Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
# Many diagrams using diaglib.014. # Edrx 2000apr24. # (find-angg "LATEX/diaglib.014") # (find-angg ".emacs") # (set (make-local-variable 'ee-temp-bounded-function) 'eediag-bounded) # (find-e20node "Locals") (query-replace-regexp "^\\(epsfile \\([!-~]*\\)\n\\)" "# «\\2»\n\\1") # New stuff to make this run with recent versions of eev, 2005mar08: # (find-es "tcl" "newdiaglib") (defun eediag (s e) (interactive "r") (ee-write s e "cd ~/LATEX; cat > $EEVTMPDIR/ee.diag <<'--%%--'\nsource diaglib.014\n" "\n--%%--\nwish $EEVTMPDIR/ee.diag &\n")) (eeb-define 'eediag-bounded 'eediag "----------\n" "\n#----------" t t) Diagramas da minha tese de mestrado: # «.variac» (to "variac") # «.categs0» (to "categs0") # «.assuntos» (to "assuntos") # «.diamond1» (to "diamond1") # «.diamond2» (to "diamond2") # «.diamond3» (to "diamond3") # «.construnat1» (to "construnat1") # «.naoplanar» (to "naoplanar") # «.planar» (to "planar") # «.sombra1» (to "sombra1") # «.sombra2» (to "sombra2") # «.functor0» (to "functor0") # «.functor1» (to "functor1") # «.functor2» (to "functor2") # «.tn1» (to "tn1") # «.godement» (to "godement") # «.adj-excoer» (to "adj-excoer") # «.prod1» (to "prod1") # «.prod2» (to "prod2") # «.adj-sqrab» (to "adj-sqrab") # «.adj-sqrabc» (to "adj-sqrabc") # «.adj-sqrbcd» (to "adj-sqrbcd") # «.adj-sqrexs» (to "adj-sqrexs") # «.adj-bij» (to "adj-bij") # «.adj-func1» (to "adj-func1") # «.adj-Rid» (to "adj-Rid") # «.adj-Rcomp» (to "adj-Rcomp") # «.adj-demabc» (to "adj-demabc") # «.adj-dembcd» (to "adj-dembcd") # «.adj-big2» (to "adj-big2") # «.adj-pipa» (to "adj-pipa") # «.adj-2iso» (to "adj-2iso") # «.prod3» (to "prod3") # «.pblim» (to "pblim") # «.eqlim» (to "eqlim") # «.exlimit» (to "exlimit") # «.2pbs» (to "2pbs") # «.trads» (to "trads") # «.Tab2ab» (to "Tab2ab") # «.adj-sqrlog» (to "adj-sqrlog") # «.classif-pb» (to "classif-pb") # «.classif-ax» (to "classif-ax") # «.manifold» (to "manifold") # «.fibrados» (to "fibrados") # «.fib-TM» (to "fib-TM") Itatiaia: # «.itat1» (to "itat1") # «.cnatabcd» (to "cnatabcd") # «.adj-sqrab» (to "adj-sqrab") # «.itatiadjs» (to "itatiadjs") # «.adj-qrrab» (to "adj-qrrab") # «.adj-uid» (to "adj-uid") # «.adj-mkite» (to "adj-mkite") # «.adj-lkite» (to "adj-lkite") # «.monad1» (to "monad1") # «.monadel1» (to "monadel1") # «.monadel2» (to "monadel2") # «.monadel3» (to "monadel3") # «.monadel4» (to "monadel4") # «.monadel5» (to "monadel5") # «.monadalg1» (to "monadalg1") # «.monadalgm1» (to "monadalgm1") # «.monadRL1» (to "monadRL1") # «.monade1» (to "monade1") # «.monadedem1» (to "monadedem1") # «.monadq1» (to "monadq1") # «.adjid-bcL» (to "adjid-bcL") # «.adjid-bRc» (to "adjid-bRc") # «.kleisli1old» (to "kleisli1old") # «.kleisli1» (to "kleisli1") # «.kleisli2» (to "kleisli2") # «.kleisli2old» (to "kleisli2old") # «.kleisli3» (to "kleisli3") # «.kleisliadj0» (to "kleisliadj0") Outros: # «.fibrados2» (to "fibrados2") # «.iimplica» (to "iimplica") # «.iforall» (to "iforall") # «.classq» (to "classq") # «.condpowt» (to "condpowt") # «.adjspreslims» (to "adjspreslims") # «.linux-topics» (to "linux-topics") # «.clasubT1» (to "clasubT1") # «.clasubT2» (to "clasubT2") # «.pbfg» (to "pbfg") # «.boolpbs» (to "boolpbs") # «.heytprod» (to "heytprod") # «.clasubtt» (to "clasubtt") # «.funandQ» (to "funandQ") # «.funandQadj» (to "funandQadj") # «.funQto» (to "funQto") # «.histmat1» (to "histmat1") # «.histmat2» (to "histmat2") # «.netbasics» (to "netbasics") # «.escripts» (to "escripts") # «.adj-as-nt» (to "adj-as-nt") # «.kan1» (to "kan1") # «.adj-conv» (to "adj-conv") # «.cat-nts» (to "cat-nts") # «.adj-demabc-new» (to "adj-demabc-new") # «.limSetC» (to "limSetC") # «.monadresls» (to "monadresls") # «.abcd» (to "abcd") # «.idcond» (to "idcond") # «.preslim» (to "preslim") # «.dncforg» (to "dncforg") # «.diagxy1» (to "diagxy1") # «.phil1» (to "phil1") #------------------------------- # # Cap. 1: Introdução # #---- # Problema variacional # «variac» (to ".variac") epsfile variac # 5 # y j-->L # ^ 3 ^ ^ # \->|4 /-->I # s-->\ | /6 7 # 1 2 x # freetext s s 80 120 freetext x x 140 140 y y 100 100 j j 140 100 L L 180 100 freetext I I 200 120 auxiliary _xy * 120 120 auxiliary _xj * 140 120 auxiliary _xL * 160 120 morf s _xy e w morf x y nw se morf _xy _xj e w morf x j n s morf j L e w morf x L ne sw morf _xL I e w #------------------------------- # Primeira motivação para categorias # «categs0» (to ".categs0") epsfile categs0 freetext c c 140 96 freetext a a 100 140 a^b a^b 140 140 b b 180 140 freetext f f 115 111 g g 166 109 morf a^b a w e morf a^b b e w morf c a sw ne morf c b se nw morf c a^b s n #------------------------------- # lambda----Set-----NSA/SSA # | _//| \ | # | _/ / | \ | # | / | | \ | # DN------3ªI-----Topoi # | \ | | \/ | # | \/ | /\ | # | /\ | / \ | # Categs---Lógica---Intuic # # e mais: DN-NSA/SSA, DN-Intuic. # «assuntos» (to ".assuntos") epsfile assuntos freetext lambda lambda 100 100 freetext DN DN 100 140 freetext Categs Categs 100 180 freetext Set Set 160 100 freetext I3 3a.I 160 140 freetext Logica Logica 160 180 freetext NSA NSA/SSA 220 100 freetext Topoi Topoi 220 140 freetext Intuic Intuic 220 180 linha lambda DN s n linha lambda Set e w linha DN Categs s n linha DN Set nne sw linha DN I3 e w linha DN Logica sse nnw linha DN NSA ne sw linha DN Intuic se nw linha Categs Set nne ssw linha Categs Logica e w linha Set I3 s n linha Set NSA e w linha Set Topoi se nnw linha I3 Logica s n linha I3 Topoi e w linha I3 Intuic se nnw linha Logica Topoi nne ssw linha Logica Intuic e w linha NSA Topoi s n linha Topoi Categs sw ne linha Topoi Intuic s n #------------------------------- # # Cap. 2: Um pouco de ð-cálculo # #---- # (\x.+xx)((\y.-y2)5) # +((\y.-y2)5)((\y.-y2)5) # +((\y.-y2)5)((\z.-z2)5) # (\x.+xx)(-52) # +((\y.-y2)5)(-52) # (-52)((\z.-z2)5) # +(-52)(-52) # «diamond1» (to ".diamond1") epsfile diamond1 freetext a1 {(\x.+xx)((\y.-y2)5)} 195 63 freetext a2 {+((\y.-y2)5)((\y.-y2)5)} 157 88 freetext a3 {+((\y.-y2)5)((\z.-z2)5)} 155 113 freetext a4 {(\x.+xx)(-52)} 277 115 freetext a5 {+((\y.-y2)5)(-52)} 196 140 freetext a6 {+(-52)((\z.-z2)5)} 131 164 freetext a7 {+(-52)(-52)} 203 191 metaarrow' a1 ssw n a2 metaarrow' a1 sse n a4 metaarrow' a2 s n a3 metaarrow' a3 sse n a5 metaarrow' a3 ssw n a6 metaarrow' a4 s nne a7 metaarrow' a5 s n a7 metaarrow' a6 sse nnw a7 #------------------------------- # «diamond2» (to ".diamond2") epsfile diamond2 freetext A A 100 100 freetext B B 70 130 C C 130 130 freetext D D 100 160 morf A B sw ne morf A C se nw thin B D se nw thin C D sw ne #------------------------------- # «diamond3» (to ".diamond3") epsfile diamond3 freetext B B 100 100 D D 160 100 freetext A A 70 130 C C 130 130 E E 190 130 G G 250 130 freetext H H 100 160 I I 160 160 F F 220 160 freetext J J 130 190 K K 190 190 freetext L L 160 220 samedirs sw ne morf B A D C G F samedirs se nw morf B C D E E F samedirs se nw thin A H H J J L C I I K samedirs sw ne thin C H E I I J F K K L #------------------------------- # # Cap. 4: Categorias # #----- # Primeiro lero sobre construções naturais # # a->b # \ | # v vv # c->a' # «construnat1» (to ".construnat1") epsfile construnat1 freetext a a 100 100 b b 150 100 freetext c c 100 140 a' a' 150 140 morf a b e w metaarrow' a sw nw c :f: metaarrow' a s n c :g: morf a a' se nw b a' s n morf c a' e w freetext f f 90 120 freetext g g 106 120 freetext id id 131 114 #------------------------------- # Exemplo de um diagrama que nao é planar e # tem problemas com fontes e poços. # # a<-b->c # ^ |\^| # | v/vv # d->e->f # ^ / # |v # g # «naoplanar» (to ".naoplanar") epsfile naoplanar freetext a a 100 100 b b 140 100 c c 180 100 freetext d d 100 140 e e 140 140 f f 180 140 freetext g g 120 172 morf b a w e b c e w morf d a n s b e s n b f se nw e c ne sw c f s n morf d e e w e f e w morf g d nw se e g sw ne #------------------------------- # Exemplo pro teorema do diagrama planar # # a->b->c # \ | | # vv v # d->e # \ | # vv # f # «planar» (to ".planar") epsfile planar freetext a a 100 100 b b 140 100 c c 180 100 freetext d d 140 140 e e 180 140 freetext f f 180 180 morf a b e w b c e w morf a d se nw b d s n c e s n morf d e e w morf d f se nw e f s n #------------------------------- # Lema da sombra # # _____ # _______/ \ # / /\ \ # / / \ \ # / f1 / g1 v h1 v # a=====>b=====>c=====>d # f2 g2 h2 # «sombra1» (to ".sombra1") epsfile sombra1 freetext a a 100 100 b b 140 100 c c 180 100 d d 220 100 freetext f1 f1 120 90 f2 f2 120 116 freetext g1 g1 160 90 g2 g2 160 116 freetext h1 h1 200 90 h2 h2 200 116 metaarrow' a e w b :f1: metaarrow' a se sw b :f2: metaarrow' b e w c :g1: metaarrow' b se sw c :g2: metaarrow' c e w d :h1: metaarrow' c se sw d :h2: auxiliary /1 /1 115 75 /2 /2 165 75 auxiliary /3 /3 155 75 /4 /4 205 75 metaarrow a->c {[^ ne a] [^ n /1] [^ n /2] [^ nw c]} metaarrow b->d {[^ ne b] [^ n /3] [^ n /4] [^ nw d]} #------------------------------- # Aplicação do lema da sombra # # _____ # _______/ \ # / /\ \ # / / \ \ # / f1 / g v h1 v # b'====>a----->b=====>a' # f2 h2 # «sombra2» (to ".sombra2") epsfile sombra2 freetext b' b' 100 100 a a 140 100 b b 180 100 a' a' 220 100 freetext f1 f1 120 90 f2 f2 120 116 freetext g g 160 90 freetext h1 h1 200 90 h2 h2 200 116 freetext id1 id 140 58 id2 id 180 58 metaarrow' b' e w a :f1: metaarrow' b' se sw a :f2: metaarrow' a e w b :g: metaarrow' b e w a' :h1: metaarrow' b se sw a' :h2: auxiliary /1 /1 115 75 /2 /2 165 75 auxiliary /3 /3 155 75 /4 /4 205 75 metaarrow b'->b {[^ ne b'] [^ n /1] [^ n /2] [^ nw b]} metaarrow a->a' {[^ ne a] [^ n /3] [^ n /4] [^ nw a']} #------------------------------- # A condição que o funtor obedece # # >b- # / \ # a---->c # bF # / \ # aF--->cF # # «functor0» (to ".functor0") epsfile functor0 freetext a1 a 100 140 b1 b 140 120 c1 c 180 140 freetext a2 aF 100 175 b2 bF 140 155 c2 cF 180 175 morf a1 b1 ne w b1 c1 e nw a1 c1 e w morf a2 b2 ne w b2 c2 e nw a2 c2 e w R a1 a2 s n R b1 b2 s n R c1 c2 s n setdragxy a1 a2 setdragxy b1 b2 setdragxy c1 c2 setdragxy a2 b2 c2 #------------------------------- # Teoreminha de coerência para funtores: antes # # a # |\ # v v # b->c # | | # v v # d->e # «functor1» (to ".functor1") epsfile functor1 freetext a1 a 118 101 b1 b 100 140 c1 c 140 140 freetext d1 d 100 180 e1 e 140 180 morf a1 b1 sw ne a1 c1 se nw b1 c1 e w morf b1 d1 s n c1 e1 s n d1 e1 e w #------------------------------- # Teoreminha de coerência para funtores: depois # # a aF # |\ | \ # v v v v # b->c bF->cF # | | | | # v v v v # d->e dF->eF # «functor2» (to ".functor2") epsfile functor2 freetext a1 a 118 101 b1 b 100 140 c1 c 140 140 freetext d1 d 100 180 e1 e 140 180 morf a1 b1 sw ne a1 c1 se nw b1 c1 e w morf b1 d1 s n c1 e1 s n d1 e1 e w freetext a2 aF 140 113 b2 bF 122 152 c2 cF 162 152 freetext d2 dF 122 192 e2 eF 162 192 morf a2 b2 sw n a2 c2 se n b2 c2 e w morf b2 d2 s n c2 e2 s n d2 e2 e w setdragxy a1 a2 setdragxy b1 b2 setdragxy c1 c2 setdragxy d1 d2 setdragxy e1 e2 setdragxy a2 b2 c2 d2 e2 #------------------------------- # Transformações naturais # # a---->b # | | | | # | v | v # | aG--|>bG # | ^ | ^ # v/ v/ # aF--->bF # # «tn1» (to ".tn1") epsfile tn1 freetext a a 100 100 b b 142 104 freetext aF aF 95 150 freetext aG aG 120 127 setdragxy a b setdragxy aF aG deltatext a b aF bF bF {aF} aG bG bG {aG} samedirs e w morf a b aF bF aG bG samedirs ne sw morf aF aG bF bG samedirs s n R a aF b bF samedirs se nww L a aG b bG #------------------------------- # Transformações naturais: produto de Godement # # O desenho em ascii é tão horrível que eu troquei # por um bloco de caracteres aleatórios. # # 4G>PH=(f%d-@S[Wcf7p>Bup"dA^Gq|BH # W\.yON+oXZy1FewzLjP+jom6Hr:YX+m) # O>zYGbtA#$3oaJ3uOLHQ%#TcRjuN'E-y # 4H+P+;QMXpCpP6oSRQ]'~[>aa5a-A)w~ # lOBe@1JP>L8ln1[u%hSD9=cN>t&a:%*@ # 2\aI\oGj$rxCFs\+@Wi->?\L`&j?P_u( # %NKlE=NcI[o9kQ7?RtB'IR>'nTw>SurJ # v9=,i3#fzoa;Fp/iR4W}b:;j^hrz]:q` # *h2ei_fGt0Q:G0Eg(Y&g#QC2q]=\ys%+ # j>D!5J[>@pa-o@;[e`f;+ifsvc7k@Bw- # spLHcm|)4bppQlKkp]oWO)pT/%~yVw93 # 2l@Nb\GM6&|K&TrgZ6w`Q-Nzc<3]1B2m # #icone '' 'every 1 to 12 do {every 1 to 32 do writes(char(?94 + 32)); write()}' # «godement» (to ".godement") epsfile godement freetext a a 99 73 freetext b b 234 73 freetext aF aF 82 142 freetext aG aG 119 115 freetext aFH aFH 63 195 freetext aFK aFK 112 212 setdragxy a b setdragxy aF aG setdragxy aFH aFK deltatext aF aG aFH aGH aGH {aG} aFK aGK aGK {aFK} deltatext a b aF bF bF {aF} aG bG bG {aG} deltatext a b aFH bFH bFH {aFH aFK} aGH bGH bGH {aG} deltatext a b aFK bFK bFK {aFK} aGK bGK bGK {aFK} samedirs e w morf a b aF bF aG bG aFH bFH aFK bFK aGH bGH aGK bGK samedirs ne sw morf aF aG bF bG aFH aGH bFH bGH aFK aGK bFK bGK samedirs see nw morf aFH aFK aGH aGK bFH bFK bGH bGK samedirs s n R a aF b bF samedirs se n L a aG b bG samedirs ssw n R aF aFH aG aGH bF bFH bG bGH samedirs sse n L aF aFK aG aGK bF bFK bG bGK #------------------------------- # Teoreminha de coerencia para adjuncoes (exemplo) # # a-->b-->c # | | | aR->bR->cR # v v v | | | # d-->eL->fL v v v # | | | dR->e-->f # v v v | | | # gL->hL->iL v v v # g-->h-->i # «adj-excoer» (to ".adj-excoer") epsfile adj-excoer freetext a a 100 100 b b 150 100 freetext d d 100 150 freetext aR aR 133 126 deltatext a d d g gL {} deltatext a b b c c {} d e eL {b} e f fL {b} g h hL {b} h i iL {} deltatext a aR b bR bR {aR} c cR cR {aR} d dR dR {aR} e eR e {aR} deltatext a aR f fR f {aR} g gR g {aR} h hR h {aR} i iR i {aR} samedirs e w morf a b b c d e e f g h h i samedirs e w morf aR bR bR cR dR eR eR fR gR hR hR iR samedirs s n morf a d d g b e e h c f f i samedirs s n morf aR dR dR gR bR eR eR hR cR fR fR iR samedirs se nw R a aR b bR c cR d dR samedirs nw se L eR e fR f gR g hR h iR i #------------------------------- # Produtos 1 # # x--->p # |\ /| # | \/ | # | /\ | # vv vv # a b # «prod1» (to ".prod1") epsfile prod1 freetext x x 100 100 p p 155 100 freetext a a 115 145 b b 140 145 morf x p e w x a s nnw x b se nnw p a sw nne p b s nne #------------------------------- # Produtos 2 # # /---->q # x--->p=| # |\ /|/| # | \/ / / # | /\/|/ # vv /vvv # a < b # «prod2» (to ".prod2") epsfile prod2 freetext x x 97 95 freetext p p 142 108 q q 169 94 freetext a a 131 149 b b 149 149 morf x p see w x q e w bij p q e sww morf x a s nnw x b se nnw morf p a sw n p b s n morf q a sw nne q b s nne #------------------------------- # # Cap. 4.8: Adjunções # #----- # Adjunções: a bijeção num quadradinho. # # a====>aR # | | # | <-> | # v v # bL<b # # «adj-sqrab» (to ".adj-sqrab") epsfile adj-sqrab vtorre 100 100 a a bL bL vtorre 140 100 aR aR b b R' a aR L' b bL auxiliary _1 * 105 120 auxiliary _2 * 135 120 bij _1 _2 e w #------------------------------- # Adjunções: a condição de naturalidade sobre abc (quadrada). # # a====>aR # | | # | | # v v # b====>bR # | | # | | # v v # cL<c # # «adj-sqrabc» (to ".adj-sqrabc") epsfile adj-sqrabc vtorre 100 100 a a b b cL cL vtorre 140 100 aR aR bR bR c c R' a aR b bR L' c cL #------------------------------- # Adjunções: a condição de naturalidade sobre bcd (quadrada). # # b====>bR # | | # | | # v v # cL<c # | | # | | # v v # dL<d # # «adj-sqrbcd» (to ".adj-sqrbcd") epsfile adj-sqrbcd vtorre 100 100 b b cL cL dL dL vtorre 140 100 bR bR c c d d R' b bR L' c cL d dL #------------------------------- # Adjunções: as duas mais interessantes # # x===>x[] a===>a^b # | | | | # | <-> | | <-> | # v v v v # mL<m b>c<c # # «adj-sqrexs» (to ".adj-sqrexs") epsfile adj-sqrexs quadrado-adj 100 100 a2 a a^b a^b b>c b>c c c quadrado-adj 200 100 x x xR {x[ ]} mL mL m m #------------------------------- # Adjunções: bijeção # # aR---->b # # # v v # aRL--->bL # ^ ^ # \ / # a # «adj-bij» (to ".adj-bij") epsfile adj-bij reflec 100 100 aR aR aRL aRL a a reflec 140 100 b b bL bL hmorf aR b aRL bL morf a bL ne s #------------------------------- # Adjunções: funtor 1 # # aR---->bR # # # v v # aRL-->bRL # ^ ^ ^ # \ / \ # a---->b # «adj-func1» (to ".adj-func1") epsfile adj-func1 reflec 100 100 aR aR aRL aRL a a reflec 140 100 bR bR bRL bRL b b hmorf aR bR aRL bRL a b morf a bRL ne s #------------------------------- # Adjunções: o funtor R aplicado à identidade. # # id # aR---->aR # # # v id v # aRL-->aRL # ^ ^ ^ # \ / id\ # a---->a # # «adj-Rid» (to ".adj-Rid") epsfile adj-Rid reflec 100 100 aR aR aRL aRL a a reflec 140 100 bR aR bRL aRL b a hmorf aR bR aRL bRL a b morf a bRL ne s R a aR n se R b bR n se freetext id1 id 119 91 freetext id2 id 123 131 freetext id3 id 142 163 #------------------------------- # Adjunções: o funtor R e a composição. # # # aR---->bR--->cR # # # v v v # aRL-->bRL-->cRL # ^ ^ ^ ^ ^ # \ / \ / \ # a---->b---->c # # «adj-Rcomp» (to ".adj-Rcomp") epsfile adj-Rcomp reflec 100 100 aR aR aRL aRL a a reflec 140 100 bR bR bRL bRL b b reflec 180 100 cR cR cRL cRL c c hmorf aR bR aRL bRL a b hmorf bR cR bRL cRL b c morf a bRL ne s morf b cRL ne s R a aR n se R b bR n se R c cR n se #------------------------------- # Adjunções: a condição de naturalidade sobre abc (demonstração). # # aR---->bR--->c # # # v v v # aRL-->bRL--->cL # ^ ^ ^ ^ # \ / \ / # a---->b # # # «adj-demabc» (to ".adj-demabc") epsfile adj-demabc reflec 100 100 aR aR aRL aRL a a reflec 140 100 bR bR bRL bRL b b reflec 180 100 c c cL cL hmorf aR bR aRL bRL a b hmorf bR c bRL cL morf a bRL ne s morf b cL ne s R a aR n se R b bR n se #------------------------------- # Adjunções: a condição de naturalidade sobre bcd (demonstração). # # bR---->c---->d # # # v v v # bRL--->cL--->dL # ^ ^ # \ / # b # # # «adj-dembcd» (to ".adj-dembcd") epsfile adj-dembcd reflec 100 100 bR bR bRL bRL b b reflec 140 100 c c cL cL reflec 180 100 d d dL dL hmorf bR c bRL cL hmorf c d cL dL morf b cL ne s R b bR n se #------------------------------- # Adjunções: uma coisa grande entre os nossos dois funtores lógicos. # # b>c'<-----b>c<-----a<----a' # # # v v v v # b&(b>c')<--b&(b>c)<--b&a<--b&a' # \ / \ / # \ / \ / # v v v v # c'<-------c # «adj-big2» (to ".adj-big2") epsfile adj-big2 freetext bc' b>c' 100 100 bc b>c 165 100 freetext bbc' b^(b>c') 100 150 freetext c' c' 144 180 deltatext bc' bc bc a a {} a a' a' {} deltatext bc' bc bbc' bbc b^(b>c) {} bbc ba b^a {} ba a'b b^a' {} deltatext bc' bc c' c c {} samedirs w e morf a' a a bc bc bc' a'b ba ba bbc bbc bbc' c c' samedirs s n R bc' bbc' bc bbc a ba a' a'b morf bbc c' s ne morf ba c s ne morf bbc' c' s nw morf bbc c s nw L c' bc' n se L c bc n se #------------------------------- # Adjunções: demonstração de que duas adjuntas são isomorfas. # # aR--->aR'--->aR # # # v v v # aRL->aR'L-->aRL # ^ ^ ^ # \ | / # ---a--- # «adj-pipa» (to ".adj-pipa") epsfile adj-pipa freetext aR aR 100 100 aR' aR' 140 100 freetext aRL aRL 100 140 freetext a a 140 170 deltatext aR aR' aR' aR2 aR {} aRL aR'L aR'L {} aR'L aRL2 aRL {} samedirs e w morf aR aR' aR' aR2 aRL aR'L aR'L aRL2 samedirs s n L aR aRL aR' aR'L aR2 aRL2 morf a aRL nw sse a aR'L n s a aRL2 ne ssw #------------------------------- # Adjunções: TN entre duas adjuntas pro mesmo funtor. # # aR--->bR # \ \ # aR'-->bR' # v v # aRL->bRL # ^\ v ^ \v # | aR'L->bR'L # \ ^ \ ^ # a---->b # # «adj-2iso» (to ".adj-2iso") epsfile adj-2iso freetext aR aR 100 100 bR bR 160 100 aR' aR' 130 120 aRL aRL 100 140 freetext a a 115 185 deltatext aR aRL aR' aR'L aR'L {} deltatext aR bR aR' bR' bR' {} aRL bRL bRL {} aR'L bR'L bR'L {} a b b {} samedirs e w morf aR bR aR' bR' aRL bRL aR'L bR'L a b samedirs sse nnw morf aR aR' bR bR' aRL aR'L bRL bR'L samedirs s n L aR aRL bR bRL aR' aR'L bR' bR'L samedirs nw s morf a aRL b bRL samedirs ne s morf a aR'L b bR'L #------------------------------- # # Sec. 4.10: Limites # #---- # Produto de três caras # «prod3» (to ".prod3") epsfile prod3 freetext x x 100 100 Plong (a,b,c) 160 100 freetext a a 115 150 b b 130 150 c c 145 150 auxiliary P P 160 100 morf x Plong e w morf x a s nnw x b sse nnw x c se nnw morf P a sw nne P b ssw nne P c s nne #------------------------------- # Pullback # «pblim» (to ".pblim") epsfile pblim freetext a a 120 140 freetext b b 140 115 freetext c c 140 140 freetext x x 35 55 freetext Plong (a,b)|c 108 55 auxiliary P P 108 55 setdragxy Plong P morf x Plong e w a c e w b c s n morf x a s nw x c sse nw x b se nw morf P a s nnw P c sse nnw P b se nnw #------------------------------- # Equalizador # «eqlim» (to ".eqlim") epsfile eqlim freetext x x 80 100 E a|f=g 140 100 freetext a a 140 160 b b 172 160 freetext f f 151 152 g g 155 174 morf x E e w morf x a se nw x b see nw morf E a s n E b sse nnw metaarrow' a e w b :f: metaarrow' a se sw b :g: #------------------------------- # Um limite grandão, versão nova. # «exlimit» (to ".exlimit") epsfile exlimit freetext a a 105 165 freetext b b 136 173 freetext c c 168 155 freetext d d 196 154 freetext L L 169 67 freetext x x 90 67 freetext f f 121 163 freetext g g 152 151 freetext h h 158 175 freetext k k 180 148 metaarrow' a e w b metaarrow' c w ne b :f: metaarrow' c sw e b :g: metaarrow' c e w d morf x L e w morf L a sw ne L b sw n L c s n L d se n morf x a sw n x b s nw x c se nw x d se nw #------------------------------- # Dois pullbacks colados. # «2pbs» (to ".2pbs") epsfile 2pbs freetext x x 59 82 a' a' 87 82 freetext a a 100 100 b b 140 100 c c 180 100 freetext d d 100 140 e e 140 140 f f 180 140 samedirs e w morf a b b c d e e f samedirs s n morf a d b e c f morf a' c e nw a' d s nw x a see w x a' e w #------------------------------- # # Cap. 5: O teorema da dedução # #---- # DN<--->DN+T # .. ^ # ../. # / .. # / v # CCC<-->CCC+T # «trads» (to ".trads") epsfile trads freetext DN DN 100 100 freetext DN+T DN+T 160 100 freetext CCC CCC 100 160 freetext CCC+T CCC+T 160 160 morf DN DN+T e w DN+T DN sw se morf CCC CCC+T e w CCC+T CCC sw se # (find-fline "gray50.bmp") set ArrowOptions(dim) \ [concat $ArrowOptions(m) -stipple @gray50.bmp] morf CCC DN+T nne ssw metaarrow' DN sse nnw CCC+T {} dim #------------------------------- # Explicações sobre o isomorfismo entre §->(a->b) e a->b. # b>c<---T T==>T^b<->b # | | # | | # v v v v # b^(b>c)<--T^b<->b b>c<==c # \ / # v v # c # # a1a2 b1b2b5 # a3a4a5 b3b4 # a6 # «Tab2ab» (to ".Tab2ab") epsfile Tab2ab reflec' 100 100 a1 b>c a3 b^(b>c) a6 c reflec' 170 100 a2 T a4 T^b hmorf' a2 a1 a4 a3 morf a4 a6 ssw ne L a6 a1 n se freetext a5 b 210 150 bij a4 a5 e w freetext b1 T 260 100 b2 T^b 310 100 b5 b 350 100 freetext b3 b>c 260 150 b4 c 310 150 morf b1 b3 s n b2 b4 s n bij b2 b5 e w R b1 b2 e w L b4 b3 w e setdragxy a1 a2 a3 a4 a5 a6 setdragxy b1 b2 b3 b4 b5 #------------------------------- # # Cap. 6: A álgebra dos valores de verdade # #---- # Adjunções: /\ e -> como adjuntas # # A===>A^B # | | # | <-> | # v v # B>C<B # # «adj-sqrlog» (to ".adj-sqrlog") epsfile adj-sqrlog vtorre 100 100 A A B>C B>C vtorre 140 100 A^B A^B B B R' A A^B L' B B>C auxiliary _1 * 105 120 auxiliary _2 * 135 120 bij _1 _2 e w #------------------------------- # # Cap. 8: Topoi # #---- # Subobjetos e seus pullbacks amigos: # # a|T------\ # |\ v # (a,T)|t-->T (a,T)|t-->T a|T---->T # | | | | | | | # | | | | | | | # | | \ | | | | # v v vv v v v # a----->t a----->t a----->t # # «classif-pb» (to ".classif-pb") epsfile classif-pb quadrado 100 100 a1 (a,T)|t a2 T a3 a a4 t quadrado 190 100 b1 (a,T)|t b2 T b3 a b4 t quadrado 260 100 c1 a|T c2 T c3 a c4 t freetext b0 a|T 152 75 bij b0 b1 se nnw morf b0 b2 e nw morf b0 b3 s nw #------------------------------- # Axioma do classificador. # a'-->T # | | # |- | # v v v # a--->t # «classif-ax» (to ".classif-ax") epsfile classif-ax quadrado 100 100 a' a' T T a a t t auxiliary * * 124 113 metaarrow claxiom {[^+ [^ sw *] -15 0 -5 0 0 5 0 15]} thin # (find-fline "diaglib.013" "metaarrow") #------------------------------- # # Cap. ?: Onde nós gostaríamos de chegar # #---- # Variedades # # f # ^ # / # t->m--------->m' # ^ ^ ^ ^ # / \ / \ # v v v v # u v u' v' # # «manifold» (to ".manifold") epsfile manifold freetext t t 107 111 freetext f f 152 100 freetext m m 135 125 m' m' 190 125 freetext u u 120 160 u' u' 175 160 freetext v v 150 160 v' v' 205 160 morf t m e w m m' e w m f ne sw gbij u m n ssw gbij v m n sse gbij u' m' n ssw gbij v' m' n sse #------------------------------- # m<---p # ^ ^ # : : m<---p # v v ^ ^ # ui<-ui,gi : : # v v # ui<-ui,gi # # «fibrados» (to ".fibrados") epsfile fibrados fibrado 100 100 m m p p ui ui ui,gi ui,gi fibrado 164 124 n n q q vj vj vj,hj vj,hj morf m n see w morf p q e nww gmorf ui vj see w gmorf ui,gi vj,hj e nnw #------------------------------- # m<---Tm # ^ ^ # : : n<---Tn # v v ^ ^ # u<-u,u_t : : # v v # v<-v,v_t # # «fib-TM» (to ".fib-TM") epsfile fib-TM fibrado 100 100 p p Tp Tp u u u,u_t u,u_t fibrado 164 124 q q Tq Tq v v v,v_t v,v_t morf p q see w morf Tp Tq e nww gmorf u v see w gmorf u,u_t v,v_t e nnw #---- # Maio/99: notas de Itatiaia #------------------------------- # Primeira adjunção # # a===>a^b # | | # | <-> | # v v # b>c<c # # «itat1» (to ".itat1") epsfile itat1 quadrado-adj 100 100 a2 a a^b a^b b>c b>c c c #------------------------------- # Primeiro diagrama para construções naturais # # f g h # a---->b---->c---->d # # «cnatabcd» (to ".cnatabcd") epsfile cnatabcd freetext a a 100 100 b b 140 100 c c 180 100 d d 220 100 freetext f f 120 90 g g 160 90 h h 200 90 samedirs e w morf a b b c c d #------------------------------- # Adjunções: a bijeção num quadradinho. # # # «adj-sqrab» (to ".adj-sqrab") epsfile adj-sqrab vtorre 100 100 a a bL bL vtorre 140 100 aR aR b b R' a aR L' b bL auxiliary _1 * 105 120 auxiliary _2 * 135 120 bij _1 _2 e w #------------------------------- # Adjunções: muitas (Ititaia). # # a====>aR a===>a^b # | | | | # | | | <-> | 4 # v v v v # b====>bR b====>bR b====>bR b>c<c # | | | | | | # | <-> | | <-> | | <-> | # v v v v v v x===>x[] # cL<c cL<c cL<c | | # | | | <-> | 5 # | | v v # v v mL<m # 1 2 dL<d # # 3 # «itatiadjs» (to ".itatiadjs") epsfile itatiadjs quadrado-adj 100 100 b1 b bR1 bR cL1 cL c1 c quadrado-adj 170 100 b2 b bR2 bR cL2 cL c2 c quadrado-adj 240 100 b3 b bR3 bR cL3 cL c3 c freetext a2 a 170 60 aR2 aR 210 60 setdragxy a2 aR2 b2 bR2 cL2 c2 1_b2c2 2_b2c2 freetext dL3 dL 240 180 d3 d 280 180 setdragxy b3 bR3 cL3 c3 dL3 d3 1_b3c3 2_b3c3 samedirs s n morf a2 b2 aR2 bR2 cL3 dL3 c3 d3 R' a2 aR2 L' d3 dL3 quadrado-adj 310 60 x x xR {x[ ]} mL mL m m quadrado-adj 310 140 a4 a ab a^b bc b>c c4 c #------------------------------- # Adjunções: quadrado e retangulos, usando "a"s, "b"s e plics # # a'==>a'R # | | # | | # v v # a====>aR a====>aR a====>aR # | | | | | | # | <-> | | <-> | | <-> | # v v v v v v # bL<b bL<b bL<b # | | # | | # v v # 1 2 b'L<b' # # 3 # «adj-qrrab» (to ".adj-qrrab") epsfile adj-qrrab quadrado-adj 100 100 b1 a bR1 aR cL1 bL c1 b quadrado-adj 170 100 b2 a bR2 aR cL2 bL c2 b quadrado-adj 240 100 b3 a bR3 aR cL3 bL c3 b freetext a2 a' 170 60 aR2 a'R 210 60 setdragxy a2 aR2 b2 bR2 cL2 c2 1_b2c2 2_b2c2 freetext dL3 b'L 240 180 d3 b' 280 180 setdragxy b3 bR3 cL3 c3 dL3 d3 1_b3c3 2_b3c3 samedirs s n morf a2 b2 aR2 bR2 cL3 dL3 c3 d3 R' a2 aR2 L' d3 dL3 #------------------------------- # id # aR--->aR # # # v id v # aRL-->aRL # ^ ^ # \ / # a # # «adj-uid» (to ".adj-uid") epsfile adj-uid kite 100 100 a a aR1 aR aRL1 aRL aR2 aR aRL2 aRL freetext idR id 120 90 idRL id 120 130 #------------------------------- # x[]--->m # # # v v # x[]L--->mL # ^ ^ # \ / # x # # «adj-mkite» (to ".adj-mkite") epsfile adj-mkite kite 100 100 a x aR {x[ ]} aRL {x[ ]L} b m bL mL #------------------------------- # b>c<-----a # # # v v # (b>c)&b<--a&b # \ / # \ / # v v # c # «adj-lkite» (to ".adj-lkite") epsfile adj-lkite freetext bc b>c 100 100 a a 155 100 bbc (b>c)^b 100 140 c c 125 170 deltatext bc bbc a ba a^b {} samedirs s n R bc bbc a ba morf a bc w e ba bbc w e bbc c s nw ba c s ne #------------------------------- #epsfile adj-uid # OLD - use the other adj-uid diag instead # u # bLR--->b # # # v v # bLRL--->bL # ^ ^ # cou\ / id # bL reflec 100 100 bLR bLR bLRL bLRL bL0 bL reflec 140 100 b b bL bL hmorf bLR b bLRL bL morf bL0 bL ne s freetext cou cou 123 91 u u 97 159 id id 145 159 #------------------------------- # Mônadas # # eT mT # aT===>aTT<===aTTT # | e / m # id| /m # | / # v v # aT' # # «monad1» (to ".monad1") epsfile monad1 freetext aT aT 100 100 aTT aTT 145 100 aTTT aTTT 195 100 freetext aT' aT' 100 145 freetext eT eT 119 89 mT mT 171 88 freetext e e 117 111 m m 169 111 freetext id id 92 122 m' m 134 127 metaarrow' aT nee nww aTT :up: metaarrow' aTTT nww nee aTT :up: morf aT aTT see sww aTTT aTT sww see aT aT' s n aTT aT' ssw ne #------------------------------- # Mônadas: a categoria de Eilenbeg-Moore (1) # # a-->aT-->aTT # \ | | # id\f| ==> |fT # vv v # a--->aT # «monadel1» (to ".monadel1") epsfile monadel1 freetext a0 a 100 100 aT aT 140 100 aTT aTT 180 100 freetext a a' 140 140 aT' aT' 180 140 freetext id id 114 128 f f 134 118 fT fT 190 120 freetext *0 0 145 120 *1 1 175 120 aux *0 *1 morf a0 aT e w aT aTT e w morf a0 a se nw aT a s n aTT aT' s n morf a aT' e w T *0 *1 e w #------------------------------- # Mônadas: a categoria de Eilenbeg-Moore (2) # # a<---aT # | | # | ==> | # v v # b<---bT # «monadel2» (to ".monadel2") epsfile monadel2 freetext a a 100 100 aT aT 140 100 freetext b b 100 140 bT bT 140 140 freetext *0 0 105 120 *1 1 135 120 aux *0 *1 morf aT a w e morf a b s n aT bT s n morf bT b w e T *0 *1 e w #------------------------------- # Mônadas: a categoria de Eilenbeg-Moore (3) # # a'==>a'T<--a'T # | | | # | | ==> | # v v v # a====>aT<--aTT # | | | # | <-> | ==> | # v v v # b<====b<---bT # | | | # | | ==> | # v v v # b'<===b'<--b'T # «monadel3» (to ".monadel3") epsfile monadel3 freetext a0' a' 100 100 a1' a'T 140 100 a2' a'T 180 100 freetext a0 a 100 140 a1 aT 140 140 a2 aTT 180 140 freetext b0 b 100 180 b1 b 140 180 b2 bT 180 180 freetext b0' b' 100 220 b1' b' 140 220 b2' b'T 180 220 freetext *0 * 145 120 *1 * 175 120 freetext *2 * 145 160 *3 * 175 160 freetext *4 * 145 200 *5 * 175 200 freetext *6 * 105 160 *7 * 135 160 aux *0 *1 *2 *3 *4 *5 *6 *7 samedirs w e morf a2' a1' a2 a1 b2 b1 b2' b1' samedirs s n morf a0' a0 a1' a1 a2' a2 a0 b0 a1 b1 a2 b2 b0 b0' b1 b1' b2 b2' samedirs e w R a0' a1' a0 a1 samedirs w e L b1 b0 b1' b0' samedirs e w T *0 *1 *2 *3 *4 *5 bij *6 *7 e w #------------------------------- # Mônadas: a categoria de Eilenbeg-Moore (4) # # b====>bT<--bTT # | | | # | <-> | ==> | # v v v # b<====b<---bT # «monadel4» (to ".monadel4") epsfile monadel4 freetext a0 b 100 100 a1 bT 140 100 a2 bTT 180 100 freetext b0 b 100 140 b1 b 140 140 b2 bT 180 140 freetext *0 * 105 120 *1 * 135 120 freetext *2 * 145 120 *3 * 175 120 aux *0 *1 *2 *3 freetext f f 146 113 f1 f 160 149 fT fT 189 119 freetext m m 162 91 id id 91 118 R a0 a1 e w morf a2 a1 w e a0 b0 s n a1 b1 s n a2 b2 s n b2 b1 w e L b1 b0 w e bij *0 *1 e w T *2 *3 e w #------------------------------- # Mônadas: a categoria de Eilenbeg-Moore (5) # # a====>aT<--aTT # | | | # | <-> | ==> | # v v v # aT<===aT<--aTT # «monadel5» (to ".monadel5") epsfile monadel5 freetext a0 a 100 100 a1 aT 140 100 a2 aTT 180 100 freetext b0 aT 100 140 b1 aT 140 140 b2 aTT 180 140 freetext *0 * 105 120 *1 * 135 120 freetext *2 * 145 120 *3 * 175 120 aux *0 *1 *2 *3 freetext m1 m 159 91 freetext m2 m 160 149 freetext m3 e 91 121 R a0 a1 e w morf a2 a1 w e a0 b0 s n a1 b1 s n a2 b2 s n b2 b1 w e L b1 b0 w e bij *0 *1 e w T *2 *3 e w #------------------------------- # Mônadas: álgebras # # e pT # a--->aT<===aTT # | / m # id| /p # | / # v v # a' # # «monadalg1» (to ".monadalg1") epsfile monadalg1 freetext a a 100 100 aT aT 145 100 aTT aTT 195 100 freetext a' a' 100 145 freetext e e 121 92 pT pT 171 88 freetext m m 169 111 freetext id id 92 122 p p 131 126 metaarrow' aTT nww nee aT :up: morf a aT e w aTT aT sww see a a' s n aT a' ssw ne #------------------------------- # Mônadas: morfismos de álgebras # # p # c<--cT # | | # f| |fT # v q v # d<--dT # # «monadalgm1» (to ".monadalgm1") epsfile monadalgm1 freetext c c 100 100 cT cT 140 100 freetext d d 100 140 dT dT 140 140 freetext p p 120 90 f f 92 120 fT fT 150 120 q q 120 131 morf cT c w e c d s n cT dT s n dT d w e #------------------------------- # Mônadas: os dois funtores da adjunção # # m # a>aT<--aTT # | | | # f| |fT |fTT # v v v # b>bT<--bTT # m # # p # c<===c<---cT # | | | # g| |g |gT # v v v # d<===d<---dT # q # # «monadRL1» (to ".monadRL1") epsfile monadRL1 freetext a a 100 100 aT aT 140 100 aTT aTT 180 100 freetext b b 100 140 bT bT 140 140 bTT bTT 180 140 freetext c c 100 180 c' c 140 180 cT cT 180 180 freetext d d 100 220 d' d 140 220 dT dT 180 220 freetext f f 91 120 fT fT 150 120 fTT fTT 192 120 freetext m m 160 90 m' m 160 150 morf aTT aT w e a b s n aT bT s n aTT bTT s n bTT bT w e R' a aT R' b bT freetext g g 91 200 g' g 148 200 gT gT 191 200 freetext p p 160 170 q q 160 229 morf cT c' w e c d s n c' d' s n cT dT s n dT d' w e L' c' c L' d' d #------------------------------- # Mônadas: o "eigen" como unidade # # m # b>bT<--bTT # | | | # e| |id |id # v v m v # bT<==bT<--bTT # | | | # g| |g |gT # v v v # c<===c<---cT # q # # «monade1» (to ".monade1") epsfile monade1 freetext x1 b 100 100 x2 bT 140 100 x3 bTT 180 100 freetext x4 bT 100 140 x5 bT 140 140 x6 bTT 180 140 freetext x7 c 100 180 x8 c 140 180 x9 cT 180 180 R' x1 x2 L' x5 x4 L' x8 x7 samedirs w e morf x3 x2 x6 x5 x9 x8 samedirs s n morf x1 x4 x2 x5 x3 x6 x4 x7 x5 x8 x6 x9 freetext m1 m 160 92 e e 92 120 id1 id 149 120 id2 id 189 120 freetext m2 m 160 132 g1 g 92 160 g2 g 147 160 gT gT 190 160 freetext q q 160 187 #------------------------------- # Mônadas: o "eigen" como unidade (demonstração, estranha) # # e # b--->bT' # / | / | \ # / e|>|eT \ # | vv v | # f| bT<-bTT |fT # | | | | # \ g|>|gT / # v v v v # c<---cT # q # # «monadedem1» (to ".monadedem1") epsfile monadedem1 freetext b b 100 100 bT' bT' 140 100 freetext bT bT 100 140 bTT bTT 140 140 freetext c c 100 180 cT cT 140 180 freetext e e 93 122 eT eT 149 122 freetext g g 93 158 gT gT 149 158 freetext f f 65 140 fT fT 180 140 freetext e' e 120 92 m m 122 146 q q 122 187 morf b bT' e w b bT s n bT' bT sw ne bT' bTT s n morf bTT bT w e bT c s n bTT cT s n cT c w e auxiliary e1 * 105 120 e2 * 135 120 auxiliary g1 * 105 160 g2 * 135 160 R' e1 e2 R' g1 g2 auxiliary f' * 47 140 fT' * 193 140 metaarrow b->c {[^ w b] [^ c f'] [^ w c]} metaarrow bT'->cT {[^ e bT'] [^ c fT'] [^ e cT]} #------------------------------- # Mônadas: o zeta (i.e., q) como counidade # # m # a>aT<--aTT # | | | # f| |fT |fTT # v v m v # b>bT<--bTT # | | | #id| |q |qT # v v q v # b<===b<----bT # # «monadq1» (to ".monadq1") epsfile monadq1 freetext x1 a 100 100 x2 aT 140 100 x3 aTT 180 100 freetext x4 b 100 140 x5 bT 140 140 x6 bTT 180 140 freetext x7 b 100 180 x8 b 140 180 x9 bT 180 180 R' x1 x2 R' x4 x5 L' x8 x7 samedirs w e morf x3 x2 x6 x5 x9 x8 samedirs s n morf x1 x4 x2 x5 x3 x6 x4 x7 x5 x8 x6 x9 freetext m1 m 160 92 e e 92 120 id1 id 149 120 id2 id 189 120 freetext m2 m 160 132 g1 g 92 160 g2 g 147 160 gT gT 190 160 freetext q q 160 187 # (incompleto, né?) #------------------------------- # Adjunções: operações com unidades e counidades (b->cL => b'->cL') # # b' # <| # b>bR | # | | => v # | | bRL # | v | # | cLR | # v > | | # cL | | # <==v v # c==>cL' # # «adjid-bcL» (to ".adjid-bcL") epsfile adjid-bcL freetext b b 100 100 cL cL 100 160 freetext bR bR 140 100 cLR cLR 140 140 c c 140 180 freetext b' b' 180 80 bRL bRL 180 120 cL' cL' 180 180 samedirs s n morf b cL bR cLR cLR c b' bRL bRL cL' R b bR e w; R cL cLR nee sww; R b' bR sww nee L c cL nww see; L bR bRL see nww; L c cL' e w #------------------------------- # Adjunções: operações com unidades e counidades (b->cL => b'->cL') # # bR'<b # | |> # | | bR # | v <==| # | bRL | # v | | # cLR | | # | <v v # | cL<==c # v ==> # c' # # «adjid-bRc» (to ".adjid-bRc") epsfile adjid-bRc freetext bR' bR' 100 100 cLR cLR 100 160 c' c' 100 200 freetext b b 140 100 bRL bRL 140 140 cL cL 140 180 freetext bR bR 180 120 c c 180 180 samedirs s n morf bR' cLR cLR c' b bRL bRL cL bR c R b bR' w e; R cL cLR nww see; R b bR see nww L c' cL nee sww; L bR bRL sww nee; L c cL w e #------------------------------- # Kleisli 1 (antigo, obsoleto) # # b # |> # e| b bT # v <== \ \ # bT \g \gT # | v v # gL| c cT<-cTT # v <== m # cT # # «kleisli1old» (to ".kleisli1old") epsfile kleisli1old freetext b' b 100 80 bT' bT 100 120 cT' cT 100 160 freetext b b 140 100 bT bT 175 100 freetext c c 140 140 cT cT 175 140 cTT cTT 216 140 freetext e e 92 100 gL gL 90 140 g g 162 115 gT gT 206 116 m m 196 147 morf b' bT' s n bT' cT' s n b cT se nw bT cTT se nw cTT cT w e R b' b see nww L b bT' sww nee L c cT' sww nee #------------------------------- # Kleisli 1 # # a # \ # v # b bT # \ \ # v v # c cT<-cTT # \ \ \ # v v v # d dT<-dTT<-dTTT # # «kleisli1» (to ".kleisli1") epsfile kleisli1 kleislirow 100 100 a kleislirow 100 140 b bT kleislirow 100 180 c cT cTT kleislirow 100 220 d dT dTT dTTT samedirs se nw morf a bT b cT c dT samedirs w e morf cTT cT dTT dT samedirs se nnw morf bT cTT cT dTT cTT dTTT samedirs w e morf dTTT dTT setdragxy bT cT dT cTT dTT dTTT setdragxy cTT dTT dTTT #------------------------------- # Kleisli 2 # # a # \ # \ # v # b-->bT # \ \ # v v # cT'->cTT' # | / \ # v v \ # c-->cT \ # \ \ \ # v v v # dT'->dTT'<-dTTT' # | / / # v v v # d-->dT<--dTT # # «kleisli2» (to ".kleisli2") epsfile kleisli2 kleislirow 100 100 a kleislirow 100 140 b bT kleislirow 100 180 {} cT' cTT' kleislirow 100 205 c cT kleislirow 100 245 {} dT' dTT' dTTT' kleislirow 100 270 d dT dTT samedirs se nw morf a bT b cT' c dT' samedirs e w morf b bT cT' cTT' c cT dT' dTT' d dT thin bT cTT' se nnw cTT' dTTT' s n cT dTT' se nnw samedirs s n morf cT' cT dT' dT samedirs sw ne morf cTT' cT dTT' dT samedirs w e morf dTTT' dTT' dTT dT thin dTTT' dTT ssw nee #------------------------------- # Kleisli 2old # # a # |\ # v v # b->bT # |\ \ # v v v # c->cT<-cTT # |\ \ \ # v v v v # d->dT<-dTT<-dTTT # # «kleisli2old» (to ".kleisli2old") epsfile kleisli2old kleislirow 100 100 a kleislirow 100 140 b bT kleislirow 100 180 c cT cTT kleislirow 100 220 d dT dTT dTTT samedirs se nw morf a bT b cT c dT samedirs w e morf cTT cT dTT dT samedirs se nnw thin bT cTT cT dTT cTT dTTT samedirs w e thin dTTT dTT # samedirs s n morf a b b c c d samedirs e w morf b bT c cT d dT #------------------------------- # Kleisli 3 # # b->bT # \ \ # v v # cT'>cTT # | / # vv # cT # # «kleisli3» (to ".kleisli3") epsfile kleisli3 kleislirow 100 100 b bT kleislirow 100 140 "" cT' cTT kleislirow 100 170 "" cT morf b bT e w b cT' se nw cT' cTT e w cT' cT s n cTT cT ssw ne thin bT cTT se nnw #------------------------------- # Kleisli: os dois funtores # # a>a # | |\ # f| |f\fK # v v ev # b>b-->bT # | \ # | \ # v v # cT<==c cT # | \ \ # gL| \g \gT # v v v # dT<==d dT<--dTT # m # # «kleisliadj0» (to ".kleisliadj0") epsfile kleisliadj0 proc krow {x y tag txt args} { freetext $tag $txt $x $y eval kleislirow [expr $x + 40] $y $args } krow 100 100 a0 a a krow 100 140 b0 b b bT krow 100 180 c0 cT c cT krow 100 220 d0 dT d dT dTT freetext f0 f 94 121 f f 144 121 fK fK 165 115 e e 152 133 freetext gL gL 90 200 g g 164 193 gT gT 209 191 m m 197 227 samedirs s n morf a0 b0 a b b0 c0 c0 d0 samedirs se nw morf a bT b cT c dT morf b bT e w cT dTT se nnw dTT dT w e R' a0 a R' b0 b L' c c0 L' d d0 #------------------------------- # Fim das notas de Itatiaia (acho) #------------------------------- # p f y_k # # m m,f_i m,y_ik # # x_j x_j,f_i x_j,y_ik # «fibrados2» (to ".fibrados2") epsfile fibrados2 freetext p p 107 100 freetext f f 140 100 freetext y y_k 200 100 freetext m m 100 140 freetext mf m,f_i 140 140 freetext my m,y_ik 200 140 freetext x x_j 100 188 freetext xf x_j,f_i 140 188 freetext xy x_j,y_ik 200 188 gbij p mf se nw f y e w m x s n gbij mf my e w mf xf s n my xy s n xf xy e w #------------------------------- # A internalização do "implica" num topos. # # T->t|P T->t|Q # ---------------- # a->t|P a->t|Q T->t|P,t|Q # -------------- -------------- # a->t|P,t|Q t|P,t|Q->t|P^Q # ---------------------------- # a->t|P^Q a->t|P # -------------------------- # a|P->Q->a # ---------- # a->t|P->Q # «iimplica» (to ".iimplica") epsfile iimplica freetext a a 157 108 freetext T T 152 147 freetext t|P t.P 109 182 freetext t|Q t.Q 218 182 freetext t|P,t|Q t.P,t.Q 165 182 freetext t|P^Q t.P^Q 203 220 freetext a|P->Q a|P->Q 157 72 freetext t|P->Q t.P->Q 212 108 morf a t|P sw n morf a t|Q se n morf a t|P,t|Q s n gmorf t|P,t|Q t|P w e gmorf t|P,t|Q t|Q e w morf T t|P sw ne morf T t|Q se nw morf T t|P,t|Q s nnw morf t|P,t|Q t|P^Q s nnw morf a t|P^Q sse n morf a|P->Q a s n morf a t|P->Q e w #------------------------------- # A internalização do "para todo". # «iforall» (to ".iforall") epsfile iforall freetext a|VbP a|VbP 102 96 freetext t.VbP t.VbP 148 128 freetext a a 103 141 freetext a,b a,b 167 145 freetext T T 192 177 freetext b b 182 181 freetext b->t.T (b->t).T 118 208 freetext t.T t.T 179 212 freetext b->t.P (b->t).P 101 227 freetext t.P t.P 159 231 morf a|VbP a s n morf a t.VbP ne w R a a,b e w L t.T b->t.T w e L t.P b->t.P w e morf a b->t.T sse n morf a b->t.P s nnw morf a,b T se nw morf T t.T ssw n morf a,b t.T s nnw morf a,b b sse nw morf b t.P ssw nne morf a,b t.P ssw n #------------------------------- # O axioma do classificador, escrito com montes de quantificadores. # # ý b'-->§ # # ý | pb | # v v # ý b--->t # Ý! # «classq» (to ".classq") epsfile classq freetext b' b' 100 100 T T 140 100 b b 100 140 t t 140 140 freetext V1 V 83 99 V2 V 85 120 V3 V 84 142 E! E! 119 154 freetext pb pb 116 113 morf b' T e w b' b s n T t s n b t e w #------------------------------- # A condição sobre os power objects, que vai implicar na existência de # todas as exponenciais. # # ý # ý a b,a--__ # | | -> # Ý! | ===> | t # | | > # v v /Î # b->t b,(b->t) # «condpowt» (to ".condpowt") epsfile condpowt freetext a a 100 100 b,a b,a 152 100 b->t b->t 100 140 freetext bbt b,(b->t) 152 140 t t 185 120 freetext V1 V 87 99 V2 V 173 97 E! E! 86 118 e e 183 138 auxiliary *1 * 105 120 *2 * 147 120 morf a b->t s n b,a bbt s n bbt t nne sw b,a t see nw R *1 *2 e w #------------------------------- # Functors with (left? right?) adjoints preserve limits. # # x > xR # /| /|| # v |\ v | \ # (a,b)|cL : | <= (a,b)|c : | # |\\ v |\ v # | \->bL <== |\->b # || \ | |:\ | # vv vv <== vv vv # aL-->cL <== a-->c # «adjspreslims» (to ".adjspreslims") epsfile adjspreslims freetext x x 96 85 xR xR 199 85 freetext abcL limL 75 120 freetext aL aL 120 142 freetext bL bL 90 168 freetext cL cL 118 171 freetext *0 * 129 87 *1 * 164 87 freetext *2 * 120 122 freetext *4 * 141 142 freetext *6 * 141 175 freetext *8 * 127 167 deltatext x xR abcL abc lim {} bL b b {} aL a a {} cL c c {} setdragxy x xR deltatext *0 *1 *2 *3 * {} *4 *5 * {} *6 *7 * {} *8 *9 * {} setdragxy *0 *1 aux *0 *1 *2 *3 *4 *5 *6 *7 *8 *9 R *0 *1 e w samedirs w e L *3 *2 *5 *4 *7 *6 *9 *8 morf x abcL sw nne x aL se n x bL s n x cL sse nw morf xR abc sw nne xR a se n xR b s n xR c sse nw morf abcL aL e nww abcL bL sse nnw abcL cL se nww morf abc a e nww abc b sse nnw abc c se nww morf aL cL s n bL cL e w a c s n b c e w #------------------------------- # «linux-topics» (to ".linux-topics") epsfile linux-topics freetext TeX TeX 220 139 freetext agrep agrep 144 222 freetext console console 149 125 freetext emacs emacs 169 182 freetext escripts escripts 220 192 freetext expect expect 343 188 freetext expectD {expect -D} 286 161 freetext gdb gdb 266 221 freetext glimpse glimpse 137 240 freetext glyphs glyphs 198 111 freetext less less 146 150 freetext makeg {make -g} 214 221 freetext man man 200 167 freetext pdsc pdsc 186 250 freetext perl perl 107 267 freetext perldb perldb 281 191 freetext postscript postscript 407 160 freetext psne psne 192 284 freetext regexps regexps 97 189 freetext sed sed 54 162 freetext tags tags 160 200 freetext tcl tcl 336 161 freetext tclb {tcl book} 373 134 freetext tclt {tcl tutorial} 346 109 freetext tk tk 315 132 freetext zsh zsh 229 257 proc star {center args} { foreach {tag2 d1 d2} $args {linha $center $tag2 $d1 $d2} } linha TeX escripts s n linha TeX glyphs n s linha agrep glimpse s n linha agrep makeg e w linha agrep pdsc e w linha agrep regexps nnw sse linha console glyphs ne sw linha console less s n linha emacs escripts see nww linha emacs regexps w e linha emacs tags s n linha escripts gdb se nw linha escripts makeg s n linha escripts man nnw s linha escripts tags w e linha expect expectD nw se linha expect tcl n s linha expectD gdb ssw nne linha expectD tcl e w linha gdb perldb n s linha less man e w linha less regexps sw nne linha makeg gdb e w linha makeg zsh s n linha pdsc zsh e w linha perl pdsc e w linha perl psne e w linha perl regexps n s linha postscript tclb nnw sse linha psne zsh e w linha regexps sed nnw sse linha tcl tclb ne sw linha tcl tclt n s linha tcl tk nw se linha tclt tk ssw ne linha emacs glyphs n ssw linha expectD perldb s n linha tclb tk w e #------------------------------- #------------------------------- # Diagrama do classificador pros subobjs do T # # ! # Ý! T|P--->T # # !| | T # | | # v P v # T---->t # fa # «clasubT1» (to ".clasubT1") epsfile clasubT1 freetext TP T|P 100 100 TR T 140 100 freetext TD T 100 140 t t 140 140 freetext ex! ex! 74 100 bang1 ! 120 92 bang2 ! 87 117 freetext Tarr T 150 120 P P 123 131 fa fa 121 150 morf TP TR e w TP TD s n TR t s n TD t e w #------------------------------- # idem, mas em notação usual # # S--->1 # # | |T # | | # v v # 1--->Om # fa f # «clasubT2» (to ".clasubT2") epsfile clasubT2 freetext TP S 100 100 TR 1 140 100 freetext TD 1 100 140 t Om 140 140 freetext Tarr T 150 120 freetext fa {fa f} 118 132 morf TP TR e w TP TD s n TR t s n TD t e w #------------------------------- # (a,b)|c--->b # # | |g # | | # v f v # a------>c # «pbfg» (to ".pbfg") epsfile pbfg freetext abc (a,b)|c 100 100 b b 140 100 freetext a a 100 140 c c 140 140 freetext f f 119 130 freetext g g 148 119 morf abc b e w abc a s n b c s n a c e w #------------------------------- # {}--->{T} {T}--->{T} # | | | | # | | | | # | | | | # v v v v # {T}-->{F,T} {T}-->{F,T} # «boolpbs» (to ".boolpbs") epsfile boolpbs freetext a1 {{ }} 100 100 b1 {{T}} 140 100 freetext c1 {{T}} 100 140 d1 {{F,T}} 140 140 freetext a2 {{T}} 180 100 b2 {{T}} 220 100 freetext c2 {{T}} 180 140 d2 {{F,T}} 220 140 freetext e1 1 113 161 freetext f1 2 134 152 freetext e2 3 200 161 freetext f2 4 226 152 aux e1 f1 e2 f2 morf a1 b1 e w a1 c1 s n b1 d1 s n morf a2 b2 e w a2 c2 s n b2 d2 s n metaarrow arr1 {[^ e c1] [^ c e1] [^ n f1]} metaarrow arr2 {[^ e c2] [^ c e2] [^ n f2]} #------------------------------- # T|A # / | \ # ý / | \ý # / | \ # / |ex! \ # v v v # T|P<---T|P&Q--->T|Q # «heytprod» (to ".heytprod") epsfile heytprod freetext x T|A 140 100 freetext a T|P 90 140 freetext ab T|P&Q 140 140 freetext b T|Q 190 140 freetext fa1 fa 105 114 freetext fa2 fa 177 116 freetext ex ex! 152 126 morf x a sw ne x ab s n x b se nw morf ab a w e ab b e w #------------------------------- # Diagrama do classificador pros subobjs do T # # T|P&Q-->T # # !| |T # | | # v P&Q v # T---->t_P&Q # # «clasubtt» (to ".clasubtt") epsfile clasubtt freetext a T|P&Q 100 100 freetext b T 162 100 freetext c T 100 140 freetext d t_P&Q 162 140 freetext bang1 ! 90 121 freetext T T 169 120 freetext arr P&Q 127 130 morf a b e w a c s n b d s n c d e w #------------------------------- # «funandQ» (to ".funandQ") epsfile funandQ freetext a T|A 100 100 b T|A&Q 157 100 freetext c T|B 100 140 d T|B&Q 157 140 morf a c s n b d s n R a b e w c d e w #------------------------------- # «funandQadj» (to ".funandQadj") epsfile funandQadj freetext a T|P 100 100 b T|P&Q 157 100 freetext c T|Q->R 100 140 d T|R 157 140 freetext *1 * 105 120 *2 * 152 120 aux *1 *2 morf a c s n b d s n bij *1 *2 e w R a b e w L d c w e #------------------------------- # «funQto» (to ".funQto") epsfile funQto freetext a T|Q->A 100 100 b T|A 157 100 freetext c T|Q->B 100 140 d T|B 157 140 morf a c s n b d s n L b a w e d c w e #------------------------------- # (eeman "3tk canvas" "ARC ITEMS") # (find-angg "LATEX/diaglib.014" "code arrays") # Beckmann p. 93 # «histmat1» (to ".histmat1") epsfile histmat1 freetext Oc O 200 200 freetext O O 200 206 freetext b1 b 179 184 freetext b2 b 170 194 freetext b3 b/2 279 189 freetext r1 r 137 207 freetext r2 r 164 148 freetext A A 96 200 freetext B B 132 116 freetext C C 104 156 freetext SC SC 237 178 freetext R R 300 200 aux R Oc blackify oncreate .c create arc 100 100 300 300 \ -start 0 -extent 180 -width 1 thinlinha A B e se A C e see B C se see B Oc se c C Oc see c C R see c #------------------------------- # «histmat2» (to ".histmat2") epsfile histmat2 oncreate .c create oval 100 100 310 310 -width 1 # oncreate .c create arc 100 100 310 310 -width 1 \ # -start 0 -extent 180 -style arc # oncreate .c create arc 100 100 310 310 -width 1 \ # -start 180 -extent 180 -style arc proc line {x1 y1 x2 y2} { oncreate .c create line $x1 $y1 $x2 $y2 -width 1 } set w0 100 set w1 170 set w2 240 set w3 310 foreach p [list $w0 $w1 $w2 $w3] { line $p $w0 $p $w3 line $w0 $p $w3 $p } line $w0 $w1 $w1 $w0 line $w0 $w2 $w1 $w3 line $w3 $w1 $w2 $w0 line $w3 $w2 $w2 $w3 #------------------------------- # «netbasics» (to ".netbasics") epsfile netbasics freetext sockets sockets 169 53 freetext HTTP HTTP 76 77 freetext apache apache 78 97 freetext CGIs CGIs 77 109 freetext TL {transport layer} 260 72 freetext ping ping 233 108 freetext ifconfig ifconfig 234 122 freetext route route 233 133 freetext ethernet ethernet 349 72 freetext PPP PPP 349 87 freetext PLIP PLIP 348 99 freetext inetd inetd 148 84 freetext lsof lsof 148 95 freetext DNS DNS 280 113 freetext NIS NIS 310 100 freetext tcpd tcpd 135 120 freetext logs logs 134 131 freetext PAM PAM 182 124 freetext ARP ARP 403 79 #------------------------------- # «escripts» (to ".escripts") epsfile escripts freetext _21 21 241 80 freetext anatocc anatocc 130 232 freetext angg angg 536 350 freetext anggsmil anggsmil 540 364 freetext bis bis 583 160 freetext bsd bsd 354 429 freetext cartas cartas 556 101 freetext cfengine cfengine 358 442 freetext clock clock 191 265 freetext console console 189 254 freetext contas contas 567 77 freetext coq coq 208 423 freetext corresp corresp 569 66 freetext crim crim 261 74 freetext debian-net debian-net 115 295 freetext debian debian 65 249 freetext debian.old debian.old 68 273 freetext debian0 debian0 63 261 freetext debiandev debiandev 59 225 freetext dos dos 238 67 freetext dpkg dpkg 66 236 freetext dual dual 540 324 freetext emacs emacs 369 502 freetext escripts escripts 404 491 freetext ethernet ethernet 496 322 freetext expect expect 109 170 freetext fl fl 231 424 freetext floppy floppy 55 308 freetext forth forth 215 79 freetext fortho fortho 237 92 freetext games games 296 99 freetext gdb gdb 131 220 freetext general general 534 416 freetext gimp gimp 295 111 freetext greenmatrix greenmatrix 559 114 freetext hardware hardware 52 322 freetext hsforth hsforth 233 56 freetext html html 150 146 freetext http http 154 158 freetext hw-cdrw hw-cdrw 429 74 freetext hw-eth hw-eth 494 309 freetext hw-parport hw-parport 64 344 freetext hw-sound hw-sound 343 239 freetext icon icon 181 376 freetext icq icq 443 414 freetext init init 185 242 freetext k22 k22 181 220 freetext kernel kernel 184 231 freetext latest latest 85 67 freetext localnet localnet 544 336 freetext locz locz 576 136 freetext lynx lynx 178 125 freetext mail mail 197 183 freetext maple maple 243 468 freetext math math 209 467 freetext mini mini 521 193 freetext mktclapp mktclapp 92 202 freetext modelcheck modelcheck 219 437 freetext modem modem 57 356 freetext mouse mouse 67 367 freetext mp3 mp3 350 260 freetext music music 347 249 freetext mysql mysql 133 440 freetext net net 507 333 freetext netbasics netbasics 548 312 freetext netscape netscape 206 136 freetext news news 195 156 freetext nonfree nonfree 571 53 freetext oldpage oldpage 584 202 freetext page page 584 215 freetext pam pam 540 300 freetext perl perl 151 180 freetext perl1 perl1 151 193 freetext potato potato 410 53 freetext potatocds potatocds 428 63 freetext print print 313 148 freetext ps ps 299 162 freetext python python 225 388 freetext raven10 raven10 573 126 freetext raven10b raven10b 580 147 freetext redhat redhat 520 441 freetext rest rest 518 429 freetext scheme scheme 165 402 freetext secret secret 556 90 freetext slink slink 520 451 freetext snarf snarf 138 109 freetext sql sql 133 428 freetext tcl tcl 112 159 freetext tese tese 305 133 freetext tex tex 278 136 freetext tex.old tex.old 277 150 freetext todo todo 586 187 freetext transp transp 587 173 freetext wget wget 148 122 freetext wiki wiki 109 183 freetext x x 248 115 freetext yard yard 521 204 freetext zsh zsh 118 122 #------------------------------- # «adj-as-nt» (to ".adj-as-nt") epsfile adj-as-nt freetext a0 a 101 101 freetext a0' a' 138 140 freetext b0 b 100 124 deltatext a0 a0' b0 b0' b' {} freetext a a 67 165 freetext aR aR 159 165 deltatext a0 a0' a a' a' {} aR a'R a'R {} deltatext a0 b0 a bL bL {} aR b b {} a' b'L b'L {} a'R b' b' {} morf b0 b0' se nw bL b'L sse nnw b b' se nw morf a0' a0 nw se a' a nw se a'R aR nnw sse morf a0 b0 s n a bL s n aR b s n morf a0' b0' s n a' b'L s n a'R b' s n set ArrowOptions(M) {-arrow last -width 2 -arrowshape {8 8 3} \ -stipple @gray50.bmp} proc M {args} { doarrows M $args } freetext * ** 67 177 deltatext a0 a0' * *' ** {} deltatext a aR * *R ** {} *' *'R ** {} aux * *' *R *'R M * *R e w *' *'R e w #------------------------------- # «kan1» (to ".kan1") epsfile kan1 freetext a a 100 100 freetext b b 160 100 freetext c c 100 160 freetext F F 128 89 freetext G G 91 133 freetext K K 121 124 freetext H H 137 145 R a b e w a c s n metaarrow' b sw ne c :K: R metaarrow' b sse e c :H: R #------------------------------- # «adj-conv» (to ".adj-conv") # The usual convention for R and L in adjunction diagrams epsfile adj-conv # a===>aL # | | # | <-> | # v v # bR<b # quadrado-adj 100 100 a a aL aL bR bR b b #------------------------------- # A category where the objects are natural transformations # # ========>aF' # // | # // v # // ==>aF==>aFH # // // | | # a'==>a | | # \\ \\ v v # \\ ==>aG==>aGH # \\ | # \\ v # ========>aG' # # «cat-nts» (to ".cat-nts") epsfile cat-nts foreach {v0 v1 v2 v3} {100 140 180 220} {} foreach {v0 v1 v2 v3} {115 145 175 205} {} freetext aF' a''F'' 220 $v0 freetext aF a'F' 180 $v1 aFH a'F'H 220 $v1 freetext a' a'' 100 160 a a' 140 160 freetext aG a'G' 180 $v2 aGH a'G'H 220 $v2 freetext aG' a''G'' 220 $v3 L a' aF' ne w L a aF ne w aF aFH e w L a' a e w L a aG se w aG aGH e w L a' aG' se w samedirs s n morf aF aG aF' aFH aFH aGH aGH aG' #------------------------------- # Adjunções: a condição de naturalidade sobre abc (demonstração). # Nessa versão L e R seguem a notação "oficial". # # aL---->bL--->c # # # v v v # aLR-->bLR--->cR # ^ ^ ^ ^ # \ / \ / # a---->b # # # «adj-demabc-new» (to ".adj-demabc-new") epsfile adj-demabc-new reflec 100 100 aL aL aLR aLR a a reflec 140 100 bL bL bLR bLR b b reflec 180 100 c c cR cR hmorf aL bL aLR bLR a b hmorf bL c bLR cR morf a bLR ne s morf b cR ne s R a aL n se R b bL n se #------------------------------- # Limits in a functor category can be taken pointwise (example) # # x1 # | \ # | x2 # v | x1 # x1--->x1 | <===== \ # \ \v x2 # x2--->x2 # | | # | | # v v # a13 # | \ # | a23 # v | (a13,a14)|a15 # a14--->a15 | => \ # \ \ v (a23,a24)|a25 # a24--->a25 # «limSetC» (to ".limSetC") epsfile limSetC freetext x13 x1 161 67 freetext x23 x2 193 97 freetext x14 x1 106 116 freetext x15 x1 160 115 freetext a13 a13 168 214 freetext x1 x1 296 101 freetext x2 x2 329 133 freetext a1 (a13,a14)|a15 306 244 freetext a2 (a23,a24)|a25 329 279 freetext _1 1 281 122 freetext _2 2 203 122 freetext _3 3 213 265 freetext _4 4 268 265 freetext _5 5 159 159 freetext _6 6 159 204 freetext _7 7 311 142 freetext _8 8 311 225 deltatext x13 x14 a13 a14 a14 {a13} deltatext x13 x15 a13 a15 a15 {a13} deltatext x13 x23 x14 x24 x2 {x14} x15 x25 x2 {x15} deltatext x13 x23 a13 a23 a23 {} a14 a24 a24 {} a15 a25 a25 {} setdragxy x13 x23 x14 x15 # setdragxy x14 x15 samedirs s n morf x13 x15 x23 x25 a13 a15 a23 a25 samedirs e w morf x14 x15 x24 x25 a14 a15 a24 a25 samedirs se nw morf x13 x23 x14 x24 x15 x25 samedirs se nnw morf a13 a23 a14 a24 a15 a25 morf x1 x2 se nw morf a1 a2 s n aux _1 _2 _3 _4 _5 _6 _7 _8 L _1 _2 w e R _3 _4 e w morf _5 _6 s n _7 _8 s n #------------------------------- # «monadresls» (to ".monadresls") # # Kleisli é inicial e Eilenberg-Moore é terminal na categoria das # resoluções de uma mônada epsfile monadresls freetext aK aK 116 93 freetext aL aL 78 118 freetext aE (aTT->aT)E 161 143 freetext a a 207 117 freetext bK bK 117 176 freetext bL bL 79 204 freetext bE (bTT->bT)E 161 229 freetext b bT 207 204 samedirs s n morf aK bK aL bL aE bE a b L a aK nw e R bK b e nw L a aL w e R bL b e w L a aE sw nne R bE b nne sw samedirs sw ne T aK aL bK bL samedirs se nw T aL aE bL bE #------------------------------- #------------------------------- # # Cap. 4: Categorias # #----- # O diagrama comutativo mais bobo # # a->b # | | # v v # c->d # «abcd» (to ".abcd") epsfile abcd freetext a a 100 100 b b 140 100 freetext c c 100 140 d d 140 140 morf a b e w morf c d e w morf a c s n morf b d s n #------------------------------- # Primeiro lero sobre construções naturais # # a-->a # # v v v # aF->aF # «idcond» (to ".idcond") epsfile idcond freetext a a 100 100 b a 140 100 freetext c aF 100 140 d aF 140 140 freetext _1 _1 120 100 _2 _2 120 140 aux _1 _2 morf a b e w morf c d e w R a c s n R b d s n R _1 _2 s n #------------------------------- # c=>a^F a^F # | | # | | # c=>a | <== a | # | | | | # | v <-> | v # | c=>b_c^F | (lim_c b_c)^F # v v # c=>b_c ==> lim_c b_c # «preslim» (to ".preslim") epsfile preslim freetext ca c=>a 100 100 a a 160 100 freetext cb c=>b_c 100 160 lb {lim_c b_c} 160 160 freetext caF c=>aF 130 70 aF aF 190 70 freetext cbF c=>b_c^F 130 130 lbF {(lim_c b_c)^F} 190 130 #------------------------------- # cat theory # # ðC^+ term RW SC tree RW ND tree # # ðC^+ term SW SC tree SW ND tree # # RW sequent RW term # # SW sequent SW term # «dncforg» (to ".dncforg") epsfile dncforg freetext SWSC {SW SC tree} 204 101 freetext RWSC {RW SC tree} 154 73 freetext SWND {SW ND tree} 304 101 freetext SWs {SW sequent} 204 159 freetext SWLt {\C+ term} 96 101 freetext catt {cat theory} 47 35 deltatext SWSC RWSC SWLt RWLt {\C+ term} {} deltatext SWSC RWSC SWND RWND {RW ND tree} {} SWs RWs {RW sequent} {} deltatext SWSC SWs SWND SWterm {SW term} {} RWND RWterm {RW term} {} samedirs s n morf SWSC SWs RWSC RWs SWND SWterm RWND RWterm samedirs e w morf RWSC RWND SWSC SWND RWs RWterm SWs SWterm samedirs sse nnw morf RWSC SWSC RWND SWND RWs SWs RWterm SWterm samedirs sse nnw gmorf RWLt SWLt samedirs w e morf SWSC SWLt RWSC RWLt gmorf catt RWLt s n #------------------------------- # «diagxy1» (to ".diagxy1") # (find-angg "LATEX/diaglib.014" "diagxy_hacks") dxybuttons dxytext tag1 {oSet} {\o\Set} 100 100 dxytext tag2 {oC} {\o\C} 110 110 dxymorf tag1 tag2 {f_\cdot} /|->/ #------------------------------- # (find-angg "LATEX/diaglib.014" "diagxy_hacks") # (find-diagxyfile "diaxydoc.tex" "as well as curved arrows") # (find-diagxypage 14) # «phil1» (to ".phil1") dxybuttons set dxyscale 20 dxytext aT1 aT {a^T} 100 100 dxytext aT2 aT {a^T} 130 100 dxytext bT bT {b^T} 160 100 dxytext a'T1 a'T {{a'}^T} 100 130 dxytext a'T2 a'T {{a'}^T} 130 130 dxytext b'T b'T {{b'}^T} 160 130 dxymorf aT1 bT {m_{AB}(gĒa)} {/{@{|->}@/^3em/}/} dxymorf aT1 aT2 {m_{AA}(1_A)} /|->/ dxymorf aT2 bT {T(gĒa)} /|->/ dxymorf aT1 a'T1 {T(a)} /|->/ dxymorf aT1 a'T2 {m{AA'}} /|->/ dxymorf aT2 a'T2 {m{AA'}} |r|/|->/ dxymorf bT b'T {T(b)} |r|/|->/ dxymorf a'T1 a'T2 {m_{A'A'}(1_{A'})} /|->/ dxymorf a'T2 b'T {T(bĒg)} /|->/ dxymorf a'T1 b'T {m_{A'B'}(bĒg)} {/{@{|->}@/_3em/}/} #------------------------------- # (defun find-3tkman (page &rest rest) (apply 'find-man (concat "n " page) rest)) # (defun find-3tclman (page &rest rest) (apply 'find-man (concat "n " page) rest)) # (find-fline "~/tmp/ee.diag") # (find-angg "LATEX/diaglib.014" "text_objects") # button .buttons3.run -text {run sel} -command {eval [.t get sel.first sel.last]} # pack .buttons3.run .buttons3.bDxyD .buttons3.beDxyD -side left # (find-angg "LATEX/diaglib.014" "basic_window") # (find-es "tcl-cipsga" "mywish") # (find-3tkman "text") # (find-3tkman "text" "keyboard") # (find-3tkman "bind") text .t -height 10 pack .t -after .buttons3 bind .t <Alt-e> {eval [.t get sel.first sel.last]} # (find-3tkman "text") # (find-angg "LATEX/diaglib.014") # (find-3tkman "pack" "-in other") # (find-3tkman "pack" "GEOMETRY PROPAGATION") # puts [pack slaves .] # puts ".c: [pack info .c]" # puts ".buttons: [pack info .buttons]" # puts ".buttons2: [pack info .buttons2]" # puts ".buttons3: [pack info .buttons3]" (global-set-key [f3] 'eediag-bounded) (global-set-key [f3] 'eelatex-bounded) # (find-es "tcl" "newdiaglib") # (find-fline "~/.emacs" "014") (defun eediag-bounded () (interactive) (write-ee-bounded "----------\n" "\n#----------" "cd ~/LATEX; cat > tmpdiag <<'--%%--'\nsource diaglib.014\n" "\n--%%--\nwish tmpdiag &\n")) (global-set-key [f3] 'eediag-bounded) exit ~/TK/emacs.eew # (find-vldifile "tcl8.0-dev.list") # (find-fline "/usr/doc/expect5.24/examples/") # foreach {tag0 txt0 tag1 txt1 tag2 txt2 tag3 txt3} $args {} # if {$tag0 != "" && $tag1 != ""} # (find-etag "describe-key") # (describe-key "f3") ee-temp-bounded-function (insert (pp (symbol-function 'ee-bounded))) # ee-temp-bounded-function # (insert (pp (symbol-function 'ee-bounded))) # (insert (pp (symbol-function (key-binding [f3])))) # (insert (pp (symbol-function ee-temp-bounded-function))) # (find-fline "~/eev.el" "defvar ee-temp-bounded-function") # Local Variables: # coding: no-conversion # ee-temp-bounded-function: eediag-bounded # ee-anchor-format: "«%s»" # ee-charset-indicator: "Ñ" # End: