Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-2-C2-edos-lineares.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-2-C2-edos-lineares.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-2-C2-edos-lineares.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-2-C2-edos-lineares.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-2-C2-edos-lineares.pdf")) % (defun e () (interactive) (find-LATEX "2023-2-C2-edos-lineares.tex")) % (defun o () (interactive) (find-LATEX "2023-2-C2-edos-lineares.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-2-C2-edos-lineares")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-2-C2-edos-lineares.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-2-C2-edos-lineares") % (find-pdf-page "~/LATEX/2023-2-C2-edos-lineares.pdf") % (find-sh0 "cp -v ~/LATEX/2023-2-C2-edos-lineares.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-2-C2-edos-lineares.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-2-C2-edos-lineares.pdf") % file:///home/edrx/LATEX/2023-2-C2-edos-lineares.pdf % file:///tmp/2023-2-C2-edos-lineares.pdf % file:///tmp/pen/2023-2-C2-edos-lineares.pdf % http://anggtwu.net/LATEX/2023-2-C2-edos-lineares.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2 Maxima2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2") % (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2") % (find-MM-aula-links "2023-2-C2-edos-lineares" "C2" "c2m232edols" "c2els") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-maxima» (to "defs-maxima") % «.title» (to "title") % «.links» (to "links") % «.defs-bodies» (to "defs-bodies") % «.o-metodo» (to "o-metodo") % «.exercicio-0» (to "exercicio-0") % «.metodo-e-formula» (to "metodo-e-formula") % «.maxima» (to "maxima") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c2m232edols" "2023-2-C2-edos-lineares") % (code-eevvideo "c2m232edols" "2023-2-C2-edos-lineares") % (code-eevlinksvideo "c2m232edols" "2023-2-C2-edos-lineares") % (find-c2m232edolsvideo "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-2-C2.pdf} \def\drafturl{http://anggtwu.net/2023.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L --dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs-maxima» (to ".defs-maxima") %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m232edolsp 1 "title") % (c2m232edolsa "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo C2 - 2023.2} \bsk Aula 35: EDOs lineares \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.2-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m232edolsp 2 "links") % (c2m232edolsa "links") {\bf Links} \scalebox{0.6}{\def\colwidth{16cm}\firstcol{ % (find-books "__analysis/__analysis.el" "stewart-pt" "557" "9.5 Equações Lineares") % (find-books "__analysis/__analysis.el" "stewart-pt" "561" "9.5 Exercícios") \par \Ca{StewPtCap9p37} (p.557) 9.5 Equações Lineares \par \Ca{StewPtCap9p41} (p.561) 9.5 Exercícios \ssk % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "23" "2.1. Equações lineares") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "29" "Problemas") % (find-books "__analysis/__analysis.el" "boyce-diprima" "24" "2.1 Linear Differential Equations") % (find-books "__analysis/__analysis.el" "boyce-diprima" "31" "Problems") \par \Ca{BoyceDip2p5} (p.23) 2.1 Equações lineares; método dos fatores integrantes \par \Ca{BoyceDip2p11} (p.29) Problemas \par \Ca{BoyceDipEng2p4} (p.24) 2.1 Linear Differential Equations; Method of Integrating Factors \par \Ca{BoyceDipEng2p11} (p.31) Problems \ssk % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "68" "2.5. Equações lineares") % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "77" "2.5. Exercícios") % (find-books "__analysis/__analysis.el" "zill-cullen" "53" "2.3. Linear equations") % (find-books "__analysis/__analysis.el" "zill-cullen" "60" "Exercises 2.3") \par \Ca{ZillCullenCap2p33} (p.68) 2.5 Equações lineares \par \Ca{ZillCullenCap2p42} (p.77) 2.5 Exercícios \par \Ca{ZillCullenEngCap2p26} (p.53) 2.3 Linear equations \par \Ca{ZillCullenEngCap2p33} (p.60) Exercises 2.3 \ssk % (find-books "__analysis/__analysis.el" "lebl" "40" "1.4 Linear equations and the integrating factor") % (find-books "__analysis/__analysis.el" "lebl" "43" "1.4.1 Exercises") \par \Ca{DiffyQsP40} 1.4 Linear equations and the integrating factor \par \Ca{DiffyQsP43} 1.4.1 Exercises \msk }\anothercol{ }} \newpage % «defs-bodies» (to ".defs-bodies") % (c2m232edolsp 3 "defs-bodies") % (c2m232edolsa "defs-bodies") \sa {[EL3]}{\CFname{EL}{_3}} \sa {[S1]}{\CFname{S}{_1}} \def\P#1{\left( #1 \right)} \sa{body Stewart}{ \frac{dy}{dx} + P(x)y &=& Q(x) & {[1]} \\ I(x)(y' + P(x)y) &=& (I(x)y)' & {[3]} \\ (I(x)y)' &=& I(x)Q(x) \\ I(x)y &=& \intx{I(x)Q(x)} + C \\ y(x) &=& \frac{1}{I(x)} \left[ \intx{I(x)Q(x)} + C \right] & {[4]} \\ I(x)y' + I(x)P(x)y &=& (I(x)y)' \;=\; I'(x)y + I(x)y' \\ I(x)P(x) &=& I'(x) \\ \int{\frac{1}{I}}\,dI &=& \intx{P(x)} \\ I(x) &=& Ae^{\intx{P(x)}} \\ A &=& \pm e^C \\ A &=& 1 \\ I(x) &=& e^{\intx{P(x)}} & {[5]} \\ } \sa{body Stewart 2}{ \frac{dy}{dx} + P(x)y &=& Q(x) & {[1]} \\ I(x) &=& e^{\intx{P(x)}} & {[5]} \\ y(x) &=& \frac{1}{I(x)} \left[ \intx{I(x)Q(x)} + C \right] & {[4]} \\ } \sa{(EL3)}{ \P{\begin{array}{rcl} f'+fg & = & h \\ G' & = & g \\ f & = & e^{-G}(\intx{e^Gh} + C) \\ \end{array} }} \sa{body PQI}{ y' + Py &=& Q \\ I(y' + Py) &=& (Iy)' \\ I(y' + Py) &=& IQ \\ (Iy)' &=& IQ \\ Iy &=& \intx{IQ} \\ y &=& \frac{1}{I} \intx{IQ} \\ I(y' + Py) &=& (Iy)' \\ Iy' + IPy &=& I'y + Iy' \\ IPy &=& I'y \\ IP &=& I' \\ I &=& e^{\intx{P}} \\ } \sa{body ghm}{ f' + gf &=& h \\ m(f' + gf) &=& (mf)' \\ m(f' + gf) &=& mh \\ (mf)' &=& mh \\ mf &=& \intx{mh} \\ f &=& \frac{1}{m} \intx{mh} \\ m(f' + gf) &=& (mf)' \\ mf' + mgf &=& m'f + mf' \\ mgf &=& m'f \\ mg &=& m' \\ m &=& e^{\intx{g}} \\ &=& e^G \\ } \sa{body 3}{ f' + gf &=& h \\ G' &=& g \\ f &=& e^{-G} \intx{e^Gh} \\ } \newpage % «o-metodo» (to ".o-metodo") % (c2m232edolsp 3 "o-metodo") % (c2m232edolsa "o-metodo") {\bf O método} \scalebox{0.46}{\def\colwidth{12cm}\firstcol{ Aqui a gente tem a explicação do Stewart de como resolver EDOs lineares {\sl com todas as partes em português deletadas}: % $$\begin{array}{rcll} \ga{body Stewart} \end{array} $$ Repare que sem as partes em português ela vira algo que só gênios conseguem decifrar -- e um dos nossos objetivos neste curso é aprender a organizar as contas de modo que elas fiquem fáceis de entender, de justificar e de verificar. \msk Se a gente deixa só as linhas [1], [4] e [5] e põe elas nesta ordem, % $$\begin{array}{rcll} \ga{body Stewart 2} \end{array} $$ o {\sl método} fica bem claro: pra resolver uma EDO da forma [1] a gente define um fator integrante $I(x)$ usando a definição da linha [5], e aí as nossas soluções vão ser as funções $y(x)$ da linha [4], onde $C$ é uma constante qualquer. }\anothercol{ Agora se a gente precisar {\sl resolver} EDOs lineares basta aplicar um método que cabe em três linhas. Eu prefiro escrever ele usando outras letras, % $$\begin{array}{ccl} y(x) & ⇒ & f(x) \\ P(x) & ⇒ & g(x) \\ \intx{P(x)} & ⇒ & G(x) \\ Q(x) & ⇒ & h(x) \\ I(x) & ⇒ & m(x) \\ \end{array} $$ o omitindo os `$(x)$' na maioria dos lugares. A tradução é isto, % $$\begin{array}{rcl} f'+gf & = & h \\ m & = & e^G \\ f & = & \frac{1}{m}(\intx{mh} + C) \\ \end{array} $$ mas eu vou preferir escrever ela deste jeito: % $$\ga{[EL3]} \;=\; \ga{(EL3)} $$ \bsk % «exercicio-0» (to ".exercicio-0") % (c2m232edolsp 3 "exercicio-0") % (c2m232edolsa "exercicio-0") {\bf Exercício 0} O Stewart começa por este exemplo, que ele chama de [2]: % (find-books "__analysis/__analysis.el" "stewart-pt" "557" "9.5 Equações Lineares") \par \Ca{StewPtCap9p37} (p.557) $y'+\frac{1}{x}y=2$ Seja $\ga{[S1]} \;=\; \bsm{g := 1/x \\ h:=2 \\ G := \ln x \\ }$. a) Use $\ga{[EL3]}\ga{[S1]}$ pra obter a solução geral da EDO [2]. b) Chame esta solução geral de $f_1(x)$ -- use um ``seja''! -- e teste-a. c) Encontre a solução particular que passa pelo ponto $(2,5)$. d) Chame esta solução particular de $f_2(x)$ -- use um ``seja''! -- e teste-a. }} \newpage {\bf O que realmente importa} \scalebox{0.7}{\def\colwidth{12cm}\firstcol{ {\bf Exercício importantíssimo!!!} Entenda isto aqui e reescreva num formato BEM mais fácil de entender: % $$\begin{array}{rcll} \ga{body Stewart} \end{array} $$ }\anothercol{ }} \newpage \newpage % % «metodo-e-formula» (to ".metodo-e-formula") % % (c2m232edolsp 3 "metodo-e-formula") % % (c2m232edolsa "metodo-e-formula") % % \scalebox{0.6}{\def\colwidth{6cm}\firstcol{ % % $$\begin{array}[t]{rcl} % \ga{body PQI} % \end{array} % \qquad % \begin{array}[t]{rcl} % \ga{body ghm} % \end{array} % \qquad % \begin{array}[t]{rcl} % \ga{body 3} % \end{array} % $$ % % }\anothercol{ % % }} \newpage % «maxima» (to ".maxima") % (c2m232edolsp 5 "maxima") % (c2m232edolsa "maxima") % (find-es "maxima" "2023-2-edos-lineares") %M (%i1) e1 : 'diff(y,x) + 1/x * y = 2; %M (%o1) {\frac{d}{d\,x}}\,y+{\frac{y}{x}}=2 %M (%i2) e2 : ode2(e1,y,x); %M (%o2) y={\frac{x^2+\mathrm{\%c}}{x}} %M (%i3) solve(e2, %c); %M (%o3) \left[ \mathrm{\%c}=x\,y-x^2 \right] %M (%i4) e3 : solve(e2, %c)[1]; %M (%o4) \mathrm{\%c}=x\,y-x^2 %M (%i5) e4 : subst([x=2,y=5], e2); %M (%o5) 5={\frac{\mathrm{\%c}+4}{2}} %M (%i6) solve(e4, %c); %M (%o6) \left[ \mathrm{\%c}=6 \right] %L maximahead:sa("stewart exemplo 0 a", "") \pu %M (%i7) e4 : solve(e4, %c)[1]; %M (%o7) \mathrm{\%c}=6 %M (%i8) subst(e4,e2); %M (%o8) y={\frac{x^2+6}{x}} %M (%i9) define(f2(x), rhs(subst(e4,e2))); %M (%o9) \mathrm{f2}\left(x\right):={\frac{x^2+6}{x}} %M (%i10) e5 : subst([y=f2(x)], e1); %M (%o10) {\frac{d}{d\,x}}\,\left({\frac{x^2+6}{x}}\right)+{\frac{x^2+6}{x^2}}=2 %M (%i11) ev(e5, diff); %M (%o11) 2=2 %M (%i12) %L maximahead:sa("stewart exemplo 0 b", "") \pu \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \def\hboxthreewidth {14cm} \ga{stewart exemplo 0 a} }\anothercol{ \def\hboxthreewidth {14cm} \ga{stewart exemplo 0 b} }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2023.2-C2/") # (find-fline "~/LATEX/2023-2-C2/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2023.2-C2/ cp -fv $1.pdf ~/LATEX/2023-2-C2/ cat <<%%% % (find-latexscan-links "C2" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2023-2-C2-edos-lineares veryclean make -f 2019.mk STEM=2023-2-C2-edos-lineares pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c2els" % ee-tla: "c2m232edols" % End: