Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2024-2-C2-numeros-complexos.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2024-2-C2-numeros-complexos.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2024-2-C2-numeros-complexos.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2024-2-C2-numeros-complexos.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2024-2-C2-numeros-complexos.pdf")) % (defun e () (interactive) (find-LATEX "2024-2-C2-numeros-complexos.tex")) % (defun o () (interactive) (find-LATEX "2024-1-C2-numeros-complexos.tex")) % (defun u () (interactive) (find-latex-upload-links "2024-2-C2-numeros-complexos")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2024-2-C2-numeros-complexos.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2024-2-C2-numeros-complexos") % (find-pdf-page "~/LATEX/2024-2-C2-numeros-complexos.pdf") % (find-sh0 "cp -v ~/LATEX/2024-2-C2-numeros-complexos.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2024-2-C2-numeros-complexos.pdf /tmp/pen/") % (find-xournalpp "/tmp/2024-2-C2-numeros-complexos.pdf") % file:///home/edrx/LATEX/2024-2-C2-numeros-complexos.pdf % file:///tmp/2024-2-C2-numeros-complexos.pdf % file:///tmp/pen/2024-2-C2-numeros-complexos.pdf % http://anggtwu.net/LATEX/2024-2-C2-numeros-complexos.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2 Maxima2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2") % (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2") % (find-MM-aula-links "2024-2-C2-numeros-complexos" "2" "c2m242nc" "c2nc") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-maxima» (to "defs-maxima") % «.defs-V» (to "defs-V") % «.title» (to "title") % «.links» (to "links") % «.links-quadros» (to "links-quadros") % «.links-provas» (to "links-provas") % «.links-stewart» (to "links-stewart") % «.links-boyce» (to "links-boyce") % «.links-boyce-eng» (to "links-boyce-eng") % «.maxima-dots» (to "maxima-dots") % «.2019.2» (to "2019.2") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-LATEX "dednat7-test1.tex") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2024-2-C2.pdf} \def\drafturl{http://anggtwu.net/2024.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2024-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2024-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat7load.lua"} % (find-LATEX "dednat7load.lua") \directlua{dednat7preamble()} % (find-angg "LUA/DednatPreamble1.lua") \directlua{dednat7oldheads()} % (find-angg "LUA/Dednat7oldheads.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L --dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs-maxima» (to ".defs-maxima") %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") \pu % «defs-V» (to ".defs-V") %L --- See: (find-angg "LUA/MiniV1.lua" "problem-with-V") %L V = MiniV %L v = V.fromab \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m242ncp 1 "title") % (c2m242nca "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2024.2} \bsk Aulas 23 a 26: revisão de números complexos \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2024.2-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m242ncp 2 "links") % (c2m242nca "links") {\bf Links} \scalebox{0.5}{\def\colwidth{16cm}\firstcol{ % «links-quadros» (to ".links-quadros") % 2jQ55: (find-angg ".emacs" "c2q242" "13/11: números complexos") % 2iQ81: (find-angg ".emacs" "c2q241" "jul31: Revisão de números complexos e séries de Taylor") % 2hQ66: (find-angg ".emacs" "c2q232" "nov06: Revisão de variáveis complexas") % 2fQ45: (find-angg ".emacs" "c2q222" "nov23: Números complexos") % 2yQ63: (find-angg ".emacs" "c2q192" "20190925 peq aula 12: E=c+is e aplicações") % 2yQ98: (find-angg ".emacs" "c2q192" "20191106 peq aula 20: f''+af'+bf = 0 complexo") \par Quadros: \par \Ca{2jQ55} (2024.2) \par \Ca{2iQ81} (2024.1) \par \Ca{2hQ66} (2023.2) \par \Ca{2fQ45} (2022.2) \par \Ca{2yQ63} (2019.2) \ssk % «links-provas» (to ".links-provas") % (c2m242ncp 2 "links-provas") % (c2m242nca "links-provas") % (c2m192p1a "gab-3") % (c2m182p1a "gab-1") \par Provas: \par \Ca{2yT12} (Gabarito da P1 de 2019.2) A questão 3 usa o truque do $E$ \par \url{http://anggtwu.net/LATEX/2018-2-C2-P1.pdf\#page=2} Questão 1 \msk % «links-stewart» (to ".links-stewart") % (find-books "__analysis/__analysis.el" "stewart-pt" "1020" "17.1 Equações Lineares de Segunda Ordem") % (find-books "__analysis/__analysis.el" "stewart-pt" "1034" "subamortecimento") % (find-books "__analysis/__analysis.el" "stewart-pt" "51" "H Números Complexos") \par \Ca{StewPtCap17p6} (p.1020) Equações diferenciais de 2ª ordem \par \Ca{StewPtCap17p20} (p.1034) Caso 3: subamortecimento \par \Ca{StewPtApendiceHp5} (p.A51) Apêndice H: Números complexos \ssk % «links-boyce» (to ".links-boyce") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "105" "3. Equações lineares de segunda") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "111" "operador diferencial") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "113" "princípio da superposição") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "121" "3.3. Raízes complexas") % (find-books "__analysis/__analysis.el" "boyce-diprima-pt" "123" "Figura 3.3.1") \par \Ca{BoyceDip3p5} (p.105) Capítulo 3: Equações lineares de 2ª ordem \par \Ca{BoyceDip3p11} (p.111) Seção 3.2: o operador diferencial $L$ \par \Ca{BoyceDip3p13} (p.113) Teorema 3.2.2: o princípio da superposição \par \Ca{BoyceDip3p21} (p.121) 3.3. Raízes complexas da equação característica \par \Ca{BoyceDip3p23} (p.123) Figura 3.3.1 \ssk % (find-books "__analysis/__analysis.el" "zill-cullen-pt" "173" "4.3" "coeficientes constantes") %\par \Ca{ZillCullenCap4p33} (p.173) 4.3. Equações lineares homogêneas com coeficientes constantes % «links-boyce-eng» (to ".links-boyce-eng") % (find-books "__analysis/__analysis.el" "boyce-diprima" "103" "3 Second-Order Linear") % (find-books "__analysis/__analysis.el" "boyce-diprima" "110" "differential operator") % (find-books "__analysis/__analysis.el" "boyce-diprima" "112" "Theorem 3.2.2" "Superposition") % (find-books "__analysis/__analysis.el" "boyce-diprima" "120" "3.3 Complex Roots") \par \Ca{BoyceDipEng3p4} (p.103) Chapter 3: Second-order linear ODEs \par \Ca{BoyceDipEng3p11} (p.110) Section 3.2: the differential operator $L$ \par \Ca{BoyceDipEng3p13} (p.112) Theorem 3.2.2: principle of superposition \par \Ca{BoyceDipEng3p21} (p.120) 3.3 Complex Roots of the Characteristic Equation \par \Ca{BoyceDipEng3p24} (p.123) Figure 3.3.1 % (find-angg ".emacs" "c2q191" "20190524") % (find-angg ".emacs" "c2q192" "60" "20190920") % (find-c2q222page 45 "nov23: Números complexos") % (find-c2q231page 50 "jun23: Oscilações") % (c2q191 31 "20190524" "E = c + is") \ssk % (find-SUBSfile "2021aulas-por-telegram.lua" "14:16") % http://www.youtube.com/watch?v=-dhHrg-KbJ0 e to the pi i for dummies (Mathologer) \par \url{http://www.youtube.com/watch?v=-dhHrg-KbJ0} $e^{πi}$ for dummies (Mathologer) \par \url{https://en.wikipedia.org/wiki/Complex_number} (bom) \par \url{https://pt.wikipedia.org/wiki/N\%C3\%BAmero_complexo} (ruim, cheio de erros) % (c2m222srp 4 "somas-de-retangulos") % (c2m222sra "somas-de-retangulos") % (find-LATEXgrep "grep --color=auto -niH --null -e 'reas negativas' 202*.tex") %\par \Ca{2fT63} ``Áreas negativas não existem'' \bsk % (find-books "__analysis/__analysis.el" "hernandez" "47" "principais identidades trigonométricas") \par \Ca{HernandezP57} (p.47) principais identidades trigonométricas }\anothercol{ }} \newpage % «maxima-dots» (to ".maxima-dots") % (c2m242ncp 3 "maxima-dots") % (c2m242nca "maxima-dots") % (c2m241ncp 5 "dots") % (c2m241nca "dots") % (find-es "maxima" "2024.1-intro-complex") % (find-es "maxima" "2024.2-C2-intro-complex") %M (%i1) Re(z) := realpart(z)$ %M (%i2) Im(z) := imagpart(z)$ %M (%i3) sqhyp(z) := Re(z)^2 + Im(z)^2$ %M (%i4) tom(z) := matrix([Re(z),-Im(z)], [Im(z),Re(z)])$ %M (%i5) det(M) := determinant(M)$ %M (%i6) nm(z) := Re(z) + %i*Im(z)$ %M (%i7) stringdisp : false$ %M (%i8) z : a + %i*b; %M (%o8) i\,b+a %M (%i9) w : c + %i*d; %M (%o9) i\,d+c %M (%i10) matrix([ z , "+", w , "=", nm(z+w)], %M [tom(z), "+", tom(w), "=", tom(z)+tom(w)], %M [ "", "", "", "", "" ], %M [ z , "*", w , "=", nm(z*w) ], %M [tom(z), ".", tom(w), "=", tom(z).tom(w)]); %M (%o10) \begin{pmatrix}i\,b+a&\mbox{ + }&i\,d+c&\mbox{ = }&i\,\left(d+b\right)+c+a\cr \begin{pmatrix}a&-b\cr b&a\cr \end{pmatrix}&\mbox{ + }&\begin{pmatrix}c&-d\cr d&c\cr \end{pmatrix}&\mbox{ = }&\begin{pmatrix}c+a&-d-b\cr d+b&c+a\cr \end{pmatrix}\cr &&&&\cr i\,b+a&\mbox{ * }&i\,d+c&\mbox{ = }&i\,\left(a\,d+b\,c\right)-b\,d+a\,c\cr \begin{pmatrix}a&-b\cr b&a\cr \end{pmatrix}&\mbox{ . }&\begin{pmatrix}c&-d\cr d&c\cr \end{pmatrix}&\mbox{ = }&\begin{pmatrix}a\,c-b\,d&-\left(a\,d\right)-b\,c\cr a\,d+b\,c&a\,c-b\,d\cr \end{pmatrix}\cr \end{pmatrix} %L maximahead:sa("dots", "") \pu %M (%i11) drawzpts (zs,[opts]) := myqdrawp(xyrange(), zpts(zs, opts))$ %M (%i12) [xmin,ymin, xmax,ymax] : [-5,-5, 5,5]$ %M (%i13) myqdrawp_to_screen()$ myps(size) := ps(size)$ %M (%i15) myqdrawp_to_new_pdf()$ myps(size) := ps(size/5)$ %M (%i17) as_33 : create_list(x+%i*y, y,seqn(2,0,2), x,seqn(0,2,2)); %M (%o17) \left[ 2\,i , 2\,i+1 , 2\,i+2 , i , i+1 , i+2 , 0 , 1 , 2 \right] %M (%i18) as_55 : create_list(x+%i*y, y,seqn(2,0,4), x,seqn(0,2,4))$ %M (%i19) as_22 : create_list(x+%i*y, y,seqn(0,1,1), x,seqn(0,1,1))$ %M (%i20) D1 : drawzpts(as_33, myps(3), pc(red))$ %M D2 : drawzpts(as_55, myps(3), pc(red))$ %M %M (%i21) %M (%i22) [D1, D2]; %M (%o22) \left[ \myvcenter{\includegraphics[height=5cm]{2024-2-C2/complex_001.pdf}} , \myvcenter{\includegraphics[height=5cm]{2024-2-C2/complex_002.pdf}} \right] %M (%i23) D3 : drawzpts(as_55 + 1, myps(3), pc(orange))$ %M %M (%i24) D4 : drawzpts(as_55 + %i, myps(3), pc(orange))$ %M %M (%i25) [D3, D4]; %M (%o25) \left[ \myvcenter{\includegraphics[height=5cm]{2024-2-C2/complex_003.pdf}} , \myvcenter{\includegraphics[height=5cm]{2024-2-C2/complex_004.pdf}} \right] %L maximahead:sa("dots 3", "") \pu %M (%i26) D5 : drawzpts(as_55 * 2, myps(3), pc(forest_green))$ %M (%i27) D6 : drawzpts(as_55 * (1+%i), myps(3), pc(forest_green))$ %M (%i28) [D2, D5, D6]; %M (%o28) \left[ \myvcenter{\includegraphics[height=4cm]{2024-2-C2/complex_002.pdf}} , \myvcenter{\includegraphics[height=4cm]{2024-2-C2/complex_005.pdf}} , \myvcenter{\includegraphics[height=4cm]{2024-2-C2/complex_006.pdf}} \right] %M (%i29) topdf_opts : "height=10cm"$ %M (%i30) as_332 : create_list(z+w, z,as_33, w,as_22*0.2)$ %M (%i31) as_332_sq : makelist(z^2, z, as_332)$ %M (%i32) [xmin,ymin, xmax,ymax] : [-10,-10, 10,10]; %M (%o32) \left[ -10 , -10 , 10 , 10 \right] %M (%i33) D7 : drawzpts(as_332, myps(0.5))$ %M (%i34) D8 : drawzpts(as_332_sq, myps(0.5))$ %M (%i35) [D7, D8]; %M (%o35) \left[ \myvcenter{\includegraphics[height=7cm]{2024-2-C2/complex_007.pdf}} , \myvcenter{\includegraphics[height=7cm]{2024-2-C2/complex_008.pdf}} \right] %M (%i36) %L maximahead:sa("dots 4", "") \pu %M (%i30) as_332 : create_list(z+w, z,as_33, w,as_22*0.2)$ %M (%i31) as_332_sq : makelist(z^2, z, as_332)$ %M (%i32) [xmin,ymin, xmax,ymax] : [-10,-10, 10,10]; %M (%o32) \left[ -10 , -10 , 10 , 10 \right] %M (%i33) D7 : drawzpts(as_332, myps(0.5))$ %M (%i34) D8 : drawzpts(as_332_sq, myps(0.5))$ %M %M (%i35) [D7, D8]; %M (%o35) \left[ \myvcenter{\includegraphics[height=10cm]{2024-2-C2/complex_007.pdf}} , \myvcenter{\includegraphics[height=10cm]{2024-2-C2/complex_008.pdf}} \right] %M (%i36) %L maximahead:sa("dots 5", "") \pu \scalebox{0.5}{\def\colwidth{9cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{dots} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{dots 2} }} \newpage \scalebox{0.35}{\def\colwidth{9cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{dots 3} }\anothercol{ }} \newpage \scalebox{0.35}{\def\colwidth{9cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{dots 4} }\anothercol{ }} \newpage % «2019.2» (to ".2019.2") % (c2m242ncp 2 "links-provas") % (c2m242nca "links-provas") % (c2m192p1a "gab-3") % (c2m182p1a "gab-1") {\bf 2019.2} \scalebox{0.7}{\def\colwidth{16cm}\firstcol{ \def\E#1 {E^{#1}} $\begin{array}[t]{lll} (\sen 5θ)^2 (\cos 6θ)^2 \\ = \;\; \left(\frac{\E5 - \E-5 }{2i}\right)^2 \left(\frac{\E6 + \E-6 }{2}\right)^2 \\ = \;\; -\frac1{16}(\E10 - 2 +\E-10 )(\E12 + 2 +\E-12 ) \\ = \;\; -\frac1{16}\pmat{ (\E10 - 2 +\E-10 ) \E12 + \\ (\E10 - 2 +\E-10 ) · 2 + \\ (\E10 - 2 +\E-10 ) \E-12 \\ } \\ = \;\; -\frac1{16}\pmat{ \E22 - 2\E12 +\E2 + \\ 2\E10 - 4 +2\E-10 + \\ \E-2 - 2\E-12 +\E-22 \\ } \\ = \;\; -\frac1{16}( (\E22 + \E-22 ) -2 (\E12 + \E-12 ) +2 (\E10 + \E-10 ) + (\E2 + \E-2 ) - 4 ) \\ = \;\; -\frac1{16}( 2\cos22θ -4\cos12θ +4\cos10θ +2\cos2θ - 4 ) \\ = \;\; -\frac18 \cos22θ +\frac14 \cos12θ -\frac14 \cos10θ -\frac18 \cos2θ \frac14 \\ \end{array} $ \bsk $\begin{array}[t]{rcl} \intx {(\sen 5x)^2 (\cos 6x)^2} &=& \intx {-\frac18 \cos22x +\frac14 \cos12x -\frac14 \cos10x -\frac18 \cos2x +\frac14} \\ &=& -\frac1{8·22} \sen22x +\frac1{4·12} \sen12x -\frac1{4·10} \sen10x -\frac1{8·2} \sen2x +\frac14x \\ \end{array} $ }\anothercol{ }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % (find-pdfpages2-links "~/LATEX/" "2024-2-C2-numeros-complexos") % Local Variables: % coding: utf-8-unix % ee-tla: "c2nc" % ee-tla: "c2m242nc" % End: