Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-2-C2-numeros-complexos.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-2-C2-numeros-complexos.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-2-C2-numeros-complexos.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-2-C2-numeros-complexos.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-2-C2-numeros-complexos.pdf")) % (defun e () (interactive) (find-LATEX "2023-2-C2-numeros-complexos.tex")) % (defun o () (interactive) (find-LATEX "2023-2-C2-numeros-complexos.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-2-C2-numeros-complexos")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-2-C2-numeros-complexos.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-2-C2-numeros-complexos") % (find-pdf-page "~/LATEX/2023-2-C2-numeros-complexos.pdf") % (find-sh0 "cp -v ~/LATEX/2023-2-C2-numeros-complexos.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-2-C2-numeros-complexos.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-2-C2-numeros-complexos.pdf") % file:///home/edrx/LATEX/2023-2-C2-numeros-complexos.pdf % file:///tmp/2023-2-C2-numeros-complexos.pdf % file:///tmp/pen/2023-2-C2-numeros-complexos.pdf % http://anggtwu.net/LATEX/2023-2-C2-numeros-complexos.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2") % (find-Deps1-anggs "Caepro5 Piecewise2") % (find-MM-aula-links "2023-2-C2-numeros-complexos" "C2" "c2m232nc" "c2nc") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.title» (to "title") % «.links» (to "links") % «.maxima» (to "maxima") % «.maxima-2» (to "maxima-2") % % «.djvuize» (to "djvuize") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-2-C2.pdf} \def\drafturl{http://anggtwu.net/2023.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L --dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m232ncp 1 "title") % (c2m232nca "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo C2 - 2023.2} \bsk Aula 31: revisão de números complexos \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.2-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m232ncp 2 "links") % (c2m232nca "links") {\bf Links} \scalebox{0.6}{\def\colwidth{15cm}\firstcol{ % (find-books "__analysis/__analysis.el" "stewart-pt" "1020" "17.1 Equações Lineares de Segunda Ordem") % (find-books "__analysis/__analysis.el" "stewart-pt" "1034" "subamortecimento") % (find-books "__analysis/__analysis.el" "stewart-pt" "51" "H Números Complexos") \par \Ca{StewPtCap17p6} (p.1020) Equações diferenciais de 2ª ordem \par \Ca{StewPtCap17p20} (p.1034) Caso 3: subamortecimento \par \Ca{StewPtApendiceHp5} (p.A51) Apêndice H: Números complexos \ssk % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "105" "3. Equações lineares de segunda") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "111" "operador diferencial") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "113" "princípio da superposição") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "121" "3.3. Raízes complexas") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "123" "Figura 3.3.1") \par \Ca{BoyceDip3p5} (p.105) Capítulo 3: Equações lineares de 2ª ordem \par \Ca{BoyceDip3p11} (p.111) Seção 3.2: o operador diferencial $L$ \par \Ca{BoyceDip3p13} (p.113) Teorema 3.2.2: o princípio da superposição \par \Ca{BoyceDip3p21} (p.121) 3.3. Raízes complexas da equação característica \par \Ca{BoyceDip3p23} (p.123) Figura 3.3.1 \ssk % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "173" "4.3" "coeficientes constantes") %\par \Ca{ZillCullenCap4p33} (p.173) 4.3. Equações lineares homogêneas com coeficientes constantes % (find-books "__analysis/__analysis.el" "boyce-diprima" "103" "3 Second-Order Linear") % (find-books "__analysis/__analysis.el" "boyce-diprima" "110" "differential operator") % (find-books "__analysis/__analysis.el" "boyce-diprima" "112" "Theorem 3.2.2" "Superposition") % (find-books "__analysis/__analysis.el" "boyce-diprima" "120" "3.3 Complex Roots") \par \Ca{BoyceDipEng3p4} (p.103) Chapter 3: Second-order linear ODEs \par \Ca{BoyceDipEng3p11} (p.110) Section 3.2: the differential operator $L$ \par \Ca{BoyceDipEng3p13} (p.112) Theorem 3.2.2: principle of superposition \par \Ca{BoyceDipEng3p21} (p.120) 3.3 Complex Roots of the Characteristic Equation \par \Ca{BoyceDipEng3p24} (p.123) Figure 3.3.1 % (find-angg ".emacs" "c2q191" "20190524") % (find-angg ".emacs" "c2q192" "60" "20190920") % (find-c2q222page 45 "nov23: Números complexos") % (find-c2q231page 50 "jun23: Oscilações") % (c2q191 31 "20190524" "E = c + is") % (find-SUBSfile "2021aulas-por-telegram.lua" "14:16") % http://www.youtube.com/watch?v=-dhHrg-KbJ0 e to the pi i for dummies (Mathologer) \par \url{https://en.wikipedia.org/wiki/Complex_number} (bom) \par \url{https://pt.wikipedia.org/wiki/N\%C3\%BAmero_complexo} (ruim, cheio de erros) \ssk \par \Ca{2yT12} (Gabarito da P1 de 2019.2) A questão 3 usa o truque do $E$ % (c2m222srp 4 "somas-de-retangulos") % (c2m222sra "somas-de-retangulos") %\par \Ca{2fT63} ``Áreas negativas não existem'' \bsk % (find-books "__analysis/__analysis.el" "hernandez" "47" "principais identidades trigonométricas") \par \Ca{HernandezP57} (p.47) principais identidades trigonométricas }\anothercol{ }} \newpage \def\Re{\mathsf{Re}} \def\Im{\mathsf{Im}} \def\Arg{\mathsf{arg}} \def\C{\mathbb{C}} \scalebox{0.55}{\def\colwidth{13cm}\firstcol{ $\begin{array}[t]{rcll} a,b,c,d &∈& \R \\ z,w &∈& \C \\ θ &∈& \R & \text{(ângulo)} \\ k &∈& \Z \\ \\ \Re(a+bi) &=& a & \text{(parte real)} \\ \Im(a+bi) &=& b & \text{(parte imaginária)} \\ z &=& \Re(z) + \Im(z)i & \text{(isto sempre vale)} \\ \ovl{z} &=& \Re(z) - \Im(z)i & \text{(conjugado: definição fácil)} \\ \ovl{a+bi} &=& a - bi & \text{(conjugado: definição difícil)} \\ |z| &=& \sqrt{\Re(z)^2 + \Im(z)^2} & \text{(módulo/norma: definição fácil)} \\ |a+bi| &=& \sqrt{a^2 + b^2} & \text{(módulo/norma: definição difícil)} \\ \\ 180° &=& π & \text{($←$ lembre)} \\ 1° &=& \frac{π}{180} & \text{($←$ lembre)} \\ 42° &=& 42\frac{π}{180} \\ {}° &=& \frac{π}{180} & \text{(podemos tratar o ${}°$ como uma constante)} \\ \\ e^{iθ} &=& \cosθ + i\senθ & \text{(vamos entender isto aos poucos)} \\ E &=& c+is & \text{(abreviação pra igualdade acima)} \\ \\ z &=& |z| \, e^{i\Arg(z)} & \text{(vamos entender isto aos poucos)} \\ 1+i &=& |1+1i| \, e^{i\Arg(1+i)} & \text{($←$ exemplo)} \\ &=& \sqrt{1^2+1^2} \, e^{i45°} \\ &=& \sqrt{2} \, e^{i\frac{π}{4}} \\ \end{array} $ }\anothercol{ $\begin{array}[t]{rcll} (a+bi)(c+di) &=& a(c+di) + bi(c+di) \\ &=& ac+adi + bic+bidi \\ &=& ac+adi + bci+bd\ColorRed{(i^2)} \\ &=& ac+adi + bci+bd\ColorRed{(-1)} \\ &=& ac+adi + bci-bd \\ &=& ac-bd + adi+bci \\ &=& (ac-bd) + (ad+bc)i \\ \\ (ae^{iα}) (be^{iβ}) &=& (ab)(e^{iα} \, e^{iβ}) \\ &=& (ab)(e^{iα+iβ}) \\ &=& (ab)(e^{i(α+β)}) \\ &=& (ab)(e^{i(α+β)}) \\ \end{array} $ }} \newpage {\bf ``Partes de cima''} \def\ccos{\operatorname{ccos}} \def\csen{\operatorname{csen}} \def\eio {e^{iθ}} \def\eiko {e^{ikθ}} \def\emio {e^{-iθ}} \def\emiko{e^{-ikθ}} \def\co {\cos θ} \def\cmo {\cos -θ} \def\cko {\cos kθ} \def\so {\sen θ} \def\smo {\sen -θ} \def\sko {\sen kθ} \def\Em {E^{-1}} \def\Emk {E^{-k}} \def\Ek {E^k} \scalebox{0.45}{\def\colwidth{15cm}\firstcol{ Fórmulas e definições: \bsk $\begin{array}[t]{rcl} \eio &=& \co + i\so \\ \eiko &=& \cko + i\sko \\ \emio &=& \cmo + i\smo \\ &=& \co + i(-\so) \\ &=& \co - i(\so) \\ \eio + \emio &=& \co + i\so \\ &+& \co - i\so \\ &=& 2\co \\ \eio - \emio &=& \co + i\so \\ &-& (\co - i\so) \\ &=& 2i\so \\ \D\frac{\eio + \emio}{2} &=& \co \\ \D\frac{\eio - \emio}{2i} &=& \so \\ \\[-5pt] \D\frac{\eiko + \emiko}{2} &=& \cko \\ \D\frac{\eiko - \emiko}{2i} &=& \sko \\ \\[-5pt] \ColorRed{\ccos θ} &=& \eio + \emio \\ \ColorRed{\csen θ} &=& \eio - \emio \\ \ColorRed{\ccos kθ} &=& \eiko + \emiko \\ \ColorRed{\csen kθ} &=& \eiko - \emiko \\ \\ \end{array} \qquad \begin{array}[t]{rcl} E &=& c + is \\ \eiko &=& \cko + i\sko \\ \Em &=& \cmo + i\smo \\ &=& c + i(-s) \\ &=& c - i(s) \\ E + \Em &=& c + is \\ &+& c - is \\ &=& 2c \\ E - \Em &=& c + is \\ &-& (c - is) \\ &=& 2is \\ \D\frac{E + \Em}{2} &=& c \\ \D\frac{E - \Em}{2i} &=& s \\ \\[-5pt] \D\frac{\Ek + \Emk}{2} &=& \cko \\ \D\frac{\Ek - \Emk}{2i} &=& \sko \\ \\[-5pt] \ColorRed{\ccos θ} &=& E + \Em \\ \ColorRed{\csen θ} &=& E - \Em \\ \ColorRed{\ccos kθ} &=& \Ek + \Emk \\ \ColorRed{\csen kθ} &=& \Ek - \Emk \\ \\ \end{array} $ \ssk O seno e o cosseno ``são'' frações. O \standout{c}sen é a ``\ColorRed{parte de cima}'' do seno. O \standout{c}cos é a ``\ColorRed{parte de cima}'' do cosseno. }\anothercol{ Um exemplo do método: \bsk $\begin{array}[t]{rcl} (\cosθ)^3 &=& (\frac12 \ccosθ)^3 \\ &=& (\frac12)^3 (\ccosθ)^3 \\ \\[-5pt] (\ccosθ)^3 &=& (E+E^{-1})^3 \\ &=& E^3 + 3E + 3\Em + E^{-3} \\ &=& (E^3 + E^{-3}) + (3E + 3\Em) \\ &=& \ccos 3θ + 3\ccosθ \\ \\[-5pt] (\cosθ)^3 &=& (\frac12)^3 (\ccosθ)^3 \\ &=& (\frac12)^3 (\ccos 3θ + 3\ccosθ) \\ &=& \frac14 (\frac12\ccos 3θ + 3\frac12\ccosθ) \\ &=& \frac14 (\cos 3θ + 3\cosθ) \\ \end{array} $ \bsk Pra mim a parte do meio é a parte legal das contas, e as partes de cima e de baixo são as partes chatas (por causa das frações). \msk Compare com o gabarito da questão 3 daqui: \par \Ca{2yT12} (Gabarito da P1 de 2019.2) \bsk \bsk \bsk \bsk {\bf Exercício} Use a técnica acima pra integrar: a) $\intth{(\cosθ)^2}$ b) $\intth{(\senθ)^2}$ c) $\intth{(\senθ)(\cosθ)}$ d) $\intth{(\sen 2θ)(\cos 3θ)}$ }} \newpage % «maxima» (to ".maxima") % 2hT233 (c2m232ncp 5 "maxima") % (c2m232nca "maxima") % (find-es "maxima" "2023-2-C2-laurent2") %M (%i1) p : 4*x^2 + 5*x^1 + 6*x^0 + 7*x^-1 + 8*x^-2; %M (%o1) 4\,x^2+5\,x+{\frac{7}{x}}+{\frac{8}{x^2}}+6 %M (%i2) q : 4*E^2 + 5*E^1 + 6*E^0 + 7*E^-1; %M (%o2) 4\,E^2+5\,E+{\frac{7}{E}}+6 %M (%i3) lpdot(p, x); %M (%o3) \begin{pmatrix}4&5&6&\mbox{ . }&7&8\cr \end{pmatrix} %M (%i4) lpdot(q, E); %M (%o4) \begin{pmatrix}4&5&6&\mbox{ . }&7\cr \end{pmatrix} %M (%i5) f : cos(th)^3; %M (%o5) \left(\cos \theta \right)^3 %M (%i6) g : ccos(th)^3; %M (%o6) 8\,\left(\cos \theta \right)^3 %M (%i7) lpe(f); %M (%o7) {\frac{\cos \left(3\,\theta \right)}{4}}+{\frac{3\,\cos \theta }{4}} %M (%i8) lpe(g); %M (%o8) 2\,\cos \left(3\,\theta \right)+6\,\cos \theta %M (%i9) %L maximahead:sa("laurent2 a", "") \pu % «maxima-2» (to ".maxima-2") % (c2m232ncp 6 "maxima-2") % (c2m232nca "maxima-2") %M (%i9) exponentialize(f); %M (%o9) {\frac{\left(e^{i\,\theta }+e^ {- i\,\theta }\right)^3}{8}} %M (%i10) expand(exponentialize(f)); %M (%o10) {\frac{e^{3\,i\,\theta }}{8}}+{\frac{3\,e^{i\,\theta }}{8}}+{\frac{3\,e^ {- i\,\theta }}{8}}+{\frac{e^ {- 3\,i\,\theta }}{8}} %M (%i11) demoivre(expand(exponentialize(f))); %M (%o11) {\frac{i\,\sin \left(3\,\theta \right)+\cos \left(3\,\theta \right)}{8}}+{\frac{\cos \left(3\,\theta \right)-i\,\sin \left(3\,\theta \right)}{8}}+{\frac{3\,\left(i\,\sin \theta +\cos \theta \right)}{8}}+{\frac{3\,\left(\cos \theta -i\,\sin \theta \right)}{8}} %M (%i12) expand(demoivre(expand(exponentialize(f)))); %M (%o12) {\frac{\cos \left(3\,\theta \right)}{4}}+{\frac{3\,\cos \theta }{4}} %M (%i13) subst(th_E,expand(exponentialize(f))); %M (%o13) {\frac{E^3}{8}}+{\frac{3\,E}{8}}+{\frac{3}{8\,E}}+{\frac{1}{8\,E^3}} %M (%i14) subst(th_E,expand(exponentialize(g))); %M (%o14) E^3+3\,E+{\frac{3}{E}}+{\frac{1}{E^3}} %M (%i15) %M lpE(f); %M (%o15) \begin{pmatrix}{\frac{1}{8}}&0&{\frac{3}{8}}&0&\mbox{ . }&{\frac{3}{8}}&0&{\frac{1}{8}}\cr \end{pmatrix} %M (%i16) lpE(g); %M (%o16) \begin{pmatrix}1&0&3&0&\mbox{ . }&3&0&1\cr \end{pmatrix} %L maximahead:sa("laurent2 b", "") %M (%i17) lpE( ccos(th)^3); %M (%o17) \begin{pmatrix}1&0&3&0&\mbox{ . }&3&0&1\cr \end{pmatrix} %M (%i18) lpE( ccos(th)); %M (%o18) \begin{pmatrix}1&0&\mbox{ . }&1\cr \end{pmatrix} %M (%i19) lpE(3*ccos(th)); %M (%o19) \begin{pmatrix}3&0&\mbox{ . }&3\cr \end{pmatrix} %M (%i20) lpE(ccos(3*th)); %M (%o20) \begin{pmatrix}1&0&0&0&\mbox{ . }&0&0&1\cr \end{pmatrix} %M (%i21) lpE(ccos(3*th)+3*ccos(th)); %M (%o21) \begin{pmatrix}1&0&3&0&\mbox{ . }&3&0&1\cr \end{pmatrix} %M (%i22) %M lpE( ccos(th) ); %M (%o22) \begin{pmatrix}1&0&\mbox{ . }&1\cr \end{pmatrix} %M (%i23) lpE( ccos(th)^2 ); %M (%o23) \begin{pmatrix}1&0&2&\mbox{ . }&0&1\cr \end{pmatrix} %L maximahead:sa("laurent2 c", "") \pu %M (%i24) lpE( ccos(th)^3 ); %M (%o24) \begin{pmatrix}1&0&3&0&\mbox{ . }&3&0&1\cr \end{pmatrix} %M (%i25) lpE( csin(th) ); %M (%o25) \begin{pmatrix}1&0&\mbox{ . }&-1\cr \end{pmatrix} %M (%i26) lpE( csin(th)^2 ); %M (%o26) \begin{pmatrix}1&0&-2&\mbox{ . }&0&1\cr \end{pmatrix} %M (%i27) lpE( csin(th)^3 ); %M (%o27) \begin{pmatrix}1&0&-3&0&\mbox{ . }&3&0&-1\cr \end{pmatrix} %M (%i28) lpE( csin(2*th) ); %M (%o28) \begin{pmatrix}1&0&0&\mbox{ . }&0&-1\cr \end{pmatrix} %M (%i29) lpE( csin(2*th)^2 ); %M (%o29) \begin{pmatrix}1&0&0&0&-2&\mbox{ . }&0&0&0&1\cr \end{pmatrix} %M (%i30) %L maximahead:sa("laurent2 d", "") \pu \scalebox{0.4}{\def\colwidth{12cm}\firstcol{ \def\hboxthreewidth {14cm} \ga{laurent2 a} }\anothercol{ \def\hboxthreewidth {18cm} \ga{laurent2 b} }} \newpage \scalebox{0.5}{\def\colwidth{10cm}\firstcol{ \def\hboxthreewidth {12cm} \ga{laurent2 c} }\anothercol{ \def\hboxthreewidth {12cm} \ga{laurent2 d} }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2023.2-C2/") # (find-fline "~/LATEX/2023-2-C2/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2023.2-C2/ cp -fv $1.pdf ~/LATEX/2023-2-C2/ cat <<%%% % (find-latexscan-links "C2" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2023-2-C2-numeros-complexos veryclean make -f 2019.mk STEM=2023-2-C2-numeros-complexos pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c2nc" % ee-tla: "c2m232nc" % End: