Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2024-1-C2-edolccs.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2024-1-C2-edolccs.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2024-1-C2-edolccs.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2024-1-C2-edolccs.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2024-1-C2-edolccs.pdf")) % (defun e () (interactive) (find-LATEX "2024-1-C2-edolccs.tex")) % (defun o () (interactive) (find-LATEX "2023-2-C2-edolccs.tex")) % (defun u () (interactive) (find-latex-upload-links "2024-1-C2-edolccs")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2024-1-C2-edolccs.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2024-1-C2-edolccs") % (find-pdf-page "~/LATEX/2024-1-C2-edolccs.pdf") % (find-sh0 "cp -v ~/LATEX/2024-1-C2-edolccs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2024-1-C2-edolccs.pdf /tmp/pen/") % (find-xournalpp "/tmp/2024-1-C2-edolccs.pdf") % file:///home/edrx/LATEX/2024-1-C2-edolccs.pdf % file:///tmp/2024-1-C2-edolccs.pdf % file:///tmp/pen/2024-1-C2-edolccs.pdf % http://anggtwu.net/LATEX/2024-1-C2-edolccs.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2 Maxima2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2 Escadas1") % (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2") % (find-MM-aula-links "2024-1-C2-edolccs" "2" "c2m241edolccs" "c2el") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-maxima» (to "defs-maxima") % «.defs-V» (to "defs-V") % «.title» (to "title") % «.links» (to "links") % «.raizes-chutar-testar» (to "raizes-chutar-testar") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2024-1-C2.pdf} \def\drafturl{http://anggtwu.net/2024.1-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2024-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2024-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs-maxima» (to ".defs-maxima") %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") \pu % «defs-V» (to ".defs-V") %L --- See: (find-angg "LUA/MiniV1.lua" "problem-with-V") %L V = MiniV %L v = V.fromab \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m241edolccsp 1 "title") % (c2m241edolccsa "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2024.1} \bsk Aula 30: EDOLCCs \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2024.1-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m241edolccsp 2 "links") % (c2m241edolccsa "links") {\bf Links} \scalebox{0.5}{\def\colwidth{16cm}\firstcol{ % (find-books "__analysis/__analysis.el" "stewart-pt" "1020" "17.1 Equações Lineares de Segunda Ordem") % (find-books "__analysis/__analysis.el" "stewart-pt" "1034" "subamortecimento") % (find-books "__analysis/__analysis.el" "stewart-pt" "51" "H Números Complexos") \par \Ca{StewPtCap17p6} (p.1020) Equações diferenciais de 2ª ordem \par \Ca{StewPtCap17p20} (p.1034) Caso 3: subamortecimento \par \Ca{StewPtApendiceHp5} (p.A51) Apêndice H: Números complexos \ssk % (find-books "__analysis/__analysis.el" "leithold" "156" "3.3. Teoremas sobre derivação") \par \Ca{Leit3p22} (p.158) $D_x[c·f(x)] = c·D_xf(x)$ \par \Ca{Leit3p22} (p.158) $D_x[f(x)+g(x)] = D_xf(x)+D_xg(x)$ \ssk % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "105" "3. Equações lineares de segunda") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "111" "operador diferencial") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "113" "princípio da superposição") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "121" "3.3. Raízes complexas") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "123" "Figura 3.3.1") \par \Ca{BoyceDip3p5} (p.105) Capítulo 3: Equações lineares de 2ª ordem \par \Ca{BoyceDip3p11} (p.111) Seção 3.2: o operador diferencial $L$ \par \Ca{BoyceDip3p13} (p.113) Teorema 3.2.2: o princípio da superposição \par \Ca{BoyceDip3p21} (p.121) 3.3. Raízes complexas da equação característica \par \Ca{BoyceDip3p23} (p.123) Figura 3.3.1 \ssk % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "173" "4.3" "coeficientes constantes") % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "196" "Exemplo 1: ...pode ser fatorado...") % (find-books "__analysis/__analysis.el" "zill-cullen" "150" "FACTORING OPERATORS") \par \Ca{ZillCullenCap4p33} (p.173) 4.3. Equações lineares homogêneas com coeficientes constantes \par \Ca{ZillCullenCap4p60} (p.196) Exemplo 1: ...pode ser fatorado... $(D+3)(D+2)$ \par \Ca{ZillCullenCap4p61} (p.197) Exemplo 3 \par \Ca{ZillCullenCap4p64} (p.200) Exercícios \par \Ca{ZillCullenEngCap4p40} (p.150) Factoring operators ... $(D+3)(D+2)$ \msk % (find-books "__analysis/__analysis.el" "boyce-diprima" "103" "3 Second-Order Linear") % (find-books "__analysis/__analysis.el" "boyce-diprima" "110" "differential operator") % (find-books "__analysis/__analysis.el" "boyce-diprima" "112" "Theorem 3.2.2" "Superposition") % (find-books "__analysis/__analysis.el" "boyce-diprima" "120" "3.3 Complex Roots") \par \Ca{BoyceDipEng3p4} (p.103) Chapter 3: Second-order linear ODEs \par \Ca{BoyceDipEng3p11} (p.110) Section 3.2: the differential operator $L$ \par \Ca{BoyceDipEng3p13} (p.112) Theorem 3.2.2: principle of superposition \par \Ca{BoyceDipEng3p21} (p.120) 3.3 Complex Roots of the Characteristic Equation \par \Ca{BoyceDipEng3p24} (p.123) Figure 3.3.1 \ssk Quadros: % (find-angg ".emacs" "c2q232" "30,nov01: EDOLCCs") \par \Ca{2hQ61} Aula 30 de 2023.2 (01/nov/2023) \standout{Aviso:} falta digitar muita coisa! Veja os quadros! % (c2m231dicasp2p 4 "raizes-chutar-testar") % (c2m231dicasp2a "raizes-chutar-testar") % 2gT128 Raízes por chutar-e-testar \bsk \bsk Quadros antigos: % (find-angg ".emacs" "c2q231" "jun20: EDOs lineares") \par \Ca{2gQ46} Aula 23 de 2023.1 (20/junho/2023) \par \Ca{2gQ50} Aula 24 de 2023.1 (23/junho/2023) \bsk }\anothercol{ }} \newpage % (c2m231edolsp 3 "nao-usei") % (c2m231edolsa "nao-usei") \def\Mscale{0.5} \def\dqeq{\;\text{``$=$''}\;} \def\M#1{\scalebox{\Mscale}{$\pmat{#1}$}} $\M{0&1\\0&0} \M{0&0\\1&0} = \M{1&0\\0&0}$ \ssk $\M{0&0\\1&0} \M{0&1\\0&0} = \M{0&0\\0&1}$ \msk $\M{a&b} \M{c\\d} = \M{ac+bd}$ $\M{c\\d} \M{a&b} = \M{ac&bc\\ad&bd}$ \msk $S = \M{0&1 \\ &0&1 \\ &&0&1 \\ &&&0&1 \\ &&&&0} \quad 1 = \M{1 \\ &1 \\ &&1 \\ &&&1 \\ &&&&1} \quad S-1 = \M{-1&1 \\ &-1&1 \\ &&-1&1 \\ &&&-1&1 \\ &&&&-1}$ \msk $v = \M{v_1\\v_2\\v_3\\v_4\\v_5\\} \quad f = \M{f(1)\\f(2)\\f(3)\\f(4)\\f(5)\\} \quad Sf = \M{f(2)\\f(3)\\f(4)\\f(5)\\0} \quad (S-1)f = \M{f(2)-f(1)\\f(3)-f(2)\\f(4)-f(3)\\f(5)-f(4)\\0-f(5)\\} $ \bsk Obs: não usei isso aqui -- não deu tempo de \LaTeX ar tudo... \newpage % (c2m232p1p 4 "questao-5-grids") % (c2m232p1a "questao-5-grids") %L fry = FromYs.from {ys={0,-1,1,-2,2,-3,3,-3,2,-2,1,-1,0}, Y0=0} :setall() %L fry = FromYs.from {ys={0,-1,-3,3,1,0,1,2,1,0,-1,-2,-1,0}, Y0=0} :setall() %L fry = FromYs.from {ys={2,1,0,1,2,-2,1,-2,0,-2,0,1,2,1,0,-1,-2,-1,0}, Y0=-3} :setall() %L Pict { %L fry:ypict() :prethickness("1pt"):sa("fig f"), %L fry:Ypict() :prethickness("1pt"):sa("fig F"), %L fry:grid(-4,4):sa("grid F"), %L } :output() \pu \unitlength=10pt $\begin{array}{rcl} g(x) &=& \ga{fig F} \\ \\[-5pt] g'(x) &=& \ga{fig f} \\ \end{array} $ \newpage %M (%i1) f : exp( 3*x); %M (%o1) e^{3\,x} %M (%i2) f : exp(-3*x); %M (%o2) e^ {- 3\,x } %M (%i3) f : exp( 2*x); %M (%o3) e^{2\,x} %M (%i4) fp : diff(f,x); %M (%o4) 2\,e^{2\,x} %M (%i5) fpp : diff(f,x,2); %M (%o5) 4\,e^{2\,x} %M (%i6) Lf : fpp + fp - 6*f; %M (%o6) 0 %M (%i7) %L maximahead:sa("L1", "") \pu %M (%i1) D (f) := diff(f,x); %M (%o1) D\left(f\right):=\mathrm{diff}\left(f , x\right) %M (%i2) DD(f) := diff(f,x,2); %M (%o2) \mathrm{DD}\left(f\right):=\mathrm{diff}\left(f , x , 2\right) %M (%i3) L (f) := D(D(f)) + D(f) - 6*f; %M (%o3) L\left(f\right):=D\left(D\left(f\right)\right)+D\left(f\right)+\left(-6\right)\,f %M (%i4) D(x^2); %M (%o4) 2\,x %M (%i5) D(D(x^2)); %M (%o5) 2 %M (%i6) L(x^2); %M (%o6) -\left(6\,x^2\right)+2\,x+2 %M (%i7) L(exp( 3*x)); %M (%o7) 6\,e^{3\,x} %M (%i8) L(exp(-3*x)); %M (%o8) 0 %M (%i9) L(exp( 2*x)); %M (%o9) 0 %M (%i10) %L maximahead:sa("L2", "") \pu \scalebox{0.4}{\def\colwidth{9cm}\firstcol{ \ga{L1} }\anothercol{ \def\hboxthreewidth {10cm} \ga{L2} }} \newpage % «solucoes-nao-basicas» (to ".solucoes-nao-basicas") % (c2m232edolccsp 6 "solucoes-nao-basicas") % (c2m232edolccsa "solucoes-nao-basicas") {\bf Soluções não-básicas} % (find-c2q232page 64 "30,nov01: EDOLCCs") \def\und #1#2{\underbrace{#1}_{#2}} \def\uuund#1#2#3#4{\und{\und{\und{#1}{#2}}{#3}}{#4}} \scalebox{0.8}{\def\colwidth{12cm}\firstcol{ $$\begin{array}{rcl} M(αv + βw) &=& M(αv) + M(βw) \\ &=& α(Mv) + β(Mw) \\ \end{array} $$ $$\und{(D-2)(D+3)}{M} (\und{42}{α} \und{e^{2x}}{v} + \und{99}{β} \und{e^{-3x}}{w}) $$ \sa{(D-2)e^{2x}}{ \uuund{(D-2)e^{2x}} {De^{2x} -2e^{2x}} {2e^{2x} -2e^{2x}} {0} } \sa{(D+3)e^{-3x}}{ \uuund{(D+3)e^{-3x}} {De^{-3x}+3e^{-3x}} {-3e^{-3x}+3e^{-3x}} {0} } $$\begin{array}{l} (D-2)(D+3)(42e^{2x} + 99e^{-3x}) \\ = \; 42(D-2)(D+3)e^{2x} + 99(D-2)(D+3)e^{-3x} \\ = \; \und{42\und{(D+3)\ga{(D-2)e^{2x}}}{0}}{0} \,+\, \und{99\und{(D-2)\ga{(D+3)e^{-3x}}}{0}}{0} \\ \end{array} $$ }\anothercol{ }} \newpage % «raizes-chutar-testar» (to ".raizes-chutar-testar") % (c2m241edolccsp 8 "raizes-chutar-testar") % (c2m241edolccsa "raizes-chutar-testar") % (find-es "maxima" "divisors") %M (%i1) poly0 : (x-2)*(x+5); %M (%o1) \left(x-2\right)\,\left(x+5\right) %M (%i2) poly1 : expand(poly0); %M (%o2) x^2+3\,x-10 %M (%i3) b : ratcoef(poly1, x, 1); /* coeficiente do x^1 */ %M (%o3) 3 %M (%i4) c : ratcoef(poly1, x, 0); /* coeficiente do x^0 */ %M (%o4) -10 %M (%i5) divisors(c); %M (%o5) \left \{1 , 2 , 5 , 10 \right \} %M (%i6) divs0 : listify(divisors(c)); %M (%o6) \left[ 1 , 2 , 5 , 10 \right] %M (%i7) reverse(divs0); %M (%o7) \left[ 10 , 5 , 2 , 1 \right] %M (%i8) -reverse(divs0); %M (%o8) \left[ -10 , -5 , -2 , -1 \right] %M (%i9) divs1 : append(-reverse(divs0), divs0); %M (%o9) \left[ -10 , -5 , -2 , -1 , 1 , 2 , 5 , 10 \right] %L maximahead:sa("raizes", "") \pu %M (%i10) line(d1) := block([d2:c/d1], [d1,d2,d1*d2,d1+d2])$ %M (%i11) line(2); %M (%o11) \left[ 2 , -5 , -10 , -3 \right] %M (%i12) lines0 : makelist(line(d1), d1, divs1)$ %M (%i13) lines1 : append([["d1", "d2", "d1*d2", "d1+d2"]], lines0)$ %M (%i14) apply('matrix, lines1); %M (%o14) \begin{pmatrix}\mbox{ d1 }&\mbox{ d2 }&\mbox{ d1*d2 }&\mbox{ d1+d2 }\cr -10&1&-10&-9\cr -5&2&-10&-3\cr -2&5&-10&3\cr -1&10&-10&9\cr 1&-10&-10&-9\cr 2&-5&-10&-3\cr 5&-2&-10&3\cr 10&-1&-10&9\cr \end{pmatrix} %M (%i15) %L maximahead:sa("raizes 2", "") \pu {\bf Raízes por chutar-e-testar} \scalebox{0.375}{\def\colwidth{14cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{raizes} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{raizes 2} }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "c2el" % ee-tla: "c2m241edolccs" % End: