Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-2-C3-gradiente.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-2-C3-gradiente.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-2-C3-gradiente.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-2-C3-gradiente.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-2-C3-gradiente.pdf")) % (defun e () (interactive) (find-LATEX "2023-2-C3-gradiente.tex")) % (defun o () (interactive) (find-LATEX "2023-2-C3-gradiente.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-2-C3-gradiente")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-2-C3-gradiente.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-2-C3-gradiente") % (find-pdf-page "~/LATEX/2023-2-C3-gradiente.pdf") % (find-sh0 "cp -v ~/LATEX/2023-2-C3-gradiente.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-2-C3-gradiente.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-2-C3-gradiente.pdf") % file:///home/edrx/LATEX/2023-2-C3-gradiente.pdf % file:///tmp/2023-2-C3-gradiente.pdf % file:///tmp/pen/2023-2-C3-gradiente.pdf % http://anggtwu.net/LATEX/2023-2-C3-gradiente.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Numerozinhos1") % (find-Deps1-cps "Caepro5 Numerozinhos1") % (find-Deps1-anggs "Caepro5 Numerozinhos1") % (find-MM-aula-links "2023-2-C3-gradiente" "C3" "c3m232gradiente" "c3gr") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.title» (to "title") % «.links» (to "links") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c3m232gradiente" "2023-2-C3-gradiente") % (code-eevvideo "c3m232gradiente" "2023-2-C3-gradiente") % (code-eevlinksvideo "c3m232gradiente" "2023-2-C3-gradiente") % (find-c3m232gradientevideo "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-2-C3.pdf} \def\drafturl{http://anggtwu.net/2023.2-C3.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Numerozinhos1.lua" -- (find-LATEX "Numerozinhos1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c3m232gradientep 1 "title") % (c3m232gradientea "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo C3 - 2023.2} \bsk Aulas 12 e 13: o gradiente \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.2-C3.html} \end{center} \newpage % «links» (to ".links") % (c3m232gradientep 2 "links") % (c3m232gradientea "links") {\bf Links} \scalebox{0.6}{\def\colwidth{14cm}\firstcol{ % (find-books "__analysis/__analysis.el" "stewart-pt" "727" "12.4 O Produto Vetorial") % (find-books "__analysis/__analysis.el" "stewart-pt" "796" "Curvas de Nível") % (find-books "__analysis/__analysis.el" "stewart-pt" "839" "14.6" "e o Vetor Gradiente") \par \Ca{StewPtCap12p25} (p.727) 12.4 O produto vetorial \par \Ca{StewPtCap14p10} (p.796) Curvas de nível \par \Ca{StewPtCap14p53} (p.839) 14.6 Derivadas direcionais e o vetor gradiente % (find-books "__analysis/__analysis.el" "apex-calculus" "731" "Definition 12.6.2. Gradient") \par \Ca{Apexcap12p54} (p.731) Definition 12.6.2: Gradient % (c4m231dicasp2p 2 "links") % (c4m231dicasp2a "links") \msk % (c3m222p1p 3 "questao-1") % (c3m222p1a "questao-1") \par \Ca{3fT80} A P1 de 2022.2 (tem questões sobre gradientes) \msk % (find-angg ".emacs" "c3q232") \par \Ca{3hQ36} Quadros da aula 12 (06/out/2023) \par \Ca{3hQ42} Quadros da aula 13 (11/out/2023) }\anothercol{ }} \newpage {\bf Exercício 1} \scalebox{0.6}{\def\colwidth{11cm}\firstcol{ Lembre das técnicas do ``Seja o seu próprio GeoGebra'' pra entender o que certos parâmetros ``querem dizer'': \url{http://anggtwu.net/LATEX/2023-2-C3-geogebra.pdf} Seja: % $$z(x,y) = a + bx + cy$$ Isto é a equação de um plano. O plano em si é % $$S = \setofst{(x,y,z)∈\R^3}{z = a + bx + cy} $$ ou, equivalentemente, % $$S = \setofst{(x,y,a+bx+cy)}{(x,y)∈\R^2} $$ Cada escolha de $a$, $b$ e $c$ gera um plano $z=z(x,y)$ diferente. Neste exercício nós vamos tentar entender o que os valores de $a$, $b$ e $c$ ``querem dizer''. Desenhe o diagrama de numerozinhos para cada um dos planos abaixo; mais precisamente, para cada um dos planos abaixo desenhe os valores de $z$ nos pontos com $x,y∈\{0,1,2,3\}$ como numerozinhos: \msk \par a) $(a,b,c) = (0,0,0)$ \par b) $(a,b,c) = (1,0,0)$ \par c) $(a,b,c) = (2,0,0)$ }\anothercol{ \par d) $(a,b,c) = (0,1,0)$ \par e) $(a,b,c) = (0,2,0)$ \par f) $(a,b,c) = (0,0,1)$ \par g) $(a,b,c) = (0,0,2)$ \par h) $(a,b,c) = (3,2,1)$ \bsk Repare que os pontos mais fáceis de calcular são estes aqui: $(x,y)=(0,0)$, $(x,y)=(1,0)$, $(x,y)=(0,1)$ }} \newpage {\bf Exercício 2} \scalebox{0.6}{\def\colwidth{11cm}\firstcol{ Agora nós vamos considerar que $x_0$ e $y_0$ são constantes, e que: % $$\begin{array}{rcl} x &=& x_0+Δx \quad \text{e} \\ y &=& y_0+Δy, \end{array} $$ e portanto estas duas definições são equivalentes: % $$\begin{array}{rcl} z(x, y) &=& a + b·(x-x_0) + c·(y-y_0) \\ z(x_0+Δx, y_0+Δy) &=& a + bΔx + cΔy \\ \end{array} $$ Dicas: 1) os três pontos mais fáceis de calcular são os em que $(Δx,Δy)=(0,0)$, $(Δx,Δy)=(1,0)$ e $(Δx,Δy)=(0,1)$ % 3) os diagramas de numerozinhos estão explicados aqui: % http://anggtwu.net/LATEX/2022-1-C3-Tudo.pdf#page=44 Represente graficamente os três pontos mais fáceis de calcular de cada um dos planos abaixo. \par a) $(x_0, y_0, a, b, c) = (3, 2, 3, 0, 0)$ \par b) $(x_0, y_0, a, b, c) = (3, 2, 4, 0, 0)$ \par c) $(x_0, y_0, a, b, c) = (3, 2, 4, 1, 0)$ \par d) $(x_0, y_0, a, b, c) = (3, 2, 4, 2, 0)$ \par e) $(x_0, y_0, a, b, c) = (3, 2, 4, 0, 1)$ \par f) $(x_0, y_0, a, b, c) = (3, 2, 4, 0, 2)$ }\anothercol{ }} \newpage % (c3m222dpp 8 "normal-e-gradiente") % (c3m222dpa "normal-e-gradiente") \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2023.2-C3/") # (find-fline "~/LATEX/2023-2-C3/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2023.2-C3/ cp -fv $1.pdf ~/LATEX/2023-2-C3/ cat <<%%% % (find-latexscan-links "C3" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2023-2-C3-gradiente veryclean make -f 2019.mk STEM=2023-2-C3-gradiente pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c3gr" % ee-tla: "c3m232gradiente" % End: