Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file: % http://anggtwu.net/LATEX/2025-1-C2-S-defs.tex.html % http://anggtwu.net/LATEX/2025-1-C2-S-defs.tex % (find-angg "LATEX/2025-1-C2-S-defs.tex") % Author: Eduardo Ochs <eduardoochs@gmail.com> % % «.P» (to "P") % «.DefDeriv» (to "DefDeriv") % «.TFC2» (to "TFC2") % «.DFI» (to "DFI") % «.MV:reset» (to "MV:reset") % «.MV» (to "MV") % «.EDOVS:reset» (to "EDOVS:reset") % «.EDOVS» (to "EDOVS") % «.Aipim» (to "Aipim") % «.eq-if» (to "eq-if") % «.p-if» (to "p-if") % «P» (to ".P") \def\P #1{\left( {#1} \right)} \def\Pbig#1{ \big( {#1} \big)} \def\PBig#1{ \Big( {#1} \Big)} % «DefDeriv» (to ".DefDeriv") % (c2m251stp 3 "DefDeriv") % (c2m251sta "DefDeriv") % 2kT63: (c2m251tnp 4 "defs-DD") % (c2m251tna "defs-DD") % (find-angg "MAXIMA/2025-1-s.mac" "TFC2") \sa {DDL} {\left. \ddx f(x) \, \right|_{x=a}} \sa {[DD1]} {\CFname{DD1}{}} \sa {[DD2]} {\CFname{DD2}{}} \sa {(DD1)} {\P{\D \ga{DDL} = \lim_{ε→0} \frac{f(x+ε)-f(x)}{ε}}} \sa {(DD2)} {\P{\D \ga{DDL} = \lim_{a→x} \frac{f(a)-f(x)}{x-a}}} \sa {[DefAt]} {\CFname{DefAt}{}} \sa {(DefAt)} {\PBig{\left. f(x) \right|_{x=a} \;=\; f(a)}} \sa {[DefDeriv1]} {\CFname{DefDeriv1}{}} \sa {[DefDeriv2]} {\CFname{DefDeriv2}{}} \sa {(DefDeriv1)} {\P{\D \ga{DDL} = \lim_{ε→0} \frac{f(x+ε)-f(x)}{ε}}} \sa {(DefDeriv2)} {\P{\D \ga{DDL} = \lim_{a→x} \frac{f(a)-f(x)}{x-a}}} % «TFC2» (to ".TFC2") % (c2m251stp 3 "TFC2") % (c2m251sta "TFC2") % (c2m251sda "TFC2") \sa {[DefDif]}{\CFname{DefDif}{}} \sa {(DefDif)}{\PBig{\D \difx{a}{b}{F(x)} \;=\; F(b)-F(a)}} \sa {[TFC2]} {\CFname{TFC2}{}} \sa {(TFC2)} {\P{\D \Intx{a}{b}{F'(x)} \;=\; \difx{a}{b}{F(x)}}} \sa {[II]} {\CFname{II}{}} \sa {(II)} {\P{\D \intx{F'(x)} \;=\; F(x)}} \sa {[RDC]} {\CFname{RDC}{}} \sa {(RDC)} {\PBig{\ddx c \;=\; 0}} \sa {[RMC]} {\CFname{RMC}{}} \sa {(RMC)} {\PBig{\ddx(cf(x)) \;=\; c\ddx f(x)}} \sa {[RPot]} {\CFname{RPot}{}} \sa {(RPot)} {\PBig{\ddx x^n \;=\; nx^{n-1}}} \sa {[RSoma]} {\CFname{RSoma}{}} \sa {(RSoma)} {\PBig{\ddx(f(x)+g(x)) \;=\; \ddx f(x) + \ddx g(x)}} \sa {[RProd]} {\CFname{RProd}{}} \sa {(RProd)} {\PBig{\ddx(f(x)g(x)) \;=\; f(x) \ddx g(x) + g(x) \ddx f(x)}} \sa {[RC]} {\CFname{RC}{}} \sa {(RC)} {\PBig{\ddx f(g(x)) \;=\; f'(g(x))g'(x)}} % «DFI» (to ".DFI") % (c2m251stp 4 "DFI") % (c2m251sta "DFI") \sa {[DFI]} {\CFname{DFI}{}} \sa {(DFI)} {\P{ \begin{array}{rcl} f(g(x)) &=& x \\ \ddx f(g(x)) &=& \ddx x \\ &=& 1 \\ \ddx f(g(x)) &=& f'(g(x))g'(x) \\ f'(g(x))g'(x) &=& 1 \\ g'(x) &=& \D \frac{1}{f'(g(x))} \\ \end{array}}} % «MV:reset» (to ".MV:reset") % (c2m251sta "MV-defaults") % (c2m251mvdefsa "mv-defaults") % (c2m241dip 7 "MVDs-e-MVIs-color") % (c2m241dia "MVDs-e-MVIs-color") % \def\MVf #1{f (#1)} % \def\MVfp#1{f'(#1)} % \def\MVg #1{g (#1)} % \def\MVgp#1{g'(#1)} \sa{MV:reset}{ \sa {.fg}{} \sa {a}{a} \sa {b}{b} \sa {u}{u} \sa {x}{x} \sa {f(u)}{f (\ga{u})} \sa {g(a)}{g (\ga{a})} \sa {g(b)}{g (\ga{b})} \sa {g(x)}{g (\ga{x})} \sa {f'(u)}{f'(\ga{u})} \sa {g'(x)}{g'(\ga{x})} \sa {f(g(a))}{f (\ga{g(a)})} \sa {f(g(b))}{f (\ga{g(b)})} \sa {f(g(x))}{f (\ga{g(x)})} \sa {f'(g(x))}{f'(\ga{g(x)})} \sa{f'(g(x))g'(x)}{\ga{f'(g(x))} \ga{.fg} \ga{g'(x)}} } \ga{MV:reset} % «MV» (to ".MV") \sa {[MVD4]} {\CFname{MVD4}{}} \sa {(MVD4)} {\P{\begin{array}{rcl}\ga{MVD4}\end{array}}} \sa {MVD4} { \D \Intx {\ga{a}} {\ga{b}} {\ga{f'(g(x))g'(x)}} &=& \D \Difx {\ga{a}} {\ga{b}} {\ga{f(g(x))}} \\ &=& \D \ga{f(g(b))} - \ga{f(g(a))} \\ &=& \D \Difu {\ga{g(a)}} {\ga{g(b)}} {\ga{f(u)}} \\ &=& \D \Intu {\ga{g(a)}} {\ga{g(b)}} {\ga{f'(u)}} \\ } \sa {[MVD1]} {\CFname{MVD1}{}} \sa {(MVD1)} {\P{\begin{array}{rcl}\ga{MVD1}\end{array}}} \sa {MVD1} { \D \Intx {\ga{a}} {\ga{b}} {\ga{f'(g(x))g'(x)}} &=& \D \Intu {\ga{g(a)}} {\ga{g(b)}} {\ga{f'(u)}} \\ } \sa {[MVI3]} {\CFname{MVI3}{}} \sa {(MVI3)} {\P{\begin{array}{rcl}\ga{MVI3}\end{array}}} \sa {MVI3} { \D \intx {\ga{f'(g(x))g'(x)}} &=& \D \ga{f(g(x))} \\ &=& \D \ga{f(u)} \\ &=& \D \intu {\ga{f'(u)}} \\ } \sa {[MVI1]} {\CFname{MVI1}{}} \sa {(MVI1)} {\P{\begin{array}{rcl}\ga{MVI1}\end{array}}} \sa {MVI1} { \D \intx {\ga{f'(g(x))g'(x)}} &=& \D \intu {\ga{f'(u)}} \\ } % «EDOVS:reset» (to ".EDOVS:reset") \sa{EDOVS:reset}{ \sa {G(x)} {G(x)} \sa {H(y)} {H(y)} \sa {g(x)} {g(x)} \sa {h(y)} {h(y)} \sa {Hinv(u)} {H^{-1}(u)} \sa {Hinv(H(y))} {H^{-1}(H(y))} \sa {Hinv(G(x)+C_3)} {H^{-1}(G(x)+C_3)} } \sa{EDOVS:reset-S1}{ \sa {g(x)} {-2x} \sa {h(y)} {2y} \sa {G(x)} {-x^2} \sa {H(y)} {y^2} \sa {Hinv(u)} {\sqrt{u}} \sa {Hinv(H(y))} {\sqrt{y^2}} \sa {Hinv(G(x)+C_3)} {\sqrt{-x^2+C_3}} } \ga{EDOVS:reset} % «EDOVS» (to ".EDOVS") \sa {[M]} {\CFname{M}{}} \sa {(M)} {\P{\begin{array}{rcl}\ga{M}\end{array}}} \sa {M} { \D \dydx &=& \D \frac{\ga{g(x)}}{\ga{h(y)}} \\ \ga{h(y)}\,dy &=& \ga{g(x)}\,dx \\ \\[-10pt] \inty{\ga{h(y)}} &=& \intx{\ga{g(x)}} \\ \mcc{\veq} & & \mcc{\veq} \\ \mcc{\ga{H(y)}+C_1} & & \mcc{\ga{G(x)}+C_2} \\ \\[-10pt] \ga{H(y)} &=& \ga{G(x)}+C_2-C_1 \\ &=& \ga{G(x)}+C_3 \\ \\[-10pt] \ga{Hinv(H(y))} &=& \ga{Hinv(G(x)+C_3)} \\ \mcc{\veq} & & \\ \mcc{y} & & \\ } \sa {[F3]}{\CFname{F}{_3}} \sa {[F2]}{\CFname{F}{_2}} \sa {[S1]}{\CFname{S}{_1}} \sa{(F3)}{ \left(\begin{array}{rcl} \D \dydx &=& \D \frac{\ga{g(x)}}{\ga{h(y)}} \\ \\[-10pt] \ga{Hinv(H(y))} &=& \ga{Hinv(G(x)+C_3)} \\ \mcc{\veq} & & \\ \mcc{y} & & \\ \end{array} \right) } \sa{(F2)}{ \left(\begin{array}{rcl} \D \dydx &=& \D \frac{\ga{g(x)}}{\ga{h(y)}} \\ \\[-10pt] y &=& \ga{Hinv(G(x)+C_3)} \\ \end{array} \right) } \sa{(S)}{ \left[\begin{array}{rcl} g(x) &:=& \ga{g(x)} \\ h(y) &:=& \ga{h(y)} \\ G(x) &:=& \ga{G(x)} \\ H(y) &:=& \ga{H(y)} \\ H^{-1}(u) &:=& \ga{Hinv(u)} \\ \end{array} \right] } % «Aipim» (to ".Aipim") % (c2m251stp 7 "Aipim") % (c2m251sta "Aipim") % (c2m251introp 5 "defs-Aipim") % (c2m251introa "defs-Aipim") \def\und#1#2{\underbrace{#1}_{#2}} \def\setdepthto#1#2{\setbox1\hbox{$#2$}% \dp1=#1% \box1} % \sa{[Aipim]} {\CFname{Aipim}{}} \sa{(Aipim)} {\Pbig{\sqrt{a^2+b^2} \;=\; a+b}} \sa{(Aipim34)} {\Pbig{\sqrt{3^2+4^2} \;=\; 3+4}} \sa {Aipim} {\sqrt{a^2+b^2}=a+b} \sa {Aipim u}{ % Aipim with "\und"s \sa{a 0} {\setdepthto{2pt}{a}} \sa{b 0} {\setdepthto{2pt}{b}} \sa{a} {\und{\ga{a 0}}{3}} \sa{b} {\und{\ga{b 0}}{4}} \sa{a^2} {\und{\ga{a}^2}{9}} \sa{a^2} {\und{{\ga{a}}^2}{9}} \sa{b^2} {\und{{\ga{b}}^2}{16}} \sa{a^2+b^2 0} {\und{\ga{a^2}+\ga{b^2}}{25}} \sa{a^2+b^2} {\setdepthto{0pt}{\ga{a^2+b^2 0}}} \sa{sqrt(a^2+b^2) 0} {\sqrt{\ga{a^2+b^2}}} \sa{sqrt(a^2+b^2) 1} {\setdepthto{50pt}{\ga{sqrt(a^2+b^2) 0}}} \sa{sqrt(a^2+b^2)} {\und{\ga{sqrt(a^2+b^2) 1}}{5}} \sa{a+b} {\und{\ga{a}+\ga{b}}{7}} \sa{sqrt(a^2+b^2)=a+b} {\und{\ga{sqrt(a^2+b^2)} = \ga{a+b}}{\False}} \ga{sqrt(a^2+b^2)=a+b} } % «eq-if» (to ".eq-if") % (c2m251stp 7 "eq-if") % (c2m251sta "eq-if") % (c2m251sda "eq-if") \Sa {=}#1{\sa{1}{#1}\ga{= after 1}} \sa{= after 1}{\ga{eq after 1}} \sa{= after 1}{\ga{eqnp after 1}} \sa{= after 1}{\ifgaundefined{=.\ga{1}.}\ga{eq after 1} \else \ga{eqnp after 1} \fi} \Sa{eq after 1}{=} \Sa{eqnp after 1}{\overset{\scriptscriptstyle(\ga{1})}{=}} \Sa{eqnp after 1}{\standout{$\overset{\scriptscriptstyle(\ga{1})}{=}$}} % «p-if» (to ".p-if") % (c2m251stp 6 "p-if") % (c2m251sta "p-if") % (c2m251sda "p-if") \Sa {p}#1#2{\sa{1}{#1}\sa{2}{#2}\ga{p after 2}} \Sa{p after 2}{\ifgaundefined{p.\ga{1}.}\ga{pnormal after 2} \else \ga{pbox after 2} \fi} \Sa{pnormal after 2}{\ga{2}} \Sa{pbox after 2}{\standout{$\ga{2}$}} % Local Variables: % coding: utf-8-unix % ee-tla: "c2sd" % ee-tla: "c2m251sd" % End: