Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2024-1-C2-coefs-a-determinar.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2024-1-C2-coefs-a-determinar.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2024-1-C2-coefs-a-determinar.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2024-1-C2-coefs-a-determinar.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2024-1-C2-coefs-a-determinar.pdf")) % (defun e () (interactive) (find-LATEX "2024-1-C2-coefs-a-determinar.tex")) % (defun o () (interactive) (find-LATEX "2023-2-C2-coefs-a-determinar.tex")) % (defun u () (interactive) (find-latex-upload-links "2024-1-C2-coefs-a-determinar")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2024-1-C2-coefs-a-determinar.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2024-1-C2-coefs-a-determinar") % (find-pdf-page "~/LATEX/2024-1-C2-coefs-a-determinar.pdf") % (find-sh0 "cp -v ~/LATEX/2024-1-C2-coefs-a-determinar.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2024-1-C2-coefs-a-determinar.pdf /tmp/pen/") % (find-xournalpp "/tmp/2024-1-C2-coefs-a-determinar.pdf") % file:///home/edrx/LATEX/2024-1-C2-coefs-a-determinar.pdf % file:///tmp/2024-1-C2-coefs-a-determinar.pdf % file:///tmp/pen/2024-1-C2-coefs-a-determinar.pdf % http://anggtwu.net/LATEX/2024-1-C2-coefs-a-determinar.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2 Maxima2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2") % (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2") % (find-MM-aula-links "2024-1-C2-coefs-a-determinar" "2" "c2m241cd" "c2cd") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-maxima» (to "defs-maxima") % «.defs-V» (to "defs-V") % «.title» (to "title") % «.links» (to "links") % «.questao-2» (to "questao-2") % «.tres-exemplos» (to "tres-exemplos") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2024-1-C2.pdf} \def\drafturl{http://anggtwu.net/2024.1-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2024-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2024-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L --dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs-maxima» (to ".defs-maxima") %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") \pu % «defs-V» (to ".defs-V") %L --- See: (find-angg "LUA/MiniV1.lua" "problem-with-V") %L V = MiniV %L v = V.fromab \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m241cdp 1 "title") % (c2m241cda "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2024.1} \bsk Aula 35: o método dos coeficientes a determinar \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2024.1-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m241cdp 2 "links") % (c2m241cda "links") {\bf Links} \scalebox{0.6}{\def\colwidth{18cm}\firstcol{ % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "134" "3.5. Equações não-homogêneas; método dos coeficientes indeterminados") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "176" "4.2. Equações homogêneas com coeficientes constantes") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "183" "4.3. O método dos coeficientes indeterminados") % (find-books "__analysis/__analysis.el" "boyce-diprima" "133" "3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients") % (find-books "__analysis/__analysis.el" "boyce-diprima" "174" "4.2 Homogeneous Differential Equations with Constant Coefficients") % (find-books "__analysis/__analysis.el" "boyce-diprima" "181" "4.3 The Method of Undetermined Coefficients") \par \Ca{BoyceDip3p33} (p.134) 3.5. Equações não-homogêneas; método dos coeficientes indeterminados \par \Ca{BoyceDip4p9} (p.176) 4.2. Equações homogêneas com coeficientes constantes \par \Ca{BoyceDip4p16} (p.183) 4.3. O método dos coeficientes indeterminados \par \Ca{BoyceDipEng3p34} (p.133) "3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients \par \Ca{BoyceDipEng4p9} (p.174) 4.2 Homogeneous Differential Equations with Constant Coefficients \par \Ca{BoyceDipEng4p16} (p.181) 4.3 The Method of Undetermined Coefficients \msk % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "182" "4.4. Coeficientes indeterminados - abordagem por superposição") % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "195" "4.5. Operadores diferenciais") % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "196" "Exemplo 1: ...pode ser fatorado...") % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "201" "4.6. Coeficientes indeterminados - abordagem por anuladores") % (find-books "__analysis/__analysis.el" "zill-cullen" "140" "4.4 Undetermined Coefficients--Superposition Approach") % (find-books "__analysis/__analysis.el" "zill-cullen" "150" "4.5 Undetermined Coefficients--Annihilator Approach") % (find-books "__analysis/__analysis.el" "zill-cullen" "150" "FACTORING OPERATORS") \par \Ca{ZillCullenCap4p46} (p.182) 4.4. Coeficientes indeterminados - abordagem por superposição \par \Ca{ZillCullenCap4p59} (p.195) 4.5. Operadores diferenciais \par \Ca{ZillCullenCap4p60} (p.196) Exemplo 1: ...pode ser fatorado... \par \Ca{ZillCullenCap4p65} (p.201) 4.6. Coeficientes indeterminados - abordagem por anuladores \par \Ca{ZillCullenEngCap4p30} (p.140) 4.4 Undetermined Coefficients - Superposition Approach \par \Ca{ZillCullenEngCap4p40} (p.150) 4.5 Undetermined Coefficients - Annihilator Approach \par \Ca{ZillCullenEngCap4p40} (p.150) Factoring operators % (find-books "__analysis/__analysis.el" "trench" "229" "5.4 The Method of Undetermined Coefficients I") % (find-books "__analysis/__analysis.el" "trench" "238" "5.5 The Method of Undetermined Coefficients II") % (find-books "__analysis/__analysis.el" "trench" "497" "9.4 Variation of Parameters for Higher Order Equations") \msk % (find-angg ".emacs" "c2q232" "coeficientes a determinar") \par \Ca{2hQ85} Aula 38 de 2023.2, sobre coeficientes a determinar (21/nov/2023) }\anothercol{ }} \newpage % «questao-2» (to ".questao-2") % (c2m231p2p 3 "questao-2") % (c2m231p2a "questao-2") {\bf Questão 2} \scalebox{0.6}{\def\colwidth{8cm}\firstcol{ \vspace*{-0.4cm} \T(Total: 4.0 pts) Lembre que nós vimos dois tipos de EDOs lineares com coeficientes constantes --- ``EDOLCCs'' --- no curso: o primeiro tipo tinha soluções básicas da forma $e^{ax}$ e $e^{bx}$, onde $a$ e $b$ são reais, e o segundo tipo tinha ``soluções básicas complexas'' da forma $e^{(a+ib)x}$ e $e^{(a-ib)x}$ e ``soluções básicas reais'' da forma $e^{αx}\cos βx$ e $e^{αx}\sen βx$; as soluções básicas reais eram combinações lineares das soluções básicas complexas e vice-versa. \msk Sejam $(**)$ e $({*}{*}{*})$ as EDOs abaixo: % $$\begin{array}{rcll} y'' + y' - 20y &=& 0 & \qquad (**) \\ y'' + 4y' + 29y &=& 0 & \qquad ({*}{*}{*}) \\ \end{array} $$ A EDO $(**)$ é do primeiro tipo e a EDO $({*}{*}{*})$ é do segundo tipo. \bsk \standout{Original aqui:} \par \Ca{2gT135} (2023.1) P2, questão 2 \vspace*{-2cm} }\anothercol{ {} a) \B (0.5 pts) Encontre as soluções básicas e a solução geral da EDO $(**)$. Dê um nome para cada uma delas. \msk b) \B (1.5 pts) Encontre uma solução da EDO $(**)$ -- vou chamá-la de $g(x)$ -- que obedece $g(0) = 4$ e $g'(0)=5$, e teste-a. Dica: você vai ter que resolver um sistema pra descobrir a quantidade certa de cada ``vetor'' na combinação linear! \bsk c) \B (0.5 pts) Diga quais são as ``soluções básicas complexas'' e as ``soluções básicas reais'' para a EDO $({*}{*}{*})$. \msk d) \B (1.5 pts) Escolha uma das suas ``soluções básicas reais'' do item anterior e verifique que ela realmente é uma solução da EDO $({*}{*}{*})$. }} \newpage % «tres-exemplos» (to ".tres-exemplos") % (c2m241cdp 4 "tres-exemplos") % (c2m241cda "tres-exemplos") % (c2m232cdp 4 "tres-exemplos") % (c2m232cda "tres-exemplos") {\bf Três exemplos} \scalebox{0.6}{\def\colwidth{10.5cm}\firstcol{ Na aula 38 -- fotos do quadros: \Ca{2hQ85} -- nós resolvemos três exemplos: % % (find-angg ".emacs" "c2q232" "coeficientes a determinar") %\par \Ca{2hQ85} Aula 38 de 2023.2, sobre coeficientes a determinar % $$\begin{array}{cl} \text{(Ex1):} & y''-3y'-4y = 3e^{2x} \\ \text{(Ex2):} & y''-3y'-4y = 2 \sen x \\ \text{(Ex2.5):} & y''-3y'-4y = 4x^2-1 \\ \end{array} $$ % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "134" "3.5. Equações não-homogêneas; método dos coeficientes indeterminados") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "136" "Exemplo 1") % (find-books "__analysis/__analysis.el" "boyce-diprima" "133" "3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients") % (find-books "__analysis/__analysis.el" "boyce-diprima" "135" "Example 1") Eu peguei esses exemplos daqui: \par \Ca{BoyceDip3p33} 3.5 (...) coeficientes indeterminados \par \Ca{BoyceDip3p35} Exemplo 1 \par \Ca{BoyceDipEng3p34} 3.5 (...) Undetermined Coefficients \par \Ca{BoyceDipEng3p36} Example 1 }\anothercol{ }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "c2cd" % ee-tla: "c2m241cd" % End: