Warning: this is an htmlized version!
The original is here, and
the conversion rules are here.
% (find-LATEX "2023-2-C3-P1.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-2-C3-P1.tex" :end))
% (defun C () (interactive) (find-LATEXsh "lualatex 2023-2-C3-P1.tex" "Success!!!"))
% (defun D () (interactive) (find-pdf-page      "~/LATEX/2023-2-C3-P1.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-2-C3-P1.pdf"))
% (defun e () (interactive) (find-LATEX "2023-2-C3-P1.tex"))
% (defun o () (interactive) (find-LATEX "2022-2-C3-P1.tex"))
% (defun u () (interactive) (find-latex-upload-links "2023-2-C3-P1"))
% (defun v () (interactive) (find-2a '(e) '(d)))
% (defun d0 () (interactive) (find-ebuffer "2023-2-C3-P1.pdf"))
% (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g))
%          (code-eec-LATEX "2023-2-C3-P1")
% (find-pdf-page   "~/LATEX/2023-2-C3-P1.pdf")
% (find-sh0 "cp -v  ~/LATEX/2023-2-C3-P1.pdf /tmp/")
% (find-sh0 "cp -v  ~/LATEX/2023-2-C3-P1.pdf /tmp/pen/")
%     (find-xournalpp "/tmp/2023-2-C3-P1.pdf")
%   file:///home/edrx/LATEX/2023-2-C3-P1.pdf
%               file:///tmp/2023-2-C3-P1.pdf
%           file:///tmp/pen/2023-2-C3-P1.pdf
%  http://anggtwu.net/LATEX/2023-2-C3-P1.pdf
% (find-LATEX "2019.mk")
% (find-Deps1-links "Caepro5 Piecewise2 Maxima2")
% (find-Deps1-cps   "Caepro5 Piecewise2 Maxima2 Cabos3 Numerozinhos1")
% (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2")
% (find-MM-aula-links "2023-2-C3-P1" "C3" "c3m232p1" "c3p1")
% (find-MM-aula-links "2023-2-C3-P1" "3" "c3m232p1" "c3p1")

% «.defs»		(to "defs")
% «.defs-T-and-B»	(to "defs-T-and-B")
% «.defs-caepro»	(to "defs-caepro")
% «.defs-pict2e»	(to "defs-pict2e")
% «.defs-maxima»	(to "defs-maxima")
% «.title»		(to "title")
% «.links»		(to "links")
% «.questao-1»		(to "questao-1")
% «.questao-2»		(to "questao-2")
% «.questao-3»		(to "questao-3")
% «.questao-1-grids»	(to "questao-1-grids")
%
% «.djvuize»		(to "djvuize")



% <videos>
% Video (not yet):
% (find-ssr-links     "c3m232p1" "2023-2-C3-P1")
% (code-eevvideo      "c3m232p1" "2023-2-C3-P1")
% (code-eevlinksvideo "c3m232p1" "2023-2-C3-P1")
% (find-c3m232p1video "0:00")

\documentclass[oneside,12pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
\usepackage{colorweb}                  % (find-es "tex" "colorweb")
\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof}   % For derivation trees ("%:" lines)
%\input diagxy        % For 2D diagrams ("%D" lines)
%\xyoption{curve}     % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx21}               % (find-LATEX "edrx21.sty")
\input edrxaccents.tex            % (find-LATEX "edrxaccents.tex")
\input edrx21chars.tex            % (find-LATEX "edrx21chars.tex")
\input edrxheadfoot.tex           % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex               % (find-LATEX "edrxgac2.tex")
%\usepackage{emaxima}              % (find-LATEX "emaxima.sty")
%
% (find-es "tex" "geometry")
\usepackage[a6paper, landscape,
            top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot
           ]{geometry}
%
\begin{document}

% «defs»  (to ".defs")
% (find-LATEX "edrx21defs.tex" "colors")
% (find-LATEX "edrx21.sty")

\def\drafturl{http://anggtwu.net/LATEX/2023-2-C3.pdf}
\def\drafturl{http://anggtwu.net/2023.2-C3.html}
\def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}}

% (find-LATEX "2023-1-C2-carro.tex" "defs-caepro")
% (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e")

\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"}  % (find-LATEX "dednat6load.lua")

% «defs-T-and-B»  (to ".defs-T-and-B")
\long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}}
\def\B       (#1 pts){\ColorDarkOrange{\bf(#1 pts)}}

% «defs-caepro»  (to ".defs-caepro")
%L dofile "Caepro5.lua"              -- (find-angg "LUA/Caepro5.lua" "LaTeX")
\def\Caurl   #1{\expr{Caurl("#1")}}
\def\Cahref#1#2{\href{\Caurl{#1}}{#2}}
\def\Ca      #1{\Cahref{#1}{#1}}

% «defs-pict2e»  (to ".defs-pict2e")
%L dofile "Piecewise2.lua"           -- (find-LATEX "Piecewise2.lua")
%L --dofile "Escadas1.lua"           -- (find-LATEX "Escadas1.lua")
\def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}}
\def\pictaxesstyle{\linethickness{0.5pt}}
\def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}}
\celllower=2.5pt

% «defs-maxima»  (to ".defs-maxima")
%L dofile "Maxima2.lua"              -- (find-angg "LUA/Maxima2.lua")
%L V = MiniV
%L v = V.fromab

\pu



%  _____ _ _   _                               
% |_   _(_) |_| | ___   _ __   __ _  __ _  ___ 
%   | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \
%   | | | | |_| |  __/ | |_) | (_| | (_| |  __/
%   |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___|
%                      |_|          |___/      
%
% «title»  (to ".title")
% (c3m232p1p 1 "title")
% (c3m232p1a   "title")

\thispagestyle{empty}

\begin{center}

\vspace*{1.2cm}

{\bf \Large Cálculo 3 - 2023.2}

\bsk

P1 (primeira prova)

\bsk

Eduardo Ochs - RCN/PURO/UFF

\url{http://anggtwu.net/2023.2-C3.html}

\end{center}

\newpage

% «links»  (to ".links")
% (c3m232p1p 2 "links")
% (c3m232p1a   "links")


\newpage

%   ___                  _                _ 
%  / _ \ _   _  ___  ___| |_ __ _  ___   / |
% | | | | | | |/ _ \/ __| __/ _` |/ _ \  | |
% | |_| | |_| |  __/\__ \ || (_| | (_) | | |
%  \__\_\\__,_|\___||___/\__\__,_|\___/  |_|
%                                           
% «questao-1»  (to ".questao-1")
% (c3m232p1p 2 "questao-1")
% (c3m232p1a   "questao-1")

{\bf Questão 1}

\scalebox{0.6}{\def\colwidth{9cm}\firstcol{

\vspace*{-0.5cm}

\T(Total: 5.0 pts)

O diagrama de numerozinhos da última folha da prova corresponde a uma
superfície $z=F(x,y)$ que tem 5 faces. Também é possível interpretá-lo
como uma superfície com 6 ou mais faces, mas vamos considerar que a
superfície com só 5 faces é que é a correta.

\msk

a) \B (1.0 pts) Mostre como dividir o plano em 5 polígonos que são as
projeções destas faces no plano do papel.

\msk

b) \B (1.0 pts) Chame estas faces de face NW (``noroeste''), N (``norte''),
W (``oeste''), C (``centro''), R (``resto''), e chame as equações dos
planos delas de $F_{NW}(x,y)$, $F_{N}(x,y)$, $F_{W}(x,y)$, $F_{C}(x,y)$, e
$F_R(x,y)$. Dê as equações destes planos.

\msk

c) \B (1.0 pts) Sejam:
%
$$\begin{array}{rcl}
  P_N &=& \setofxyzst{z = F_N(x,y)}, \\
  P_C &=& \setofxyzst{z = F_C(x,y)}, \\
  r &=& P_N ∩ P_C. \\
  \end{array}
$$

Represente a reta $r$ graficamente como numerozinhos.

}\anothercol{

  d) \B (0.5 pts) Dê uma parametrização para a reta do item anterior.
  Use notação de conjuntos.

  \msk

  e) \B (0.5 pts) Seja
  %
  $$A \;=\; \{0,1,\ldots,10\} × \{0,1,\ldots,10\};$$

  note que os numerozinhos do diagrama de numerozinhos estão todos
  sobre pontos de $A$. Para cada ponto $(x,y)∈A$ represente
  graficamente $(x,y)+\frac13 \vec∇F(x,y)$.

  \ssk

  Obs: quando $\vec∇F(x,y)=0$ desenhe uma bolinha preta sobre o ponto
  $(x,y)$, e quando $\vec∇F(x,y)$ não existir faça um `$×$' sobre o
  numerozinho que está no ponto $(x,y)$.

  \msk

  f) \B (1.0 pts) Sejam
  %
  $$\begin{array}{rcl}
    Q(t) &=& (0,2) + t\VEC{1,1}, \\
    (x(t),y(t)) &=& Q(t), \\
    h(t) &=& F(x(t),y(t)). \\
    \end{array}
  $$

  Faça o gráfico da função $h(t)$. Considere que o domínio dela é o
  intervalo $[0,6]$.

}}


\newpage

%   ___                  _                ____  
%  / _ \ _   _  ___  ___| |_ __ _  ___   |___ \ 
% | | | | | | |/ _ \/ __| __/ _` |/ _ \    __) |
% | |_| | |_| |  __/\__ \ || (_| | (_) |  / __/ 
%  \__\_\\__,_|\___||___/\__\__,_|\___/  |_____|
%                                               
% «questao-2»  (to ".questao-2")
% (c3m232p1p 3 "questao-2")
% (c3m232p1a   "questao-2")

{\bf Questão 2}

\scalebox{0.55}{\def\colwidth{10cm}\firstcol{

\vspace*{-0.5cm}

\T(Total: 3.0 pts)

Sejam
%
$$\begin{array}{rcl}
  u(x,y) &=& y-2x, \\
  v(x,y) &=& x+y, \\
  F(x,y) &=& u(x,y)v(x,y) \\
         &=& 2x^2 -xy -y^2. \\
  \end{array}
$$

Nesta questão você vai ter que fazer várias cópias do diagrama de
numerozinhos da função $F(x,y)$ para os pontos com
$x,y∈\{-2,-1,0,1,2\}$. Os numerozinhos vão ser estes aqui:
%
$$\begin{array}{rrrrr}
   0 &  4 &  4 &  0 & -8 \\
  -5 &  0 &  1 & -2 & -9 \\
  -8 & -2 &  0 & -2 & -8 \\
  -9 & -2 &  1 &  0 & -5 \\
  -8 &  0 &  4 &  4 &  0 \\
  \end{array}
$$

a) \B (1.0 pts) Desenhe o ``campo gradiente'' da função $F$ nestes
pontos, mas multiplicando cada $\vec∇F(x,y)$ por $\frac{1}{10}$ pros
vetores não ficarem uns em cima dos outros. Deixa eu traduzir isso pra
termos mais básicos: faça uma cópia do diagrama de numerozinhos da
$F(x,y)$, e sobre cada $(x,y)$ com $x,y∈\{-2,-1,0,1,2\}$ desenhe a
seta $(x,y)+\frac{1}{10}\vec∇F(x,y)$.

}\anothercol{

  b) \B (2.0 pts) Faça uma outra cópia desse diagrama de numerozinhos
  e desenhe sobre ela as curvas de nível da função $F(x,y)$ para
  $z=0$, $z=-2$, $z=-5$, $z=1$ e $z=2$.

  \bsk

  {\bf Dicas:}

  1) O vetor gradiente num ponto $(x,y)$ é sempre ortogonal à curva de
  nível que passa pelo ponto $(x,y)$.

  2) Faça quantos rascunhos quiser. Eu só vou corrigir seus desenhos
  pros itens (a) e (b) que disserem ``versão final'', e eles têm que
  ser os mais caprichados possíveis.


}}


\newpage

% «questao-3»  (to ".questao-3")
% (c3m232p1p 4 "questao-3")
% (c3m232p1a   "questao-3")
% (find-es "maxima" "2023-2-C3-P1")

{\bf Questão 3}

\scalebox{0.6}{\def\colwidth{9cm}\firstcol{

\vspace*{-0.5cm}

\T(Total: 3.0 pts)

Se $F:\R^2→\R$, a matriz hessiana de $F$ é definida desta forma:
%
$$HF(x,y) \;=\; \pmat{F_{xx}(x,y) & F_{xy}(x,y) \\
                      F_{xy}(x,y) & F_{yy}(x,y) \\
                     }
$$

Sejam:
%
$$\begin{array}{rcl}
  u &=& x+y-5 \\
  v &=& y-2 \\ 
  s &=& 3+uv \\
  p &=& 4+u^2+v^2 \\
  S(x,y) &=& 3+u(x,y)v(x,y) \\
  P(x,y) &=& 4+u(x,y)^2+v(x,y)^2 \\
  (x_0,y_0) &=& (3,2) \\
  A &=& \{-1,0,1\} \\
  B &=& \setofst{(x_0+Δx,y_0+Δy)}{Δx,Δy∈B} \\
  \end{array}
$$

a) \B (1.0 pts) Calcule $HS$ e $HP$.

b) \B (2.0 pts) Desenhe os diagramas de numerozinhos de $u$, $v$, $s$
e $p$ ``nos 9 pontos em torno de $(x_0,y_0)$'' -- ou seja, nos pontos
de $B$.

}\anothercol{
}}




\newpage

% «barranco-defs»  (to ".barranco-defs")
% (c3m222p1p 2 "barranco-defs")
% (c3m222p1p 5 "barranco-defs")
% (c3m222p1a   "barranco-defs")
% (find-angg     "GNUPLOT/2023-2-C3-P1.dem")
% (find-anggfile "GNUPLOT/2023-2-C3-P1.dem" "bgprocess")

% (find-eepitch-intro "3.3. `eepitch-preprocess-line'")
% (setq eepitch-preprocess-regexp "")
% (setq eepitch-preprocess-regexp "^%?%L ?")
%
%%L * (eepitch-lua51)
%%L * (eepitch-kill)
%%L * (eepitch-lua51)
%%L Path.prependtopath "~/LUA/?.lua"
%L require "Cabos3"
%L require "Numerozinhos1"
%L PictBounds.setbounds(v(0,0), v(11,11))
%L
%L bigstr1 = [[
%L   6 6 6 6 4 2 0 0 0 0 0
%L   6 6 6 6 4 2 0 0 0 0 0
%L   6 6 6 6 4 2 0 0 0 0 0
%L   5 5 5 5 4 2 0 0 0 0 0
%L   4 4 4 4 3 2 0 0 0 0 0
%L   3 3 3 3 2 1 0 0 0 0 0
%L   2 2 2 2 1 0 0 0 0 0 0
%L   1 1 1 1 0 0 0 0 0 0 0
%L   0 0 0 0 0 0 0 0 0 0 0
%L   0 0 0 0 0 0 0 0 0 0 0
%L   0 0 0 0 0 0 0 0 0 0 0
%L ]]
%L bigstr2 = [[
%L   6 - 6 - 6 - A - 4 - 2 - B - 0 - 0 - 0 - 0
%L   | . | . | . | . | . | . | . | . | . | . |
%L   6 - 6 - 6 - 6 - 4 - 2 - 0 - 0 - 0 - 0 - 0
%L   | . | . | . | . | . | . | . | . | . | . |
%L   C - 6 - 6 - D - 4 - 2 - 0 - 0 - 0 - 0 - 0
%L   | . | . | . | \ | . | . | . | . | . | . |
%L   5 - 5 - 5 - 5 - 4 - 2 - 0 - 0 - 0 - 0 - 0
%L   | . | . | . | . | \ | . | . | . | . | . |
%L   4 - 4 - 4 - 4 - 3 - 2 - 0 - 0 - 0 - 0 - 0
%L   | . | . | . | . | . | \ | . | . | . | . |
%L   3 - 3 - 3 - 3 - 2 - 1 - E - 0 - 0 - 0 - 0
%L   | . | . | . | . | . | / | . | . | . | . |
%L   2 - 2 - 2 - 2 - 1 - 0 - 0 - 0 - 0 - 0 - 0
%L   | . | . | . | . | / | . | . | . | . | . |
%L   1 - 1 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0
%L   | . | . | . | / | . | . | . | . | . | . |
%L   F - 0 - 0 - G - 0 - 0 - 0 - 0 - 0 - 0 - 0
%L   | . | . | . | . | . | . | . | . | . | . |
%L   0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
%L   | . | . | . | . | . | . | . | . | . | . |
%L   0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
%L ]]
%L clabels = CabosNaDiagonal.from(bigstr2)
%L lbls    = clabels.strgrid:labels()
%L spec    = lbls:subst("A--D--C B--E--G--F D--E D--G")
%L ns = Numerozinhos.from(0, 0, bigstr1)
%L p1 = ns:show0 {u="25pt"}:sa("barranco")
%L ns:setspec(spec)
%L p2 = ns:show0():sa("barranco 2")
%L p3 = Pict { p1, p2 }
%L p4 = Pict { p1, p2, [[\ga{barranco} \ga{barranco com linhas}]] }
%L p3:output()
%%L = p4:show("")
%%L = Show.bigstr
%%L * (etv)
\pu

\newpage

% «questao-1-grids»  (to ".questao-1-grids")

\def\barra{\scalebox{0.35}{\ga{barranco}}}
\def\barras{\barra \quad \barra \quad \barra}

$\begin{array}{l}
 \barras \\ \\[-5pt]
 \barras \\
 \end{array}
$


\newpage




\GenericWarning{Success:}{Success!!!}  % Used by `M-x cv'

\end{document}

%  ____  _             _         
% |  _ \(_)_   ___   _(_)_______ 
% | | | | \ \ / / | | | |_  / _ \
% | |_| | |\ V /| |_| | |/ /  __/
% |____// | \_/  \__,_|_/___\___|
%     |__/                       
%
% «djvuize»  (to ".djvuize")
% (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex")

* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-fline "~/2023.2-C3/")
# (find-fline "~/LATEX/2023-2-C3/")
# (find-fline "~/bin/djvuize")

cd /tmp/
for i in *.jpg; do echo f $(basename $i .jpg); done

f () { rm -v $1.pdf;  textcleaner -f 50 -o  5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }
f () { rm -v $1.pdf;  textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }
f () { rm -v $1.pdf;  textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }

f () { rm -fv $1.png $1.pdf; djvuize $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf }
f () { cp -fv $1.png $1.pdf       ~/2023.2-C3/
       cp -fv        $1.pdf ~/LATEX/2023-2-C3/
       cat <<%%%
% (find-latexscan-links "C3" "$1")
%%%
}

f 20201213_area_em_funcao_de_theta
f 20201213_area_em_funcao_de_x
f 20201213_area_fatias_pizza



%  __  __       _        
% |  \/  | __ _| | _____ 
% | |\/| |/ _` | |/ / _ \
% | |  | | (_| |   <  __/
% |_|  |_|\__,_|_|\_\___|
%                        
% <make>

* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-LATEXfile "2019planar-has-1.mk")
make -f 2019.mk STEM=2023-2-C3-P1 veryclean
make -f 2019.mk STEM=2023-2-C3-P1 pdf


% (find-pdfpages2-links "~/LATEX/" "2023-2-C3-P1")
% (find-pdfpages2-links "~/LATEX/" "2023-2-C3-P1" "-pp" "pages=5,fitpaper,landscape=true")


% Local Variables:
% coding: utf-8-unix
% ee-tla: "c3p1"
% ee-tla: "c3m232p1"
% End: