Warning: this is an htmlized version!
The original is here, and
the conversion rules are here.
% (find-LATEX "2023-2-C3-intro.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-2-C3-intro.tex" :end))
% (defun C () (interactive) (find-LATEXsh "lualatex 2023-2-C3-intro.tex" "Success!!!"))
% (defun D () (interactive) (find-pdf-page      "~/LATEX/2023-2-C3-intro.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-2-C3-intro.pdf"))
% (defun e () (interactive) (find-LATEX "2023-2-C3-intro.tex"))
% (defun o () (interactive) (find-LATEX "2022-2-C3-intro.tex"))
% (defun u () (interactive) (find-latex-upload-links "2023-2-C3-intro"))
% (defun v () (interactive) (find-2a '(e) '(d)))
% (defun d0 () (interactive) (find-ebuffer "2023-2-C3-intro.pdf"))
% (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g))
%          (code-eec-LATEX "2023-2-C3-intro")
% (find-pdf-page   "~/LATEX/2023-2-C3-intro.pdf")
% (find-sh0 "cp -v  ~/LATEX/2023-2-C3-intro.pdf /tmp/")
% (find-sh0 "cp -v  ~/LATEX/2023-2-C3-intro.pdf /tmp/pen/")
%     (find-xournalpp "/tmp/2023-2-C3-intro.pdf")
%   file:///home/edrx/LATEX/2023-2-C3-intro.pdf
%               file:///tmp/2023-2-C3-intro.pdf
%           file:///tmp/pen/2023-2-C3-intro.pdf
%  http://anggtwu.net/LATEX/2023-2-C3-intro.pdf
% (find-LATEX "2019.mk")
% (find-Deps1-links "Caepro5 Piecewise1")
% (find-Deps1-cps   "Caepro5 Piecewise1")
% (find-Deps1-anggs "Caepro5 Piecewise1")
% (find-MM-aula-links "2023-2-C3-intro" "C3" "c3m232intro" "c3in")

% «.defs»		(to "defs")
% «.defs-T-and-B»	(to "defs-T-and-B")
% «.defs-caepro»	(to "defs-caepro")
% «.defs-pict2e»	(to "defs-pict2e")
% «.title»		(to "title")
% «.links»		(to "links")
%
% «.VT»			(to "VT")
%
% «.djvuize»		(to "djvuize")



% <videos>
% Video (not yet):
% (find-ssr-links     "c3m232intro" "2023-2-C3-intro")
% (code-eevvideo      "c3m232intro" "2023-2-C3-intro")
% (code-eevlinksvideo "c3m232intro" "2023-2-C3-intro")
% (find-c3m232introvideo "0:00")

\documentclass[oneside,12pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
\usepackage{colorweb}                  % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof}   % For derivation trees ("%:" lines)
%\input diagxy        % For 2D diagrams ("%D" lines)
%\xyoption{curve}     % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx21}               % (find-LATEX "edrx21.sty")
\input edrxaccents.tex            % (find-LATEX "edrxaccents.tex")
\input edrx21chars.tex            % (find-LATEX "edrx21chars.tex")
\input edrxheadfoot.tex           % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex               % (find-LATEX "edrxgac2.tex")
%\usepackage{emaxima}              % (find-LATEX "emaxima.sty")
%
% (find-es "tex" "geometry")
\usepackage[a6paper, landscape,
            top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot
           ]{geometry}
%
\begin{document}

% «defs»  (to ".defs")
% (find-LATEX "edrx21defs.tex" "colors")
% (find-LATEX "edrx21.sty")

\def\drafturl{http://anggtwu.net/LATEX/2023-2-C3.pdf}
\def\drafturl{http://anggtwu.net/2023.2-C3.html}
\def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}}

% (find-LATEX "2023-1-C2-carro.tex" "defs-caepro")
% (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e")

\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"}  % (find-LATEX "dednat6load.lua")
%%L dofile "Piecewise1.lua"           -- (find-LATEX "Piecewise1.lua")
%%L -- dofile "QVis1.lua"             -- (find-LATEX "QVis1.lua")
%%L dofile "Pict3D1.lua"              -- (find-LATEX "Pict3D1.lua")
%%L Pict2e.__index.suffix = "%"
\pu

% «defs-T-and-B»  (to ".defs-T-and-B")
\long\def\ColorOrange#1{{\color{orange!90!black}#1}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}}
\def\B       (#1 pts){\ColorOrange{\bf(#1 pts)}}

% «defs-caepro»  (to ".defs-caepro")
%L dofile "Caepro5.lua"              -- (find-angg "LUA/Caepro5.lua" "LaTeX")
\def\Caurl   #1{\expr{Caurl("#1")}}
\def\Cahref#1#2{\href{\Caurl{#1}}{#2}}
\def\Ca      #1{\Cahref{#1}{#1}}

% «defs-pict2e»  (to ".defs-pict2e")
%L V = nil                           -- (find-angg "LUA/Pict2e1.lua" "MiniV")
%L dofile "Piecewise1.lua"           -- (find-LATEX "Piecewise1.lua")
%L Pict2e.__index.suffix = "%"
\def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}}
\def\pictaxesstyle{\linethickness{0.5pt}}
\def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}}
\celllower=2.5pt

\pu



%  _____ _ _   _                               
% |_   _(_) |_| | ___   _ __   __ _  __ _  ___ 
%   | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \
%   | | | | |_| |  __/ | |_) | (_| | (_| |  __/
%   |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___|
%                      |_|          |___/      
%
% «title»  (to ".title")
% (c3m232introp 1 "title")
% (c3m232introa   "title")

\thispagestyle{empty}

\begin{center}

\vspace*{1.2cm}

{\bf \Large Cálculo 3 - 2023.2}

\bsk

Aulas ?? e ??: introdução ao curso

(e a trajetórias)

\bsk

Eduardo Ochs - RCN/PURO/UFF

\url{http://anggtwu.net/2023.2-C3.html}

\end{center}

\newpage

% «links»  (to ".links")
% (c3m232introp 2 "links")
% (c3m232introa   "links")

{\bf Links}

\scalebox{0.6}{\def\colwidth{9cm}\firstcol{


}\anothercol{
}}




\newpage

% «VT»  (to ".VT")
% (c3m232introp 3 "VT")
% (c3m232introa   "VT")
% (c3m222introp 6 "VT")
% (c3m222introa   "VT")

{\bf Vetores tangentes}

\scalebox{0.55}{\def\colwidth{10cm}\firstcol{

% (c3m211vtp 3 "exercicio-1")
% (c3m211vta   "exercicio-1")
% (c3m211vtp 5 "exercicio-2")
% (c3m211vta   "exercicio-2")
\Ca{3dT18} Versão antiga destes exercícios

\msk

{\bf Exercício 1}

Sejam $P(t) = (4,0) + t\VEC{0,1}$ e $Q(u) = (0,3) + u\VEC{2,0}$.

\msk

Represente num gráfico só:

a) o traço de $P(t)$ e o de $Q(u)$.

b) Marque o ponto $P(0)$ e escreva `$t=0$' do lado dele.

c) Faça o mesmo para os pontos $P(1)$ (`$t=1$') e $Q(0)$ e $Q(1)$ (`$u=0$' e `$u=1$'). 

\msk

Seja $r$ o traço de $P(t)$ e $s$ o traço de $Q(u)$.

Seja $X$ o ponto de interseção de $r$ e $s$.

d) Quais são as coordenadas de $X$?

\msk

Cada ponto de $r$ está ``associado'' a um valor de $t$ e cada ponto de
$s$ a um valor de $u$. Quais são os valores de $t$ e $u$ associados ao
ponto $X$? Chame-os de $t_0$ e $u_0$ e indique-os no seu gráfico --
por exemplo, se $t_0=99$ e $u_0=200$ você vai escrever `$t=99$' e
`$u=200$' do lado do ponto $X$.

\msk

e) Faça o desenho sozinho -- talvez você gaste alguns minutos pra
decifrar todas as instruções -- e depois compare o seu desenho com o
dos seus colegas.

}\anothercol{

{\bf Exercício 2}

Seja $P(t) = (\cos t, \sen t)$.

Represente num gráfico só:

a) o traço de $P(t)$,

b) $P(\frac{π}{2}) + P'(\frac{π}{2})$, escrevendo `$P(\frac{π}{2})$'
ao lado do ponto

e `$P'(\frac{π}{2})$' ao lado da seta,

c) Idem para estes outros valores de $t$: $0, \frac14π, \frac34π, π$.

d) Seja $Q(u) = P(π) + uP'(π)$. Desenhe o traço de $Q(u)$ e anote
`$Q(0)$' e `$Q(1)$' nos pontos adequados.

\msk

e) O traço de $Q(u)$ é uma reta tangente ao traço de $P(t)$ no ponto
$P(π)$? Encontre no livro ou no resto da internet uma definição formal
de reta tangente e descubra se isto é verdade ou não.


}}




\newpage

% «exercicio-2»  (to ".exercicio-2")
% (c3m211vtp 3 "exercicio-2")
% (c3m211vta   "exercicio-2")
% (c3m202vtp 5 "exercicio-2")
% (c3m202vt    "exercicio-2")









% (c3m212bezierp 1 "title")
% (c3m212beziera   "title")


% (c3m212beziera "title")
% (c3m212beziera "title" "Aula 7: um vídeo sobre curvas de Bézier")

% https://www.youtube.com/watch?v=aVwxzDHniEw


% (find-books "__analysis/__analysis.el" "acker")



\GenericWarning{Success:}{Success!!!}  % Used by `M-x cv'

\end{document}

%  ____  _             _         
% |  _ \(_)_   ___   _(_)_______ 
% | | | | \ \ / / | | | |_  / _ \
% | |_| | |\ V /| |_| | |/ /  __/
% |____// | \_/  \__,_|_/___\___|
%     |__/                       
%
% «djvuize»  (to ".djvuize")
% (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex")

* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-fline "~/2023.1-C3/")
# (find-fline "~/LATEX/2023-1-C3/")
# (find-fline "~/bin/djvuize")

cd /tmp/
for i in *.jpg; do echo f $(basename $i .jpg); done

f () { rm -v $1.pdf;  textcleaner -f 50 -o  5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }
f () { rm -v $1.pdf;  textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }
f () { rm -v $1.pdf;  textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }

f () { rm -fv $1.png $1.pdf; djvuize $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf }
f () { cp -fv $1.png $1.pdf       ~/2023.1-C3/
       cp -fv        $1.pdf ~/LATEX/2023-1-C3/
       cat <<%%%
% (find-latexscan-links "C3" "$1")
%%%
}

f 20201213_area_em_funcao_de_theta
f 20201213_area_em_funcao_de_x
f 20201213_area_fatias_pizza



%  __  __       _        
% |  \/  | __ _| | _____ 
% | |\/| |/ _` | |/ / _ \
% | |  | | (_| |   <  __/
% |_|  |_|\__,_|_|\_\___|
%                        
% <make>

* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-LATEXfile "2019planar-has-1.mk")
make -f 2019.mk STEM=2023-2-C3-intro veryclean
make -f 2019.mk STEM=2023-2-C3-intro pdf

% Local Variables:
% coding: utf-8-unix
% ee-tla: "c3in"
% ee-tla: "c3m232intro"
% End: