (to "djvuize")
% <videos>
% Video (not yet):
% (find-ssr-links "c2m231volumes" "2023-1-C2-volumes")
% (code-eevvideo "c2m231volumes" "2023-1-C2-volumes")
% (code-eevlinksvideo "c2m231volumes" "2023-1-C2-volumes")
% (find-c2m231volumesvideo "0:00")
\documentclass[oneside,12pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof} % For derivation trees ("%:" lines)
%\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx21} % (find-LATEX "edrx21.sty")
\input edrxaccents.tex % (find-LATEX "edrxaccents.tex")
\input edrx21chars.tex % (find-LATEX "edrx21chars.tex")
\input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%\usepackage{emaxima} % (find-LATEX "emaxima.sty")
%
% (find-es "tex" "geometry")
\usepackage[a6paper, landscape,
top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot
]{geometry}
%
\begin{document}
% «defs» (to ".defs")
% (find-LATEX "edrx21defs.tex" "colors")
% (find-LATEX "edrx21.sty")
\def\drafturl{http://anggtwu.net/LATEX/2023-1-C2.pdf}
\def\drafturl{http://anggtwu.net/2023.1-C2.html}
\def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}}
% (find-LATEX "2023-1-C2-carro.tex" "defs-caepro")
% (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e")
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
% «defs-T-and-B» (to ".defs-T-and-B")
\long\def\ColorOrange#1{{\color{orange!90!black}#1}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}}
\def\B (#1 pts){\ColorOrange{\bf(#1 pts)}}
% «defs-caepro» (to ".defs-caepro")
%L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX")
\def\Caurl #1{\expr{Caurl("#1")}}
\def\Cahref#1#2{\href{\Caurl{#1}}{#2}}
\def\Ca #1{\Cahref{#1}{#1}}
% «defs-pict2e» (to ".defs-pict2e")
%L V = nil -- (find-angg "LUA/Pict2e1.lua" "MiniV")
%L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua")
%L Pict2e.__index.suffix = "%"
\def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}}
\def\pictaxesstyle{\linethickness{0.5pt}}
\def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}}
\celllower=2.5pt
\pu
% _____ _ _ _
% |_ _(_) |_| | ___ _ __ __ _ __ _ ___
% | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \
% | | | | |_| | __/ | |_) | (_| | (_| | __/
% |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___|
% |_| |___/
%
% «title» (to ".title")
% (c2m231volumesp 1 "title")
% (c2m231volumesa "title")
\thispagestyle{empty}
\begin{center}
\vspace*{1.2cm}
{\bf \Large Cálculo 2 - 2023.1}
\bsk
Aula 27: volumes e comprimento de arco
\bsk
Eduardo Ochs - RCN/PURO/UFF
\url{http://anggtwu.net/2023.1-C2.html}
\end{center}
\newpage
% «links» (to ".links")
{\bf Links}
\scalebox{0.9}{\def\colwidth{12cm}\firstcol{
\par \Ca{StewPtCap15p6} (p.874) 15.1 Integrais múltiplas sobre retângulos
\par \Ca{Miranda285} 9.3 Volume
\par \Ca{Miranda288} O volume da esfera de raio $r$ é $\frac43πr^3$
\par \Ca{Miranda285} 9.3.1 Secções transversais
\par \Ca{Miranda289} 9.3.2 Sólidos de revolução
\par \Ca{Miranda292} \standout{Façam os exercícios 2, 3, 4 e 5}
\msk
\par \Ca{3cT75} Pirâmide (3D)
\par \Ca{3cT76} Cruz (3D)
\par \Ca{3eT23} Low Poly (até o final do PDFzão)
% (find-books "__analysis/__analysis.el" "bressoud")
% (find-dmirandacalcpage 285 "9.3 Volume")
% (find-dmirandacalcpage 288 "volume da esfera")
% (find-dmirandacalctext 288 "volume da esfera")
% (find-dmirandacalcpage 285 "9.3.1 Secções Transversais")
% (find-dmirandacalcpage 289 "9.3.2 Sólidos de Revolução")
}\anothercol{
}}
\newpage
{\bf Introdução a volumes}
Preciso digitar essas contas daqui:
\par \Ca{2gQ58}
\newpage
{\bf Comprimento de arco}
\def\dx {x_i-x_{i-i}}
\def\dy {y_i-y_{i-i}}
\def\pdx{(\dx)}
\def\pdy{(\dy)}
\def\dydx{\frac{\dy}{\dx}}
\def\yx{f'(x_i)}
\scalebox{0.6}{\def\colwidth{9cm}\firstcol{
As contas começam assim, mas eu não terminei...
$$\begin{array}{l}
\sqrt{dx^2 + dy^2} \\
=\; \sqrt{dx^2 + (\frac{dy}{dx}dx)^2} \\
=\; \sqrt{dx^2 + (y_xdx)^2} \\
=\; \sqrt{dx^2 + {y_x}^2 dx^2} \\
=\; \sqrt{(1+{y_x}^2)dx^2} \\
=\; \sqrt{(1+{y_x}^2)}\;\sqrt{dx^2} \\
=\; \sqrt{(1+{y_x}^2)}\;dx^2 \\
\end{array}
$$
$$\begin{array}{l}
\sqrt{\pdx^2 + \pdy^2} \\
=\; \sqrt{\pdx^2 + (\dydx\pdx)^2} \\
=\; \sqrt{\pdx^2 + (\yx\pdx)^2} \\
=\; \sqrt{\pdx^2 + \yx^2 \pdx^2} \\
=\; \sqrt{(1+\yx^2)\pdx^2} \\
=\; \sqrt{(1+\yx^2)}\;\sqrt{\pdx^2} \\
=\; \sqrt{(1+\yx^2}\;\pdx \\
\end{array}
$$
}\anothercol{
}}
\GenericWarning{Success:}{Success!!!} % Used by `M-x cv'
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-tla: "c2vo"
% ee-tla: "c2m231volumes"
% End: