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This is a work in progress...
It has a funny formatting because it is:
part seminar notes (for humanities people),
part handouts,
part a demo of dednat6,
part a draft for something more serious.

Also, the “seminar notes” format allowed me
to focus on examples and figures instead of
on formal definitions.
For more on archetypal examples, see:
http://angg.twu.net/math-b.html#idarct

http://angg.twu.net/LATEX/idarct-preprint.pdf

Feedback very welcome!
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One page intro (to the main theorem)
Each one of the posets below is a Heyting Algebra:
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The connectives ‘&’, ‘∨’, ‘→’ can be defined by:

ab & cd := min(a, c)min(b, d)
ab ∨ cd := max(a, c)max(b, d)
P → Q := if (P belowQ) then>

elseif (P leftofQ) then ne(P&Q)
elseif (P rightofQ) then nw(P&Q)
elseif (P aboveQ) thenQ
end

which are easy to interpret graphically - for example:
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⊥
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⊥

(&) := P&Q
(∨) := P ∨Q
(→) := P → Q
(¬) := ¬P

(¬¬) := ¬¬P
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Connectives (via brute force)
The best way to see that the definitions

ab & cd := min(a, c)min(b, d)
ab ∨ cd := max(a, c)max(b, d)
P → Q := if (P belowQ) then>

elseif (P leftofQ) then ne(P&Q)
elseif (P rightofQ) then nw(P&Q)
elseif (P aboveQ) thenQ
end

obey the expected properties, which are

∀P. (P ≤ Q&R) ↔ (P ≤ Q)&(P ≤ R)
∀R. (P∨Q ≤ R) ↔ (P ≤ R)&(Q ≤ R)
∀P. (P ≤ Q→R) ↔ (P&Q ≤ R)

is by brute force.
For example, in this case,
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we can do:

∀R. ( P︸︷︷︸
31

∨ Q︸︷︷︸
12︸ ︷︷ ︸

?

≤ R

︸ ︷︷ ︸
λR.(?≤R)=

λR.((31≤R) &(12≤R))=
1

1 1
1 1 0

0 1 0 0
0 0 0 0 0
0 0 0 0
0 0 0
0 0
0

)↔ ( P︸︷︷︸
31

≤ R︸ ︷︷ ︸
λR.(31≤R)=

1
1 1

1 1 0
1 1 0 0

0 1 0 0 0
0 0 0 0
0 0 0
0 0
0

)&( Q︸︷︷︸
21

≤ R

︸ ︷︷ ︸
λR.(12≤R)=

1
1 1

1 1 1
0 1 1 1

0 0 1 1 0
0 0 1 0
0 0 0
0 0
0

)

︸ ︷︷ ︸
λR.((31≤R) &(12≤R))=

1
1 1

1 1 0
0 1 0 0

0 0 0 0 0
0 0 0 0
0 0 0
0 0
0

we get (31 ∨ 12) =‘?’= 32.
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Connectives (via brute force, 2)

∀P. (P ≤ Q&R) ↔ (P ≤ Q)&(P ≤ R)
∀P. (P ≤ Q→R) ↔ (P&Q ≤ R)
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Here’s how to calculate 31&12:

∀P. ( P ≤ Q︸︷︷︸
31

& R︸︷︷︸
12︸ ︷︷ ︸

?︸ ︷︷ ︸
λP.(P≤?)=

λP.((P≤31) &(P≤12))=
0

0 0
0 0 0

0 0 0 0
0 0 0 0 0
0 0 0 0
0 1 0
1 1
1

)↔ (P ≤ Q︸︷︷︸
31

)

︸ ︷︷ ︸
λP.(P≤31)=

0
0 0

0 0 0
0 0 0 0

0 1 0 0 0
1 1 0 0
1 1 0
1 1
1

& (P ≤ R︸︷︷︸
12

)︸ ︷︷ ︸
λP.(P≤12)=

0
0 0

0 0 0
0 0 0 0

0 0 0 0 0
0 0 1 0
0 1 1
1 1
1︸ ︷︷ ︸

λP.((P≤31) &(P≤12))=
0

0 0
0 0 0

0 0 0 0
0 0 0 0 0
0 0 0 0
0 1 0
1 1
1

We get (31&12) =‘?’= 11.

Once we learn how to calculate ‘&’s quickly,
we can calculate ‘→’s - they need λP.(P &Q):

∀P. (P ≤ Q︸︷︷︸
31

→ R︸︷︷︸
12︸ ︷︷ ︸

?︸ ︷︷ ︸
λP.(P≤?)=

λP.((P & 31)≤12)=
0

0 0
0 0 0

0 0 0 1
0 0 0 1 1
0 0 1 1
0 1 1
1 1
1

)↔ ( P & Q︸︷︷︸
31︸ ︷︷ ︸

λP.(P & 31)=
31

31 31
31 31 21

31 31 21 11
30 31 21 11 01
30 21 11 01
20 11 01
10 01
00

≤ R︸︷︷︸
12

︸ ︷︷ ︸
λP.((P & 31)≤12)=

0
0 0

0 0 0
0 0 0 1

0 0 0 1 1
0 0 1 1
0 1 1
1 1
1

)
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Some non-tautologies
Some propositions that are always true classically,

P ¬P ¬¬P (¬¬P )→ P
0 1 0 1
1 0 1 1

P Q P &Q ¬(P &Q) ¬P ¬Q ¬P ∨ ¬Q ¬(P &Q)→ (¬P ∨ ¬Q)
0 0 0 1 1 1 1 1
0 1 0 1 1 0 1 1
1 0 0 1 0 1 1 1
1 1 1 0 0 0 0 1

are not always true intuitionistically,
and we can use ZHAs to exhibit cases where they are not >:
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20︸ ︷︷ ︸
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I have some material that helps in telling the full story -
classical and intuitionistic theorems and tautologies, for children -
and I will try to put it in the last section of these notes
as I typeset it for the seminars.
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Basic definitions.
A ZSet is a finite nonempty subset of N2 that touches boths axes.
The black moves and the white moves on a ZSet A are defined as:

BM(A) := { ((x, y), (x+ dx, y − 1)) ∈ A2 | dx ∈ {−1, 0, 1} }
WM(A) := { ((x, y), (x+ dx, y + 1)) ∈ A2 | dx ∈ {−1, 0, 1} }

Mnemonic:
a black piece, ‘•’, is solid/heavy/wants to sink and move down;
a white piece, ‘◦’, is hollow/light/wants to float and move up.
Figure:

•
↙↓↘
• • •

◦ ◦ ◦
↖↑↗
◦

A ZDAG is a graph of the form (A,BM(A)) or (A,WM(A)), and
A ZPoset is a graph of the form (A,BM(A)∗) or (A,WM(A)∗),
where A is a ZSet, and (A,R∗) is transitive-reflexive closure of (A,R).

We say that triple (maxy, L,R) generates a ZHA when:
1) maxy ∈ N, and L and R are functions from {0, 1, ...,maxy} to N,
2) L(y) ≤ R(y) always holds,
3) L(y + 1) = L(1)± 1 and R(y + 1) = R(1)± 1 always hold,
4) L(0) = R(0) and L(maxy) = R(maxy),
5) L(y) = 0 for some y.

The parity of (x, y) ∈ N2 is the parity of x+ y.
The left wall and the right wall of a ZHA are the sets

LW(maxy, L,R) := { (x, y) ∈ N2 | x = L(y) },
RW(maxy, L,R) := { (x, y) ∈ N2 | x = R(y) }.

The ZSet generated by (maxy, L,R), ZS(maxy, L,R), is the set of all points
between LW(maxy, L,R) and RW(maxy, L,R) with the same parity as (L(0), 0).
The ZHA generated by (maxy, L,R) is this ZPoset:

ZHA(maxy, L,R) := (ZS(maxy, L,R),WM(ZS(maxy, L,R))∗)

We use the lr-coordinates to refer to points of a ZHA.
The point (L(0), 0) is denoted by “00”.
The l-coordinate increases when we walk northwest.
The r-coordinate increases when we walk northeast.
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ZHAs, visually

(1, 9)

(0, 8) (2, 8)

(1, 7)

(2, 6)

(3, 5)

(2, 4) (4, 4)

(1, 3) (3, 3) (5, 3)

(2, 2) (4, 2)

(3, 1) (5, 1)

(4, 0)

↗ ↖

↖ ↗

↖

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗ ↖

↖ ↗
L(0) = 4L(0) = 4 R(0) = 4

L(1) = 3 R(1) = 5

L(2) = 2 R(2) = 4

L(3) = 1 R(3) = 5

L(4) = 2 R(4) = 4

L(5) = 3 R(5) = 3

L(6) = 2 R(6) = 2

L(7) = 1 R(7) = 1

L(8) = 0 R(8) = 0

L(9) = 1 R(9) = 1 maxy = 9L(9) = R(9)

L(0) = R(0)

We say that triple (maxy, L,R) generates a ZHA when:
1) maxy ∈ N, and L and R are functions from {0, 1, ...,maxy} to N,
2) L(y) ≤ R(y) always holds,
3) L(y + 1) = L(1)± 1 and R(y + 1) = R(1)± 1 always hold,
4) L(0) = R(0) and L(maxy) = R(maxy),
5) L(y) = 0 for some y.

The parity of (x, y) ∈ N2 is the parity of x+ y.
The left wall and the right wall of a ZHA are the sets

LW(maxy, L,R) := { (x, y) ∈ N2 | x = L(y) },
RW(maxy, L,R) := { (x, y) ∈ N2 | x = R(y) }.

The ZSet generated by (maxy, L,R), ZS(maxy, L,R), is the set of all points
between LW(maxy, L,R) and RW(maxy, L,R) with the same parity as (L(0), 0).
The ZHA generated by (maxy, L,R) is this ZPoset:

ZHA(maxy, L,R) := (ZS(maxy, L,R),WM(ZS(maxy, L,R))∗)
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Background story.
Several years ago I was looking for finite, easy-to-draw Heyting Algebras,
because I was trying to understand sheaves, and I had no intuition at all
about what those “closure operators” were doing...
When I tried to generate Heyting Algebras from order topologies -
if D = (A,R) is a DAG, then D′ := (O(A),⊆) is a Heyting Algebra -
the results had very regular shapes, and were often planar.
For example:

H =

•
• •
• •

↙ ↘
↓ ↓

H ′(O(H),⊆) =

1
1 1
1 1

0
1 1
1 1

0
1 0
1 1

0
0 1
1 1

0
1 0
1 0

0
0 0
1 1

0
0 1
0 1

0
0 0
1 0

0
0 0
0 1

0
0 0
0 0

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

G =

• •
• •
• •

↙ ↘ ↙
↘ ↙ ↘ G′(O(G),⊆) =

1 1
1 1
1 1

1 0
1 1
1 1

0 1
1 1
1 1

0 0
1 1
1 1

0 1
0 1
1 1

0 0
1 0
1 1

0 0
0 1
1 1

0 0
1 01 0

0 0
0 01 1

0 0
0 0
1 0

0 0
0 0
0 1

0 0
0 00 0

↗ ↖

↖ ↗ ↖

↗ ↖ ↗

↗ ↖ ↗

↖ ↗ ↖

↖ ↗
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Background story, 2: planarity, ‘↓’
Everytime that I started with a DAG D with three independent points
then D′ would contain a cube, and would be non-planar. For example:

W =
• • •
• •↘ ↙ ↘ ↙ W ′ = (O(W ),⊆) =

1 1 1
1 1

1 1 0
1 1

1 0 1
1 1

0 1 1
1 1

1 0 0
1 1

0 1 0
1 1

0 0 1
1 1

1 0 0
1 0

0 0 0
1 1

0 0 1
0 1

0 0 0
1 0

0 0 0
0 1

0 0 0
0 0

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↗ ↖ ↑ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

Everytime that I started with a “thin” DAG D - “thin” meaning
“does not have three independent points” - then D′ would be planar.

It turns out that we can always recover D from D′.
For C ⊆ D let ↓ C be the smallest down-set of D containing C.
For d ⊆ D let ↓ d be the smallest down-set of D containing {d}.
The map

↓: D → D′

d 7→ ↓ d

is always a (contra-variant) embedding of D into D′, and its image
is exactly the set of points of D′ with exactly one arrow coming in:

• • •
• •↘ ↙ ↘ ↙ //___

1 0 0
1 0

0 1 0
1 1

0 0 1
0 1

0 0 0
1 0

0 0 0
0 1

↖ ↗ ↖ ↗

The isomorphism between ↓ D ⊆ D′ and Dop is (part of)
Birkhoff’s representation theorem for finite distributive lattices -
See Davey & Priestley’s “Introduction to Lattices and Order (2nd ed)”,
pages 116-118, for its properties.
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2-Column graphs
This is a 2-column graph, and our short notation for it:

4

3
��
3

2
��
2

1
��

6

5
��
5

4
��
4

3
��
3

2
��
2

1
��

1

3??����������

4

2
��?

??
??

??
??

?4

5

ww
ooooooo


≡

(
4, 6,

{
4 → 2,
1 → 3

}
,
{
4 ← 5

})

This is a 2-pile, and our short notation for it:(
0

0 1
0 1
1 1

)
≡ 13

Note that the ‘1’ and ‘3’ tell only the number of ‘1’s
in each column; the total heights are omitted.

D ≡
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3
��
3

2
��
2

1
��

5

4
��
4

3
��
3

2
��
2

1
��

3

2
''OO

OOO
OO

1

4

��

















2

5

��


















(O(D),⊆) ≡

4

·

·

·

3

·

·

·

2

·

·

·

·

5

1

·

·

·

4

·

1

2

3

↗ ↖

↗ ↖ ↗ ↖

↗ ↖ ↗ ↖ ↗

↖ ↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↗ ↖ ↗ ↖

↗ ↖ ↗ ↖ ↗

↖ ↗ ↖ ↗

↖ ↗
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Missing digits
The generators of a ZHA are the points with exactly one arrow coming in.
The left generators are the ones of the form ‘◦↖’.
The right generators are the ones of the form ‘ ◦

↗ ’.

Let C be a 2-column graph, and C ′ := (O(C),⊆) (a ZHA).
The inclusion ↓: C → C ′ takes the
left column of C to the left generators of C ′, and the
right column of C to the right generators of C ′, and the
Example:

D ≡
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3
��
3

2
��
2

1
��

5

4
��
4

3
��
3

2
��
2

1
��

3

2
''OO

OOO
OO

1

4

��

















2

5

��


















(O(D),⊆) ≡

4

·

·

·

3

·

·

·

2

·

·

·

·

5

1

·

·

·

4

·

1

2

3

↗ ↖

↗ ↖ ↗ ↖

↗ ↖ ↗ ↖ ↗

↖ ↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↗ ↖ ↗ ↖

↗ ↖ ↗ ↖ ↗

↖ ↗ ↖ ↗

↖ ↗

To obtain the “missing digits” in 1 , 2 , . . . , 1, 2, . . . we can do:

↓ 5 =↓
(

1
0 1
0 1
0 1
0 1

)
=

(
1

0 1
0 1
1 1
1 1

)
= 25

↓ 4 =↓
(

0
1 0
1 0
1 0
1 0

)
=

(
0

1 0
1 0
1 1
1 1

)
= 42 ↓ 4 =↓

(
0

0 1
0 1
0 1
0 1

)
=

(
0

0 1
0 1
0 1
1 1

)
= 14

↓ 3 =↓
(

0
0 0
1 0
1 0
1 0

)
=

(
0

0 0
1 0
1 1
1 1

)
= 32 ↓ 3 =↓

(
0

0 0
0 1
0 1
0 1

)
=

(
0

0 0
0 1
0 1
0 1

)
= 03

↓ 2 =↓
(

0
0 0
0 0
1 0
1 0

)
=

(
0

0 0
0 0
1 0
1 0

)
= 20 ↓ 2 =↓

(
0

0 0
0 0
0 1
0 1

)
=

(
0

0 0
0 0
0 1
0 1

)
= 02

↓ 1 =↓
(

0
0 0
0 0
0 0
1 0

)
=

(
0

0 0
0 0
0 0
1 0

)
= 10 ↓ 1 =↓

(
0

0 0
0 0
0 0
0 1

)
=

(
0

0 0
0 0
0 0
0 1

)
= 01

Once we draw 1 ≡ 10, 2 ≡ 10, 3 ≡ 32, . . . in the lr-plane,
drawing the rest of the ZHA is automatic.

42
43
44
45

32
33
34

35

20
21
22
23

24
25

10
11
12

13
14

00
01

02
03
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From ZHAs to 2-column graphs
Here’s how to go in the opposite direction.
Starting from a ZHA H, write its generators in two columns.
The leftmost and righmost digits increase in unit steps always,
but the middle digits correspond to the “missing digits” we discussed before.
Starting from the bottom of each of the two columns,
look at when the “missing”/“middle” digit changes.
Each one of these “generators after change” becomes an arrow
in the 2-column graph C.

42
43
44
45

32
33
34
35

20
21
22
23
24
25

10
11
12
13
14

00
01
02
03

25
42 14
32 03
30 02
10 01

//___

25
42 14
32 03
30 02
10 01

25
32 14
//___ 25
32 14

2 ← 5
3 → 2 1 ← 4
//___ 2 ← 5
3 → 2 1 ← 4

(
4, 5,

{
3 → 2

}
,

{
2 ← 5,
1 ← 4

})���
�
�
�
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Part 2:
J-operators and ZQuotients
(For older children)

J-operators are a basic tool for constructing
sheaves and for moving back and forth
between different logics...
But we will not see the categorical part here.
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J-operators
A J-operator on a Heyting Algebra H is a function J : H → H,
that obeys the three axioms below.
We usually write J as ·∗ : H → H, and write the axioms as rules.

P ≤ P ∗ J1
P ∗ = P ∗∗ J2

(P&Q)∗ = P ∗&Q∗ J3

J1 says that the operation ·∗ is increasing.
J2 says that the operation ·∗ is idempotent.
J3 is something mysterious (for now).

A J-operator induces an equivalence relation and equivalence classes:

P ∼ Q iff P ∗ = Q∗

[P ]∗ := {Q ∈ H | P ∗ = Q∗ }

We will use the interval notation,

[P,R] := {Q ∈ H | P ≤ Q ≤ R }

to denote all truth-values between P and R (inclusive).

The proofs in the next pages will show that every
equivalence class is closed by ‘&’, ‘∨’, and “sandwiching”.
For example, if 42, 33, and 14 belong to
the same equivalence class, E, then:

44 = 42 ∨ 33 ∨ 14 ∈ E
12 = 42&33&14 ∈ E

[12, 44] = [42&33&14, 42 ∨ 33 ∨ 14] ⊆ E

@
@

@
@

@
@
�
�

�
�
@

@
�
�
�

�@
@
@

@
@
�
@
�

�
@
@
�

�
�

�
�

·
· ·

· · ·
· · · ·
· · · ·
· · ·

· 44 · ·
· • • ·

· 42 33 •
· · • • 14
· · • • ·
· · 12 ·
· · ·
· ·
·

Moreover, if E = {Q1, . . . , Qn}
then Q1 & . . .&Qn ∈ E and Q1 ∨ . . . ∨Qn ∈ E,
and E = [Q1 & . . .&Qn, Q1 ∨ . . . ∨Qn].
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Derived rules
All the rules below,

Monotonicity: P ≤ Q implies P ∗ ≤ Q∗,
Sandwich lemma: all truth values between P and P ∗ are equivalent,
EC&, EC∨, ECS: equivalence classes are closed by ‘&’, ‘∨’, and sandwiching,

are consequences of just the Heyting Algebra rules plus J1, J2, J3.

(P&Q)∗ ≤ Q∗ Mop
:=

(P&Q)∗ = P ∗&Q∗ J3
P ∗&Q∗ ≤ Q∗

(P&Q)∗ ≤ Q∗

P ≤ Q

P ∗ ≤ Q∗ Mo
:=

P ≤ Q

P = P&Q

P ∗ = (P&Q)∗ (P&Q)∗ ≤ Q∗ Mop

P ∗ ≤ Q∗

P ≤ Q ≤ P ∗

P ∗ = Q∗ Sand
:=

P ≤ Q

P ∗ ≤ Q∗ Mo

Q ≤ P ∗

Q∗ ≤ P ∗∗ Mo
P ∗∗ = P ∗ J2

Q∗ ≤ P ∗

P ∗ = Q∗

P ∗ = Q∗

P ∗ = Q∗ = (P&Q)∗
EC&

:=

P ∗ = Q∗

P ∗ = Q∗ = P ∗&Q∗ P ∗&Q∗ = (P&Q)∗
J3

P ∗ = Q∗ = (P&Q)∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∨Q)∗
EC∨

:=

P ∗ = Q∗

P ≤ P ∨Q

P ≤ P ∗ J1
Q ≤ Q∗ J1

P ∗ = Q∗

Q∗ = P ∗

Q ≤ P ∗

P ∨Q ≤ P ∗

P ≤ P ∨Q ≤ P ∗

P ∗ = (P ∨Q)∗
Sand

P ∗ = Q∗ = (P ∨Q)∗

P ≤ Q ≤ R P ∗ = R∗

P ∗ = Q∗ = R∗ ECS
:=

P ≤ Q ≤ R R ≤ R∗ J1
P ∗ = R∗

R∗ = P ∗

P ≤ Q ≤ P ∗

P ∗ = Q∗ Sand
P ∗ = R∗

P ∗ = Q∗ = R∗

(Todo: use these rules to prove the figure in the previous page.)
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How J-operators interact with the connectives
For the next result about how J-operators divide a ZHA
into equivalence classes we need one of the facts that
will be proved below - one arrow of the cubes.

The implications in the cubes below

(P ∗&Q∗)∗

(P&Q∗)∗

<<

zz
zz
zz
z

(P ∗&Q∗)∗

P ∗&Q∗

OO
(P ∗&Q∗)∗

(P ∗&Q)∗

bb

DD
DD

DD
D

(P&Q∗)∗

P&Q∗

OO
(P&Q∗)∗

(P&Q)∗

bb

DD
DD

DD
D

P ∗&Q∗

P&Q∗

<<

zz
zz
zz
zz
P ∗&Q∗

P ∗&Q

bb

DD
DD

DD
DD

(P ∗&Q)∗

(P&Q)∗

<<

zz
zz
zz
z

(P ∗&Q)∗

P ∗&Q

OO

P&Q∗

P&Q

bb

DD
DD

DD
DD

(P&Q)∗

P&Q

OO
P ∗&Q

P&Q

<<

zz
zz
zz
zz

(P ∗∨Q∗)∗

(P∨Q∗)∗

<<

zz
zz
zz
z

(P ∗∨Q∗)∗

P ∗∨Q∗

OO
(P ∗∨Q∗)∗

(P ∗∨Q)∗

bb

DD
DD

DD
D

(P∨Q∗)∗

P∨Q∗

OO
(P∨Q∗)∗

(P∨Q)∗

bb

DD
DD

DD
D

P ∗∨Q∗

P∨Q∗

<<

zz
zz
zz
zz
P ∗∨Q∗

P ∗∨Q

bb

DD
DD

DD
DD

(P ∗∨Q)∗

(P∨Q)∗

<<

zz
zz
zz
z

(P ∗∨Q)∗

P ∗∨Q

OO

P∨Q∗

P∨Q

bb

DD
DD

DD
DD

(P∨Q)∗

P∨Q

OO
P ∗∨Q

P∨Q

<<

zz
zz
zz
zz

(P→Q∗)∗

(P ∗→Q∗)∗

<<

zz
zz
zz
z

(P→Q∗)∗

P→Q∗

OO
(P→Q∗)∗

(P→Q)∗

bb

DD
DD

DD
D

(P ∗→Q∗)∗

P ∗→Q∗

OO
(P ∗→Q∗)∗

(P ∗→Q)∗

bb

DD
DD

DD
D

P→Q∗

P ∗→Q∗

<<

zz
zz
zz
zz
P→Q∗

P→Q

bb

DD
DD

DD
DD

(P→Q)∗

(P ∗→Q)∗

<<

zz
zz
zz
z

(P→Q)∗

P→Q

OO

P ∗→Q∗

P ∗→Q

bb

DD
DD

DD
DD

(P ∗→Q)∗

P ∗→Q

OO
P→Q

P ∗→Q

<<

zz
zz
zz
zz

can be proved easily using just Mo plus the derived HA rules
that say that ‘&’, ‘∨’, ‘→’ are functorial.

If we add the arrows corresponding to the proofs below
(that are done explicitly in the next page),

(P ∗&Q∗)∗ = P ∗&Q∗ = (P&Q)∗

(P ∗∨Q∗)∗ ≤ (P∨Q)∗ (P→Q∗)∗ ≤ P ∗→Q∗

the partial orders on the cubes becomes
(equivalent to the one generated by) this:

(P ∗&Q∗)∗

(P&Q∗)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗&Q∗)∗

P ∗&Q∗

(P ∗&Q∗)∗

(P ∗&Q)∗
DD

DD
DD

D

DD
DD

DD
D

(P&Q∗)∗

P&Q∗

OO
(P&Q∗)∗

(P&Q)∗
DD

DD
DD

D

DD
DD

DD
D

P ∗&Q∗

P&Q∗

<<

zz
zz
zz
zz
P ∗&Q∗

P ∗&Q

bb

DD
DD

DD
DD

(P ∗&Q)∗

(P&Q)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗&Q)∗

P ∗&Q

OO

P&Q∗

P&Q

bb

DD
DD

DD
DD

(P&Q)∗

P&Q

OO
P ∗&Q

P&Q

<<

zz
zz
zz
zz

(P ∗∨Q∗)∗

(P∨Q∗)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗∨Q∗)∗

P ∗∨Q∗

OO
(P ∗∨Q∗)∗

(P ∗∨Q)∗
DD

DD
DD

D

DD
DD

DD
D

(P∨Q∗)∗

P∨Q∗

OO
(P∨Q∗)∗

(P∨Q)∗
DD

DD
DD

D

DD
DD

DD
D

P ∗∨Q∗

P∨Q∗

<<

zz
zz
zz
zz
P ∗∨Q∗

P ∗∨Q

bb

DD
DD

DD
DD

(P ∗∨Q)∗

(P∨Q)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗∨Q)∗

P ∗∨Q

OO

P∨Q∗

P∨Q

bb

DD
DD

DD
DD

(P∨Q)∗

P∨Q

OO
P ∗∨Q

P∨Q

<<

zz
zz
zz
zz

(P→Q∗)∗

(P ∗→Q∗)∗
zz
zz
zz
z

zz
zz
zz
z

(P→Q∗)∗

P→Q∗

(P→Q∗)∗

(P→Q)∗

bb

DD
DD

DD
D

(P ∗→Q∗)∗

P ∗→Q∗

(P ∗→Q∗)∗

(P ∗→Q)∗

bb

DD
DD

DD
D

P→Q∗

P ∗→Q∗
zz
zz
zz
zz

zz
zz
zz
zz
P→Q∗

P→Q

bb

DD
DD

DD
DD

(P→Q)∗

(P ∗→Q)∗

<<

zz
zz
zz
z

(P→Q)∗

P→Q

OO

P ∗→Q∗

P ∗→Q

bb

DD
DD

DD
DD

(P ∗→Q)∗

P ∗→Q

OO
P→Q

P ∗→Q

<<

zz
zz
zz
zz

We will call the cubes above, and the rules coming from them,
the &∗Cube, ∨∗Cube, and →∗Cube,
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How J-operators interact with the connectives: proofs

(P ∗&Q∗)∗

(P&Q∗)∗

<<

zz
zz
zz
z

(P ∗&Q∗)∗

P ∗&Q∗

OO
(P ∗&Q∗)∗

(P ∗&Q)∗

bb

DD
DD

DD
D

(P&Q∗)∗

P&Q∗

OO
(P&Q∗)∗

(P&Q)∗

bb

DD
DD

DD
D

P ∗&Q∗

P&Q∗

<<

zz
zz
zz
zz
P ∗&Q∗

P ∗&Q

bb

DD
DD

DD
DD

(P ∗&Q)∗

(P&Q)∗

<<

zz
zz
zz
z

(P ∗&Q)∗

P ∗&Q

OO

P&Q∗

P&Q

bb

DD
DD

DD
DD

(P&Q)∗

P&Q

OO
P ∗&Q

P&Q

<<

zz
zz
zz
zz

(P ∗∨Q∗)∗

(P∨Q∗)∗

<<

zz
zz
zz
z

(P ∗∨Q∗)∗

P ∗∨Q∗

OO
(P ∗∨Q∗)∗

(P ∗∨Q)∗

bb

DD
DD

DD
D

(P∨Q∗)∗

P∨Q∗

OO
(P∨Q∗)∗

(P∨Q)∗

bb

DD
DD

DD
D

P ∗∨Q∗

P∨Q∗

<<

zz
zz
zz
zz
P ∗∨Q∗

P ∗∨Q

bb

DD
DD

DD
DD

(P ∗∨Q)∗

(P∨Q)∗

<<

zz
zz
zz
z

(P ∗∨Q)∗

P ∗∨Q

OO

P∨Q∗

P∨Q

bb

DD
DD

DD
DD

(P∨Q)∗

P∨Q

OO
P ∗∨Q

P∨Q

<<

zz
zz
zz
zz

(P→Q∗)∗

(P ∗→Q∗)∗

<<

zz
zz
zz
z

(P→Q∗)∗

P→Q∗

OO
(P→Q∗)∗

(P→Q)∗

bb

DD
DD

DD
D

(P ∗→Q∗)∗

P ∗→Q∗

OO
(P ∗→Q∗)∗

(P ∗→Q)∗

bb

DD
DD

DD
D

P→Q∗

P ∗→Q∗

<<

zz
zz
zz
zz
P→Q∗

P→Q

bb

DD
DD

DD
DD

(P→Q)∗

(P ∗→Q)∗

<<

zz
zz
zz
z

(P→Q)∗

P→Q

OO

P ∗→Q∗

P ∗→Q

bb

DD
DD

DD
DD

(P ∗→Q)∗

P ∗→Q

OO
P→Q

P ∗→Q

<<

zz
zz
zz
zz

plus:

P ∗∗ = P ∗ J2
Q∗∗ = Q∗ J2

(P ∗&Q∗)∗ = P ∗∗&Q∗∗ = P ∗&Q∗ = (P&Q)∗
J3

(P ∗&Q∗)∗ = P ∗&Q∗ = (P&Q)∗

P ≤ P∨Q
P ∗ ≤ (P∨Q)∗

Mo
Q ≤ P∨Q

Q∗ ≤ (P∨Q)∗
Mo

P ∗∨Q∗ ≤ (P∨Q)∗

(P ∗∨Q∗)∗ ≤ (P∨Q)∗∗
Mo

(P ∗∨Q∗)∗ ≤ (P∨Q)∗
J2

P→Q∗ ≤ P→Q∗

(P→Q∗)&P ≤ Q∗

((P→Q∗)&P )∗ ≤ Q∗∗ Mo

((P→Q∗)&P )∗ ≤ Q∗ J2

(P→Q∗)∗&P ∗ ≤ Q∗ J3

(P→Q∗)∗ ≤ P ∗→Q∗

yields:

(P ∗&Q∗)∗

(P&Q∗)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗&Q∗)∗

P ∗&Q∗

(P ∗&Q∗)∗

(P ∗&Q)∗
DD

DD
DD

D

DD
DD

DD
D

(P&Q∗)∗

P&Q∗

OO
(P&Q∗)∗

(P&Q)∗
DD

DD
DD

D

DD
DD

DD
D

P ∗&Q∗

P&Q∗

<<

zz
zz
zz
zz
P ∗&Q∗

P ∗&Q

bb

DD
DD

DD
DD

(P ∗&Q)∗

(P&Q)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗&Q)∗

P ∗&Q

OO

P&Q∗

P&Q

bb

DD
DD

DD
DD

(P&Q)∗

P&Q

OO
P ∗&Q

P&Q

<<

zz
zz
zz
zz

(P ∗∨Q∗)∗

(P∨Q∗)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗∨Q∗)∗

P ∗∨Q∗

OO
(P ∗∨Q∗)∗

(P ∗∨Q)∗
DD

DD
DD

D

DD
DD

DD
D

(P∨Q∗)∗

P∨Q∗

OO
(P∨Q∗)∗

(P∨Q)∗
DD

DD
DD

D

DD
DD

DD
D

P ∗∨Q∗

P∨Q∗

<<

zz
zz
zz
zz
P ∗∨Q∗

P ∗∨Q

bb

DD
DD

DD
DD

(P ∗∨Q)∗

(P∨Q)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗∨Q)∗

P ∗∨Q

OO

P∨Q∗

P∨Q

bb

DD
DD

DD
DD

(P∨Q)∗

P∨Q

OO
P ∗∨Q

P∨Q

<<

zz
zz
zz
zz

(P→Q∗)∗

(P ∗→Q∗)∗
zz
zz
zz
z

zz
zz
zz
z

(P→Q∗)∗

P→Q∗

(P→Q∗)∗

(P→Q)∗

bb

DD
DD

DD
D

(P ∗→Q∗)∗

P ∗→Q∗

(P ∗→Q∗)∗

(P ∗→Q)∗

bb

DD
DD

DD
D

P→Q∗

P ∗→Q∗
zz
zz
zz
zz

zz
zz
zz
zz
P→Q∗

P→Q

bb

DD
DD

DD
DD

(P→Q)∗

(P ∗→Q)∗

<<

zz
zz
zz
z

(P→Q)∗

P→Q

OO

P ∗→Q∗

P ∗→Q

bb

DD
DD

DD
DD

(P ∗→Q)∗

P ∗→Q

OO
P→Q

P ∗→Q

<<

zz
zz
zz
zz
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How J-operators interact with the connectives: completeness
Take a 4-uple (H, J, P,Q) made of a Heyting Algebra,
a J-operator on it, and two truth-values P,Q ∈ H.
The arrows in &∗Cube, ∨∗Cube, →∗Cube are theorems,
so they are true on all ‘(H, J, P,Q)’s.
Take an arrow that is not in the cubes – for example, P ∗∨Q∗ ≤ (P∨Q)∗.
Maybe it is true in all ‘(H, J, P,Q)’s.
Maybe it is a theorem, that we forgot to prove.
Maybe our cubes are incomplete.

They are complete, though.

Here is a way to:
1) prove that the arrows in the cubes are the only theorems,
2) exhibit countermodels for all arrows not in the cubes,
3) remember which arrows are and are not in the cubes.
We just need one model for each of the cubes/connectives.

It is in the next page.
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How J-operators interact with the connectives: figure

(P ∗&Q∗)∗

(P&Q∗)∗
zz
zz
zz
z

zz
zz
zz
z

(P ∗&Q∗)∗

P ∗&Q∗

(P ∗&Q∗)∗

(P ∗&Q)∗
DD

DD
DD

D

DD
DD

DD
D

(P&Q∗)∗

P&Q∗

OO
(P&Q∗)∗

(P&Q)∗
DD

DD
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D

DD
DD

DD
D

P ∗&Q∗

P&Q∗
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zz
zz
zz
zz
P ∗&Q∗

P ∗&Q

bb

DD
DD

DD
DD

(P ∗&Q)∗
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zz
zz
z

zz
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zz
z

(P ∗&Q)∗

P ∗&Q
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zz
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P ∗∨Q∗
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(P ∗∨Q)∗
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D
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D

(P∨Q∗)∗

P∨Q∗
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(P∨Q∗)∗

(P∨Q)∗
DD

DD
DD

D

DD
DD

DD
D

P ∗∨Q∗

P∨Q∗

<<

zz
zz
zz
zz
P ∗∨Q∗

P ∗∨Q
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DD
DD

DD
DD

(P ∗∨Q)∗

(P∨Q)∗
zz
zz
zz
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zz
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z
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P ∗∨Q
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P∨Q
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DD

DD
DD

(P∨Q)∗
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P∨Q
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Q
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(P→Q∗)∗

(P→Q)∗
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DD
DD

DD
D

(P ∗→Q∗)∗

P ∗→Q∗

(P ∗→Q∗)∗

(P ∗→Q)∗
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DD
DD

DD
D
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P ∗→Q∗
zz
zz
zz
zz

zz
zz
zz
zz
P→Q∗

P→Q
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DD
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DD
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P ∗→Q
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There are Y-cuts or λ-cuts
We saw that the equivalence classes of a J-operator are intervals -
i.e., lozenges, except maybe for dents coming from irregular
contours of ZHAs, like:

45
46

34
35
36

22
23

24
25
26

11
12

13
14

00
01

02
03
04

//___

@
�
@
�
@
�

�
@
�
@
�
�@

@
@
�

�
@
@
�

�
�

�
�

�
�
�

�
@
@

@

@
@

@

46
45 46

45 46
45 45

45
23 45

23 23 04
23 03

23 03
03

00

From what we know now this may be a J-operator:

60
61
62
63
64
65
66

50
51
52
53
54
55

56

40
41
42
43
44

45
46

30
31
32
33

34
35
36

20
21
22

23
24
25

26

10
11

12
13
14

15
16

00
01
02
03

04
05
06 //___

@
@

@
@

@
@

@
�

�
�
�

�
�

�@
@

@
@
@

@
@
�

�
�

�
�

�
�

�
�

�
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@
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@
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�
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66
66 66

66 66 46
66 66 46 46

66 66 44 46 46
61 66 44 44 46 46

61 61 44 44 44 46 46
61 61 44 44 14 46

61 61 44 14 14
61 61 14 14

61 14 14
14 14
14

It has some cuts stopping midway
instead of going NW-SE or SW-NE as far as possible...
To show that this can’t happen we will show that a J-operator

cannot have four neighboring points, like
(

22
21 12
11

)
or

(
25

24 15
14

)
,

in three different equivalence classes.

22
21 12
11

//___

@
@
�
�@

@
�

�
�

�@
44

61 14
14

⇐ this a Y-cut

25
24 15
14

//___

@
@
�
�@

@
�

�
@

@
�

46
44 46
14

⇐ this a λ-cut
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There are Y-cuts or λ-cuts: proofs
We need these two derived rules:

Q∗ = R∗

(P ∨Q)∗ = (P ∨R)∗
NoYcuts

:=

Q∗ = R∗

P ∨Q∗ = P ∨R∗

(P ∨Q∗)∗ = (P ∨R∗)∗

(P ∨Q)∗ = (P ∨R)∗
∨∗Cube

Q∗ = R∗

(P&Q)∗ = (P&R)∗
Noλcuts

:=

Q∗ = R∗

P ∗&Q∗ = P ∗&R∗

(P&Q)∗ = (P&R)∗
J3

Now let’s use them to prove the the Y-cut and the λ-cut
of the example in the previous page are inadmissible
in a J-operator.

22
21 12
11

//___

@
@
�
�@

@
�

�
�

�@
44

61 14
14

⇐ this a Y-cut

25
24 15
14

//___

@
@
�
�@

@
�

�
@

@
�

46
44 46
14

⇐ this a λ-cut

Look:

11∗ = 12∗

(21 ∨ 11)∗ = (21 ∨ 12)∗
NoYcuts

21∗ = 22∗

61 = 14

25∗ = 15∗

(24&25)∗ = (24&15)∗
Noλcuts

24∗ = 14∗

44 = 14
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Examples of J-operators: Fourman and Scott
(i) The closed quotient.

Jap = a ∨ p.

(ii) The open quotient.
Jap = a→ p.

(iii) The Boolean quotient.

Bap = (p→ a)→ a.

(iv) The forcing quotient.

(Ja & Jb)p = (a ∨ p)&(b→ p).

(vi) A mixed quotient.

(Ba & Ja)p = (p→ a)→ p.

(i) Ja ∨ Jb = Ja∨b (ii) Ja ∨ Jb = Ja& b

(iii) Ja & Jb = Ja& b (iv) Ja & Jb = Ja∨b

(v) Ja & Ja = ⊥ (vi) Ja ∨ Ja = >
(vii) Ja ∨K = K ◦ Ja (viii) Ja ∨K = Ja ◦K
(ix) Ja ∨Ba = Ba (x) Ja ∨Bb = Ba→b

This above is from M.P. Fourman and D.S. Scott’s
“Sheaves and Logic” (1979), that was published in SLNM0753
(“Applications of Sheaves: Proceedings of the Research Symposium
on Applications of Sheaf Theory to Logic, Algebra and Analysis -
Durham, july 9-21, 1977”). Relevant pages: 329-331.

How do we visualize the J-operators Ja, J
a, Ba, etc?

And what are the ‘&’ and ‘∨’ in the algebra of J-operators?
How do we visualize these ‘&’ and ‘∨’?
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Examples of J-operators: diagrams

Jap := a ∨ p
(closed quotient)

J22 =
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�
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�

�
�

�
�

22

Jap := a→ p
(open quotient)

J22 =
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�
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Bap := (p→ a)→ a
(Boolean quotient)

B12 =
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�
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(Ja & Jb)p := (a ∨ p)&(b→ p)
(forcing quotient)

(J42 & J24)p =
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Partitions into contiguous classes (“piccs”)
A good way to understand the algebra of J-operators
is to start by the one-dimensional case.
(ZHAs are two-dimensional things.)

A partition of {0, . . . , n} into contiguous classes (a “picc”)
is one in which this holds: if a, b, c ∈ {0, . . . , n}, a < b < c and a ∼ c,
then a ∼ b ∼ c.
So, for example, {{0, 1}, {2}, {3, 4, 5}} is a picc,
but {{0, 2}, {1}} is not.

A partition of {0, . . . , n} into contiguous classes induces:
1) an equivalence relation · ∼P ·,
2) a function [·]P that returns the equivalence class of an element,
3) a function

·P : {0, . . . , n} → {0, . . . , n}
a max [a]P

that takes each element to the top element in its class,
4) a set StP := { a ∈ {0, . . . , n} | aP = a } of the ”stable”
elements of {0, ..., n}, and
5) a graphical representation with a bar between a and a+ 1
when they are in different classes:

01|2|345 ≡ {{0, 1}, {2}, {3, 4, 5}},

which will be our favourite notation for piccs from now on.
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The algebra of piccs
When P and P ′ are two piccs on {0, . . . , n} we say
that P ≤ P ′ when ∀a ∈ {0, . . . , n}.aP ≤ aP

′
.

The intuition is that P ≤ P ′ means that the graph
of the function ·P is under the graph of ·P ′

:

0
1
2
3
4
5

012345
•
•
•
•
•
•

-

6

a

aP

≤
0
1
2
3
4
5

012345

••
••

••

-

6

a

aP ′

≤
0
1
2
3
4
5

012345

••

••••

-

6

a

aP ′′

≤
0
1
2
3
4
5

012345

••••••

-

6

a

aP ′′′

0|1|2|3|4|5 ≤ 01|23|45 ≤ 01|2345 ≤ 012345
P ≤ P ′ ≤ P ′′ ≤ P ′′′

This yields a partial order on piccs, whose bottom element is the
identity function 0|1| . . . |n, and the top element is 01 . . . n,
that takes all elements to n.

It turns out that the piccs form a (Heyting!) algebra, in which we can
define >, ⊥, &, ∨, and even →.

01234

01|234

OO >

P ∨Q

OO

01|234

0|1|234

??

��
��
01|234

01|2|34

__
??

??
P ∨Q

P

??

��
��
�
P ∨Q

Q

__
??

??
?

0|1|234

0|1|2|34

__
??

??
01|2|34

0|1|2|34

??

��
��

P

P &Q

__

??
??

? Q

P &Q

??

��
��
�

0|1|2|34

0|1|2|3|4

OO
P &Q

⊥

OO
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ZQuotients
A ZQuotient for a ZHA with top element 46 is:
a picc on {0, . . . , 4} (a “partition of the left wall”), plus
a picc on {0, . . . , 6} (a “partition of the right wall”).

Our favourite short notation for ZQuotients is with “/”s and “\”s,
like this, “4321/0 0123\45\6”, because we regard the cuts
in a ZQuotient as diagonal cuts on the ZHA.

The graphical notation is this (for 4321/0 0123\45\6 on
••
••
•

••
••
•

••
••

••
••
•):
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�
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�
@
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45
46

34
35
36

22
23

24
25
26

11
12

13
14

00
01

02
03
04

which makes clear how we can adapt the definitions of
· ∼P ·, [·]P , ·P , StP , which were on (one-dimensional!) piccs,
to their two-dimensional counterparts on ZQuotients.
If P is the ZQuotient of the figure above, then:

34 ∼P 25 is true,
23 ∼P 24 is false,

[12]P = {11, 12, 13, 22, 23},
22P = 23,
StP = {03, 04, 23, 45, 46}.
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The algebra of J-operators

(i) Ja ∨ Jb = Ja∨b J21 ∨ J12 = J21∨12

(ii) Ja ∨ Jb = Ja&b J32 ∨ J23 = J32&23

(iii) Ja & Jb = Ja&b J32 & J23 = J32&23

(iv) Ja & Jb = Ja∨b J32 & J23 = J32∨23

(↑ used in the examples below)
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(iv)
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The algebra of J-operators, 2
We can depict the four equations of the previous page as:

J22

J> = > = J⊥
??���������

J22

J> = > = J⊥
__?????????

J21

J22??�����
J12

J22 __?????
J32

J22
??�����

J23

J22
__?????

J11

J21 __?????
J11

J12??�����
J11

J32
__?????

J11

J23
??�����

J⊥ = ⊥ = J>

J11 __?????????

J⊥ = ⊥ = J>

J11
??���������

using Fourman and Scott’s notation, or as

(22∨)

(>∨) = (λp.>) = (⊥→)
??�����������

(22→)

(>∨) = (λp.>) = (⊥→)
__???????????

(21∨)

(22∨)
??����

(12∨)

(22∨)
__????

(32→)

(22→)
??����

(23→)

(22→)
__????

(11∨)

(21∨)
__????

(11∨)

(12∨)
??����

(33→)

(32→)
__????

(33→)

(23→)
??����

(⊥∨) = (λp.p) = (>→)

(11∨)
__???????????

(⊥∨) = (λp.p) = (>→)

(33→)
??�����������

using a notation that I think is obvious.
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The algebra of J-operators, 3

(v) Ja & Ja = ⊥ J21 & J21 = ⊥
(vi) Ja ∨ Ja = > J21 ∨ J21 = >
(ix) Ja ∨Ba = Ba J21 ∨B21 = B21

(x) Ja ∨Bb = Ba→b J21 ∨B12 = B21→12

(↑ used in the examples below)
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ZQuotients as polynomials
Fourman and Scott, p.331:
If we take a polynomial in →, &, ∨, ⊥, say f(p, a, b, . . .), it is a
decidable question whether for all a, b, . . . it defines a J-operator.

All ZQuotients are polynomials in that sense.
Moreover, they can be built from elementary J-operators
using just BP and &.
Example:
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It is easy to check by hand (test it for a few ‘P ’s!) that

B04 &B23 &B45 = λP.((B04 &B23 &B45)(P ))
= λP.((B04(P )&B23(P )&B45(P ))
= λP.(((P→04)→04)&((P→23)→23)&((P→45)→45))

acts as:

45
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34
35
36

22
23
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11
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Now we know that on ZHAs
1) J-operators are ZQuotients,
2) ZQuotients are (polynomial!) J-operators.
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Bottlenecks and flipping
A bottleneck in a ZHA is a point where L(y) = R(y).
We can flip everything in a ZHA between two consecutive bottlenecks
and obtain a ZHA that is isomorphic to the previous one.
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Their 2-column graphs will be isomorphic, too,
but that may not be evident when we look at them.
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How ZQuotients act on 2-column graphs
Here is one way to understand how a ZQuotient acts on a 2-column graph.
It will take several slides.

Let C :=

(
5, 6,

{
4 → 5
3 → 4
2 → 2
1 → 1

}
,
{
2 ← 5

})
.

Let C♦ := (5, 6, {}, {}).
Let H be the ZHA for C.
Let H♦ be the ZHA for C♦ (a lozenge).
Let J : H → H be a J-operator on H.
We can describe J by its cuts.
Draw the same cuts on H♦.
This induces a J-operator J♦ : H♦ → H♦ on H♦.
For example, if the cuts are

5/4321/0 0123\45\6,

then (H, J) and (H♦, J♦) are:
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The operation ‘·∗’ takes each element in H
to the top element in its equivalence class.
Let’s create a dual operation, ‘·co∗’, that takes
each element in H to the bottom element in its equivalence class.
The corresponding operations on H♦

will be denoted by ‘·♦’ and ‘·co♦’.
For example:

12∗ = 23 12♦ = 43
12co∗ = 11 12co♦ = 10

Now look at the cuts, and at the left and right piccs...

[1]L = {1, 2, 3, 4} [2]R = {0, 1, 2, 3}
1L = 4 2R = 3

1coL = 1 2coR = 0

We have:

ab♦ = aLbR 12♦ = 1L2R = 43
abco♦ = acoLbcoR 12co♦ = 1coL2coR = 10
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How ZQuotients act on 2-column graphs, 2

Let C :=

(
5, 6,

{
4 → 5
3 → 4
2 → 2
1 → 1

}
,
{
2 ← 5

})
.

Let C♦ := (5, 6, {}, {}).
Let H be the ZHA for C.
Let H♦ be the ZHA for C♦ (a lozenge).
Let J : H → H be a J-operator on H,
and J♦ : H♦ → H♦ be a J-operator on H♦,
both with these cuts:

5/4321/0 0123\45\6.

Then (H♦, J♦) and (H, J) and are:
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The equivalence classes for 12 in (H♦, J♦) and (H, J) are
[12]♦ = [12co♦, 12♦] = [10, 43] ⊆ H♦ and
[12]∗ = [12co∗, 12∗] = [11, 23] ⊆ H.
The elements of [12]♦ and [12]∗

are simply the open sets of these forms:
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How ZQuotients act on 2-column graphs, 3
The best way to see the action of a J-operator
on a 2-column graph C is this.
An open set on C is a map C → {0, 1}.
We erase some of its information, replacing it by ‘?’s,
then we try to reconstruct it.
There are two natural ways.
One, depicted below, that yields ‘·∗’, takes the biggest
open set with ‘0’ and ‘1’s in the specified places.

12 ≡
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≡ 23 = 12∗

The other way, that takes the smallest open set with ‘0’ and ‘1’s
in the specified places, yields ‘·co∗’.

Here is the right way (for adults!!!) to see that.
Choose a subset D of the points of C.
Endow D with the topology inherited from C.
(In our case, D has to inherit the order).

D ≡
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≡ C

The inclusion map i : D → C induces a map i∗ : O(D)← O(C),
that can be extended to a functor i∗ : SetD ← SetC

having both adjoints — i! a i∗ a i∗.
This i! a i∗ a i∗ is an essential geometric morphism
that is an inclusion.
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Part 3:
Seminar handouts
(For younger children -
including some who have
never seen a theorem)

This part is very incomplete
at this moment!
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Handouts: ZSets and ZDAGs for children
As a subset of Z2, K =

•• ••• (“kite”) is:
(1, 3),

(0, 2), (2, 2),

(1, 1),

(1, 0)

 .

The reading order on K, readK : K → N, is
1

2 3
4
5
.

The two natural DAGs on K are:

(K,BM(K)) =

(1, 3)

(0, 2) (2, 2)

(1, 1)

(1, 0)

↙ ↘

↘ ↙

↓

= (


(1, 3),

(0, 2), (2, 2),
(1, 1),
(1, 0)

 ,

 ((1, 3), (0, 2)), ((1, 3), (2, 2))
((0, 2), (1, 1)), ((2, 2), (1, 1)),

((1, 1), (1, 0))

)

(K,WM(K)) =

(1, 3)

(0, 2) (2, 2)

(1, 1)

(1, 0)

↙ ↘

↘ ↙

↓

= (


(1, 3),

(0, 2), (2, 2),
(1, 1),
(1, 0)

 ,

 ((0, 2), (1, 3)), ((2, 2), (1, 3))
((1, 1), (0, 2)), ((1, 1), (2, 2)),

((1, 0), (1, 1))

)

which are isomorphic to:

1

2 3

4

5

↙ ↘

↘ ↙

↓

= (


1

2, 3,
4,
5,

 ,

 (1, 2), (1, 3)
(2, 4), (3, 4),

(4, 5)

)

1

2 3

4

5

↙ ↘

↘ ↙

↓

= (


1

2, 3,
4,
5,

 ,

 (2, 1), (3, 1)
(4, 2), (4, 3),

(5, 4)

)
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Handouts: Notation for characteristic functions.

By default
0

1 0
0
1

would be the function
0

1 0
0
1

:
•

• •
•
•
→ {0, 1},

but when we say
0

1 0
0
1
⊆

•
• •
•
•

we mean:
·

(0, 2), ·
·

(1, 0)

 ⊆


(1, 3),
(0, 2), (2, 2),

(1, 1),
(1, 0)

, or


·

2, ·
·
5

 ⊆


1
2, 3,
4,
5

.

Handouts: Order topologies.

Example: (
•• ••• ,O(

•• ••• )) is

(
•

• •
•
•
,

{
0

0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

})
.

Note that
0

1 0
0
1

is not open - because when we draw it like this,

0

1 0

0

1

↙ ↘

↘ ↙

↓

there is an arrow ‘1→ 0’ in it.
Order topologies can be defined formally interpreting each arrow as a con-

dition. For example, on this DAG,

1

2 3

4

5

↙ ↘

↘ ↙

↓

the set of open sets is:A ⊆ {1, 2, 3, 4, 5}

∣∣∣∣∣∣
1∈A→ 2∈A & 1∈A→ 3∈A &
2∈A→ 4∈A & 3∈A→ 4∈A &

4∈A→ 5∈A
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