Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-2-C2-TFC1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-2-C2-TFC1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-2-C2-TFC1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-2-C2-TFC1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-2-C2-TFC1.pdf")) % (defun e () (interactive) (find-LATEX "2023-2-C2-TFC1.tex")) % (defun o () (interactive) (find-LATEX "2022-1-C2-TFC1.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-2-C2-TFC1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-2-C2-TFC1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-2-C2-TFC1") % (find-pdf-page "~/LATEX/2023-2-C2-TFC1.pdf") % (find-sh0 "cp -v ~/LATEX/2023-2-C2-TFC1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-2-C2-TFC1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-2-C2-TFC1.pdf") % file:///home/edrx/LATEX/2023-2-C2-TFC1.pdf % file:///tmp/2023-2-C2-TFC1.pdf % file:///tmp/pen/2023-2-C2-TFC1.pdf % http://anggtwu.net/LATEX/2023-2-C2-TFC1.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise1") % (find-Deps1-cps "Caepro5 Piecewise1") % (find-Deps1-anggs "Caepro5 Piecewise1") % (find-MM-aula-links "2023-2-C2-TFC1" "C2" "c2m232tfc1" "c2t1") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.title» (to "title") % «.links» (to "links") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c2m232tfc1" "2023-2-C2-TFC1") % (code-eevvideo "c2m232tfc1" "2023-2-C2-TFC1") % (code-eevlinksvideo "c2m232tfc1" "2023-2-C2-TFC1") % (find-c2m232tfc1video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-2-C2.pdf} \def\drafturl{http://anggtwu.net/2023.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L V = nil -- (find-angg "LUA/Pict2e1.lua" "MiniV") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L Pict2e.__index.suffix = "%" \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m232tfc1p 1 "title") % (c2m232tfc1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo C2 - 2023.2} \bsk Aula 16: o TFC1 \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.2-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m232tfc1p 2 "links") % (c2m232tfc1a "links") {\bf Links} \scalebox{0.9}{\def\colwidth{12cm}\firstcol{ % (c2m232carrop 4 "exercicio-1") % (c2m232carroa "exercicio-1") % (c2m232carrop 9 "exercicio-5") % (c2m232carroa "exercicio-5") \par \Ca{2hT27} (2023.2) Exercício 1: faça um gráfico da $G'(x)$ \par \Ca{2hT32} (2023.2) Exercício 5: $G(x) = \Intt{3}{x}{g(t)}$ \ssk % (find-books "__analysis/__analysis.el" "stewart-pt" "97" "Teorema do confronto") % (find-books "__analysis/__analysis.el" "stewart-pt" "351" "TFC1") % (find-books "__analysis/__analysis.el" "stewart-pt" "352" "TFC1, demonstração") \par \Ca{StewPtCap2p26} (p.97) O teorema do confronto \par \Ca{StewPtCap5p30} (p.351) TFC1 \par \Ca{StewPtCap5p31} (p.352) TFC1, demonstração \ssk % (find-books "__analysis/__analysis.el" "leithold" "114" "2.8. Teorema do confronto ou do sanduíche") % (find-books "__analysis/__analysis.el" "leithold" "345" "5.8.1. TFC1") \par \Ca{Leit2p61} (p.114) 2.8 Teorema do confronto ou do sanduíche \par \Ca{Leit5p62} (p.345) 5.8.1 TFC1 \ssk % (find-books "__analysis/__analysis.el" "miranda" "29" "Teorema do confronto") % (find-books "__analysis/__analysis.el" "miranda" "225" "7.5 Teorema Fundamental do Cálculo") \par \Ca{MirandaP29} Teorema do confronto \par \Ca{MirandaP225} TFC1 \ssk % (find-books "__analysis/__analysis.el" "ross" "291" "34 Fundamental Theorem of Calculus") \par \Ca{RossAp38} (p.291) Fundamental Theorem of Calculus }\anothercol{ }} \newpage % ___ _ _ % |_ _|_ __ | |_ _ __ ___ __| |_ _ ___ __ _ ___ % | || '_ \| __| '__/ _ \ / _` | | | |/ __/ _` |/ _ \ % | || | | | |_| | | (_) | (_| | |_| | (_| (_| | (_) | % |___|_| |_|\__|_| \___/ \__,_|\__,_|\___\__,_|\___/ % % «intro-1» (to ".intro-1") % (c2m221tfc1p 12 "intro-1") % (c2m221tfc1a "intro-1") {\bf Introdução (2021.2)} \scalebox{0.75}{\def\colwidth{12cm}\firstcol{ Digamos que $f:[a,b] \to \R$ é uma função integrável. Digamos que $c∈[a,b]$. Digamos que a função $F:[a,b] \to \R$ é \ColorRed{definida} por: % $$F(t) \;\; = \Intx{c}{t}{f(x)}.$$ O TFC1 tem duas versões. A versão mais simples diz o seguinte: se a função $f$ é contínua então para todo $t∈(a,b)$ vale: % $$F'(t) \;\; = f(t). \qquad \qquad (*)$$ A versão mais complicada do TFC1, que vamos ver depois, não supõe que a função $f$ é contínua. \msk Nós vamos ver um argumento visual que mostra que a igualdade $(*)$ é verdade. Esse argumento visual é \ColorRed{quase} uma demonstração formal, num sentido que eu vou explicar depois. }} \newpage % «intro-2» (to ".intro-2") % (c2m221tfc1p 3 "intro-2") % (c2m221tfc1a "intro-2") {\bf Introdução (2)} \scalebox{0.75}{\def\colwidth{12cm}\firstcol{ Digamos que $f:[a,b] \to \R$ é uma função \ColorRed{contínua}. Digamos que $c∈[a,b]$. Digamos que a função $F:[a,b] \to \R$ é \ColorRed{definida} por: % $$F(t) \;\; = \Intx{c}{t}{f(x)}.$$ \def\eqq{\overset{\ColorRed{???}}{=}} Então: % $$\begin{array}{rcl} F'(t) &=& \D \lim_{ε→0} \frac{F(t+ε)-F(t)}{ε} \\ &=& \D \lim_{ε→0} \frac{ \Intx{c}{t+ε}{f(x)} - \Intx{c}{t}{f(x)} }{ε} \\ &=& \D \lim_{ε→0} \frac{ \Intx{t}{t+ε}{f(x)} }{ε} \\[12pt] &=& \D \lim_{ε→0} \frac{1}{ε} \Intx{t}{t+ε}{f(x)} \\[12pt] &\eqq& f(t) \\ \end{array} $$ }} \newpage % «intro-3» (to ".intro-3") % (c2m221tfc1p 4 "intro-3") % (c2m221tfc1a "intro-3") {\bf Introdução (3)} Digamos que $f:[a,b] \to \R$ é uma função \ColorRed{contínua}. Digamos que $c∈[a,b]$. Digamos que a função $F:[a,b] \to \R$ é \ColorRed{definida} por: % $$F(t) \;\; = \Intx{c}{t}{f(x)}.$$ O nosso argumento visual vai mostrar que: % $$\begin{array}{rcl} \D \lim_{ε→0} \frac{1}{ε} \Intx{t}{t+ε}{f(x)} &=& f(t). \\ \end{array} $$ \newpage % _____ _ _ % | ____|_ _____ _ __ ___ _ __ | | ___ / | % | _| \ \/ / _ \ '_ ` _ \| '_ \| |/ _ \ | | % | |___ > < __/ | | | | | |_) | | (_) | | | % |_____/_/\_\___|_| |_| |_| .__/|_|\___/ |_| % |_| % % «exemplo-1» (to ".exemplo-1") % (c2m232tfc1p 6 "exemplo-1") % (c2m232tfc1a "exemplo-1") % (c2m221tfc1p 15 "exemplo-1") % (c2m221tfc1a "exemplo-1") % (find-angg "LUA/Piecewise1.lua" "TFC1-tests") % %L Pict2e.bounds = PictBounds.new(v(0,0), v(7,5)) %L tfc1_fig_parabola = function (scale) %L local f = function (x) return 4*x - x^2 end %L local tfc1 = TFC1.fromf(f, seqn(0, 4, 64)) %L tfc1:setxts(0,1,4, 5, scale):setpwg() %L local p = PictList { %L tfc1:areaify_f():Color("Orange"), %L tfc1:areaify_g():Color("Orange"), %L tfc1:lineify_f(), %L tfc1:lineify_g(), %L } %L return p %L end %L %L tfc1_fig_parabola(1/2):pgat("pgat"):sa("TFC1 parabola 1/2"):output() %L tfc1_fig_parabola(1) :pgat("pgat"):sa("TFC1 parabola 1"):output() %L tfc1_fig_parabola(2) :pgat("pgat"):sa("TFC1 parabola 2"):output() %L tfc1_fig_parabola(4) :pgat("pgat"):sa("TFC1 parabola 4"):output() %L tfc1_fig_parabola(8) :pgat("pgat"):sa("TFC1 parabola 8"):output() %L tfc1_fig_parabola(16) :pgat("pgat"):sa("TFC1 parabola 16"):output() %L tfc1_fig_parabola(32) :pgat("pgat"):sa("TFC1 parabola 32"):output() %L tfc1_fig_parabola(64) :pgat("pgat"):sa("TFC1 parabola 64"):output() %L tfc1_fig_parabola(-1) :pgat("pgat"):sa("TFC1 parabola -1"):output() %L tfc1_fig_parabola(-2) :pgat("pgat"):sa("TFC1 parabola -2"):output() %L tfc1_fig_parabola(-4) :pgat("pgat"):sa("TFC1 parabola -4"):output() %L tfc1_fig_parabola(-8) :pgat("pgat"):sa("TFC1 parabola -8"):output() %L tfc1_fig_parabola(-16):pgat("pgat"):sa("TFC1 parabola -16"):output() %L tfc1_fig_parabola(-32):pgat("pgat"):sa("TFC1 parabola -32"):output() %L tfc1_fig_parabola(-64):pgat("pgat"):sa("TFC1 parabola -64"):output() \pu \unitlength=10pt \scalebox{1.0}{\def\colwidth{5cm}\firstcol{ {\bf Primeiro exemplo:} $f(x)$ é a nossa parábola preferida, e $t=1$. \msk Primeira figura: $ε=2$. Segunda figura: $ε=1$. Terceira figura: $ε=1/2$. \msk À esquerda: $\Intx{t}{t+ε}{f(x)}$. À direita: $\frac{1}{ε}\Intx{t}{t+ε}{f(x)}$. \msk Repare que a área em laranja à esquerda sempre tem base $ε$ e a área em laranja à direita sempre tem base $ε·\frac{1}{ε}=1$. }\anothercol{ \unitlength=10pt $$\ga{TFC1 parabola 1/2}$$ $$\ga{TFC1 parabola 1}$$ $$\ga{TFC1 parabola 2}$$ }} \newpage \unitlength=25pt \def\myint{\Intx{1}{1+ε}{f(x)}} \def\myinte#1{ $\begin{array}{rl} \D \myint & \text{e} \\[15pt] \D \frac{1}{ε} \myint & \text{quando $ε=#1$:} \\ \end{array} $} \msk \myinte{2} $$\ga{TFC1 parabola 1/2}$$ \newpage \myinte{1} $$\ga{TFC1 parabola 1}$$ \newpage \myinte{1/2} $$\ga{TFC1 parabola 2}$$ \newpage \myinte{1/4} $$\ga{TFC1 parabola 4}$$ \newpage \myinte{1/8} $$\ga{TFC1 parabola 8}$$ \newpage \myinte{1/16} $$\ga{TFC1 parabola 16}$$ \newpage \myinte{1/32} $$\ga{TFC1 parabola 32}$$ \newpage \myinte{1/64} $$\ga{TFC1 parabola 64}$$ \newpage % «exemplo-1-left» (to ".exemplo-1-left") % (c2m221tfc1p 14 "exemplo-1-left") % (c2m221tfc1a "exemplo-1-left") \scalebox{1.0}{\def\colwidth{5cm}\firstcol{ {\bf Agora com $ε$ negativo!...} \msk $f(x)$ é a nossa parábola preferida, e $t=1$. \msk Primeira figura: $ε=-1$. Segunda figura: $ε=-1/2$. Terceira figura: $ε=-1/4$. \msk À esquerda: $\Intx{t}{t+ε}{f(x)}$. À direita: $\frac{1}{ε}\Intx{t}{t+ε}{f(x)}$. % \msk % % Repare que a área em % % laranja à esquerda sempre % % tem base $ε$ e a área em % % laranja à direita sempre % % tem base $ε·\frac{1}{ε}=1$. }\anothercol{ \unitlength=10pt $$\ga{TFC1 parabola -1}$$ $$\ga{TFC1 parabola -2}$$ $$\ga{TFC1 parabola -4}$$ }} \newpage \myinte{-1} $$\ga{TFC1 parabola -1}$$ \newpage \myinte{-1/2} $$\ga{TFC1 parabola -2}$$ \newpage \myinte{-1/4} $$\ga{TFC1 parabola -4}$$ \newpage \myinte{-1/8} $$\ga{TFC1 parabola -8}$$ \newpage \myinte{-1/16} $$\ga{TFC1 parabola -16}$$ \newpage \myinte{-1/32} $$\ga{TFC1 parabola -32}$$ \newpage \myinte{-1/64} $$\ga{TFC1 parabola -64}$$ \newpage % _____ _ _ ____ % | ____|_ _____ _ __ ___(_) ___(_) ___ | ___| % | _| \ \/ / _ \ '__/ __| |/ __| |/ _ \ |___ \ % | |___ > < __/ | | (__| | (__| | (_) | ___) | % |_____/_/\_\___|_| \___|_|\___|_|\___/ |____/ % % «exercicio-5» (to ".exercicio-5") % (c2m221tfc1p 32 "exercicio-5") % (c2m221tfc1a "exercicio-5") % (c2m221tfc1p 22 "exercicio-1") % (c2m221tfc1a "exercicio-1") % (find-angg "LUA/Piecewise1.lua" "TFC1-tests") % %L Pict2e.bounds = PictBounds.new(v(0,0), v(7,5)) %L exerc_1_spec = "(0,2)--(1,1)--(2,3)--(3,4)--(4,3)" %L exerc_2_spec = "(0,2)--(1,0)--(2,1)o (2,2)c (2,3)o--(3,4)--(4,3)" %L %L tfc1_exercs_1_2 = function (spec, scale) %L local tfc1 = TFC1.fromspec(spec) %L tfc1:setxts(0,2,4, 5, scale) %L local p = PictList { %L tfc1:areaify_f():Color("Orange"), %L tfc1.pws:topict(), %L } %L return p %L end %L tfc1_exerc1 = function (scale) return tfc1_exercs_1_2(exerc_1_spec, scale) end %L tfc1_exerc2 = function (scale) return tfc1_exercs_1_2(exerc_2_spec, scale) end %L tfc1_exerc1(1/2) :pgat("pgat"):sa("TFC1 exerc1 1/2"):output() %L tfc1_exerc1(1) :pgat("pgat"):sa("TFC1 exerc1 1"):output() %L tfc1_exerc1(2) :pgat("pgat"):sa("TFC1 exerc1 2"):output() %L tfc1_exerc1(-1/2):pgat("pgat"):sa("TFC1 exerc1 -1/2"):output() %L tfc1_exerc1(-1) :pgat("pgat"):sa("TFC1 exerc1 -1"):output() %L tfc1_exerc1(-2) :pgat("pgat"):sa("TFC1 exerc1 -2"):output() %L tfc1_exerc2(1/2):pgat("pgat"):sa("TFC1 exerc2 1/2"):output() %L tfc1_exerc2(1) :pgat("pgat"):sa("TFC1 exerc2 1"):output() %L tfc1_exerc2(2) :pgat("pgat"):sa("TFC1 exerc2 2"):output() %L tfc1_exerc2(-1/2):pgat("pgat"):sa("TFC1 exerc2 -1/2"):output() %L tfc1_exerc2(-1) :pgat("pgat"):sa("TFC1 exerc2 -1"):output() %L tfc1_exerc2(-2) :pgat("pgat"):sa("TFC1 exerc2 -2"):output() \pu \scalebox{1.0}{\def\colwidth{6cm}\firstcol{ {\bf Exercício 5.} Seja $f(x)$ a função à direita. Seja $t=2$. \msk a) Desenhe $\frac{1}{ε}\Intx{t}{t+ε}{f(x)}$ para $ε=2$, $ε=1$, $ε=1/2$. \msk b) Desenhe $\frac{1}{ε}\Intx{t}{t+ε}{f(x)}$ para $ε=-2$, $ε=-1$, $ε=-1/2$. \msk Dica: comece entendendo as áreas em laranja à direita! \msk c) Quanto você acha que dá $\lim_{ε→0^+} \frac{1}{ε} \Intx{t}{t+ε}{f(x)}$? \msk d) Quanto você acha que dá $\lim_{ε→0^-} \frac{1}{ε} \Intx{t}{t+ε}{f(x)}$? }\hspace*{-1cm}\anothercol{ \unitlength=7.5pt $$\ga{TFC1 exerc1 1/2} \quad \ga{TFC1 exerc1 -1/2}$$ $$\ga{TFC1 exerc1 1} \quad \ga{TFC1 exerc1 -1}$$ $$\ga{TFC1 exerc1 2} \quad \ga{TFC1 exerc1 -2}$$ }} \newpage % «exercicio-6» (to ".exercicio-6") % (c2m221tfc1p 33 "exercicio-6") % (c2m221tfc1a "exercicio-6") % (find-LATEX "edrx21defs.tex" "firstcol-anothercol") \scalebox{1.0}{\def\colwidth{6cm}\firstcol{ {\bf Exercício 6.} Seja $f(x)$ a função à direita. Seja $t=2$. \msk a) Desenhe $\frac{1}{ε}\Intx{t}{t+ε}{f(x)}$ para $ε=2$, $ε=1$, $ε=1/2$. \msk b) Desenhe $\frac{1}{ε}\Intx{t}{t+ε}{f(x)}$ para $ε=-2$, $ε=-1$, $ε=-1/2$. \msk Dica: comece entendendo as áreas em laranja à direita! \msk c) Quanto você acha que dá $\lim_{ε→0^+} \frac{1}{ε} \Intx{t}{t+ε}{f(x)}$? \msk d) Quanto você acha que dá $\lim_{ε→0^-} \frac{1}{ε} \Intx{t}{t+ε}{f(x)}$? }\hspace*{-1cm}\anothercol{ \unitlength=7.5pt \def\PPP#1{\ParR{\expr{Pwil(#1)}}} $$\ga{TFC1 exerc2 1/2} \quad \ga{TFC1 exerc2 -1/2}$$ $$\ga{TFC1 exerc2 1} \quad \ga{TFC1 exerc2 -1}$$ $$\ga{TFC1 exerc2 2} \quad \ga{TFC1 exerc2 -2}$$ }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2023.2-C2/") # (find-fline "~/LATEX/2023-2-C2/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2023.2-C2/ cp -fv $1.pdf ~/LATEX/2023-2-C2/ cat <<%%% % (find-latexscan-links "C2" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2023-2-C2-TFC1 veryclean make -f 2019.mk STEM=2023-2-C2-TFC1 pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c2t1" % ee-tla: "c2m232tfc1" % End: