Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-1-C4-P2.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-1-C4-P2.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-1-C4-P2.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-1-C4-P2.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-1-C4-P2.pdf")) % (defun e () (interactive) (find-LATEX "2023-1-C4-P2.tex")) % (defun o () (interactive) (find-LATEX "2023-1-C4-P2.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-1-C4-P2")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-1-C4-P2.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-1-C4-P2") % (find-pdf-page "~/LATEX/2023-1-C4-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2023-1-C4-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-1-C4-P2.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-1-C4-P2.pdf") % file:///home/edrx/LATEX/2023-1-C4-P2.pdf % file:///tmp/2023-1-C4-P2.pdf % file:///tmp/pen/2023-1-C4-P2.pdf % http://anggtwu.net/LATEX/2023-1-C4-P2.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise1") % (find-Deps1-cps "Caepro5 Piecewise1") % (find-Deps1-anggs "Caepro5 Piecewise1") % (find-MM-aula-links "2023-1-C4-P2" "C4" "c4m231p2" "c4p2") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.title» (to "title") % «.formulas» (to "formulas") % «.questao-1» (to "questao-1") % «.links» (to "links") % «.stewart» (to "stewart") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c4m231p2" "2023-1-C4-P2") % (code-eevvideo "c4m231p2" "2023-1-C4-P2") % (code-eevlinksvideo "c4m231p2" "2023-1-C4-P2") % (find-c4m231p2video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-1-C4.pdf} \def\drafturl{http://anggtwu.net/2023.1-C4.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\div{\operatorname{div}} % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L V = nil -- (find-angg "LUA/Pict2e1.lua" "MiniV") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L Pict2e.__index.suffix = "%" \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c4m231p2p 1 "title") % (c4m231p2a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 4 - 2023.1} \bsk Segunda prova (P2) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.1-C4.html} \end{center} \newpage % «formulas» (to ".formulas") \scalebox{0.5}{\def\colwidth{12cm}\firstcol{ % «questao-1» (to ".questao-1") % (c4m231p2p 2 "questao-1") % (c4m231p2a "questao-1") {\bf Questão 1 (e única)} \T(Total: 10.0 pts) \msk O objetivo desta questão é mostrar que esta igualdade % $$ \int\!\!\!\!\int_{∂B} 𝐛F·𝐛n \, dS \;=\; \int\!\!\!\!\int\!\!\!\!\int_B \div\,𝐛F(x,y,z)\,dV $$ % é verdadeira quando $B$ é a esfera de raio 2 centrada na origem e: % $$𝐛F(x,y,z) \;=\; (x^3+y^3)𝐛i + (y^3+z^3)𝐛j + (z^3+x^3)𝐛k $$ a) \B(1.0 pts) Calcule $\div F$. \ssk b) \B(4.5 pts) Calcule o lado esquerdo da igualdade. \ssk c) \B(4.5 pts) Calcule o lado direito da igualdade. % \par \Ca{StewPtCap16p70} \standout{Exercício 8} }\anothercol{ {\bf Algumas fórmulas:} $$\begin{array}{rcll} % dA &=& dx\,dy, \quad \text{ou:} \\ % StewPtCap15p8 (x,y,z) &=& (ρ \senϕ \cosθ, \\ % StewPtCap15p59 && \;\,ρ \senϕ \senθ, \\ && \;\,ρ \cosϕ) & (p.927) \\ dV &=& dx\,dy\,dz \\ &=& ρ^2 \senϕ\,dρ\,dϕ\,dθ & (p.929) \\ % StewPtCap15p61 \\[-5pt] % dA &=& du\,dv \\ \div 𝐛F &=& ∇·𝐛F = (\frac{∂}{∂x}, \frac{∂}{∂y}, \frac{∂}{∂z})·𝐛F & (p.979) \\ % StewPtCap16p37 \int\!\!\!\int_S f(x,y,z) \,dS &=& \int\!\!\!\int_D f(𝐛r(u,v))\,|𝐛r_u × 𝐛r_v| \,dA & (p.994) \\ % StewPtCap16p52 \\[-10pt] 𝐛n &=& \D \frac{𝐛r_u × 𝐛r_v}{|𝐛r_u × 𝐛r_v|} & (p.997) \\ % StewPtCap16p55 \\[-10pt] \D \frac{𝐛r_ϕ × 𝐛r_θ}{|𝐛r_ϕ × 𝐛r_θ|} &=& \D \frac1a \; 𝐛r(ϕ,θ) & (p.998) \\ % StewPtCap16p56 \\[-10pt] \int\!\!\!\int_S 𝐛F·d𝐛S &=& \int\!\!\!\int_S 𝐛F·𝐛n \, dS & (p.998) \\ % StewPtCap16p56 &=& \int\!\!\!\int_S 𝐛F·(𝐛r_u×𝐛r_v) \, dA & (p.999) \\ % StewPtCap16p57 \int\!\!\!\int_S 𝐛F·𝐛n \, dS &=& \int\!\!\!\int\!\!\!\int_E \div\,𝐛F(x,y,z)\,dV & (p.1008) \\ % StewPtCap16p66 \end{array} $$ \bsk Algumas das fórmulas acima só fazem sentido no contexto certo. Você vai receber cópias de algumas páginas do Stewart (7ª ed) em português pra consulta; ``(p.42)'' quer dizer que aquela fórmula aparece na página 42. }\anothercol{ }} % \par \Ca{StewPtCap15p8} Definição 5: $dA$ % \par \Ca{StewPtCap16p41} 16.6 Superfícies parametrizadas e suas áreas % \par \Ca{StewPtCap16p43} Exemplo 4: $𝐛r(ϕ,θ)=\ldots$ % \par \Ca{StewPtCap16p47} Definição 6: $𝐛r(u,v)=\ldots$ % %\par \Ca{StewPtCap16p47} (Exemplo 10) % \par \Ca{StewPtCap16p51} 16.7 Integrais de superfície % \par \Ca{StewPtCap16p52} dS = % \par \Ca{StewPtCap16p51} Superfícies parametrizadas: $𝐛r(u,v)=\ldots$ % \par \Ca{StewPtCap16p55} Figura 7: as duas orientações de uma superfície orientável % \par \Ca{StewPtCap16p55} $𝐛r(ϕ,θ)=\ldots$ % \par \Ca{StewPtCap16p56} Definição 8: $\int\!\!\!\int_S 𝐛F·d𝐛S = \int\!\!\!\int_S 𝐛F·𝐛n\,dS$ % \par \Ca{StewPtCap16p57} \standout{Exemplo 4} % \par \Ca{StewPtCap16p66} 16.9 O teorema do divergente % \par \Ca{StewPtCap16p67} \standout{Exemplo 1} % \par \Ca{StewPtCap16p69} \standout{Exercício 3} % \par \Ca{StewPtCap16p70} \standout{Exercício 8} \newpage % «links» (to ".links") \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % «stewart» (to ".stewart") * (eepitch-lua51) * (eepitch-kill) * (eepitch-lua51) ps = "927,929,979,994,997,998,999,1008" for p in ps:gmatch("%d+") do printf("(find-stewart72ptpage (+ -489 %s))\n", p) end f = function (s) return s-489 end = (ps:gsub("%d+", f)) -- file:///home/edrx/books/__analysis/stewart__calculo_7a_ed_vol_2.pdf -- 438,440,490,505,508,509,510,519 % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2023.1-C4/") # (find-fline "~/LATEX/2023-1-C4/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2023.1-C4/ cp -fv $1.pdf ~/LATEX/2023-1-C4/ cat <<%%% % (find-latexscan-links "C4" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2023-1-C4-P2 veryclean make -f 2019.mk STEM=2023-1-C4-P2 pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c4p2" % ee-tla: "c4m231p2" % End: