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ABSTRACT. We first state a few previously obtained results that lead to general unde-
cidability and incompleteness theorems in axiomatized theories that range from the theory
of finite sets to classical elementary analysis. Out of those results we prove several incom-
pleteness theorems for axiomatic versions of the theory of noncooperative games with Nash
equilibria; in particular, we show the existencefioite games whose equilibria cannot be
proven to be computable.
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1. INTRODUCTION

The Santa Fe Institute has recently started a multidisciplinary program
headed by J. Casti and J. Traub whose aim is to investigate the limits
of scientific knowledge [2, 3]. Rather reasonably, concepts such as those
that deal with the complexity and intractability of computations and with
noncomputable functions [20] were taken as starting points for that inves-
tigation which is still under course, as our scientific endeavor is mainly
concerned with the development of mathematical models for reality and
their application. Since economics and other areas in the social sciences are
now heavily dependent on sophisticated mathematical tools, the limitations
intrinsically inherent in those tools have to be investigated and pondered in
their applications. Examples of deep mathematical questions that arise in
the biological and social sciences may be seen in the widely used nonlinear
reaction—diffusion equations in ecology. Their computational intractability
was already well-known; there are related systems whose chaotic behavior
can be proved; and now the Gédel incompleteness phenomenon has been
shown to be of import in those models [8].

More precisely, we may say that economists and social scientists have
until now been concerned with positive (or negative) existential theorems
that prove (or disprove) facts about particular mathematical models in their
domains of activity. Archetypal examples are the Arrow—Debreu model
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and Arrow’s Impossibility Theorem. Yet, more recently that concern with
existential results has been extended to metamathematical aspects of eco-
nomic models, and specifically with their computational aspects, such as
the algorithmic resources required by the economic agents to carry out the
effective implementation of those models. The existence of a journal solely
dedicated to those questior@omputational Economicdbears witness to

this growing concern.

Internal and External Epistemological Questions

The use of metamathematical tools has also spread to questions with a
stronger philosophical flavor in economics. Epistemic logic and recursion
theory have been used in the theory of games to discuss and assess the sta-
tus of notions of solution, equilibria and rationality proposed by different
authors. The special issue Dfieory and Decisiothat deals with the rela-
tions between logic and game theory is very illuminating; see [1]. In such
an approach we deal with theternal epistemology and computabiliby

the theory of games. This means that we consider epistemological and
computational questions that affect thiayersand, in general, the inner
structure of the game — almost all papers published in economic journals
adopt this point of view.

Another possibility, more in line with the problem on the limits of scien-
tific knowledge is the one that may be called tgheernal epistemological
and computabilityof game theory. Here we deal with the relation between
the scientist who uses the game theoretical model and the model itself. We
have an economic model, or alternatively a class of models: and here the
guestion is, what can we get out of these?

We consider the questions arising from this second point of view; i.e.
we show that when we see game theory as a formal axiomatized theory,
some unsuspected incompleteness phenomena appear that establish limits
to the external epistemological power of the theory of games. It should
be stressed that analogous results could be obtained for any mathematized
microeconomic theory — here game theory is used for being an archetypal
example in economic theory.

Previous Results

In this external epistemological approach the most striking result in the
metamathematics of economic models was the recent proof by Lewis [16]
that the (formal) theory of Walrasian models with a computable presenta-
tion is an undecidable theory. (A weaker but equally interesting result by
the same author is the proof of the Godel-incompleteness of the theory of
Hamiltonian models [17].) In a similar vein Prasad [18] demonstrated the



THE INCOMPLETENESS OF THEORIES OF GAMES 555

existence of a class of countably infinite games for which the problem of
finding a Nash equilibrium is algorithmically unsolvable. When faced with
the same question in the finite situation, Prasad remarks:

For such games (i.e., with finite numbers of players and strategies) it is easy to describe a
computational procedure for finding Nash equilibria. Since the problem is inherently finite,

one approach would be to consider exhaustively all possible strategy combinations and to
check if any player can gain from unilateral deviation.

On Descriptions of Finite Sets

Let's think a bit about that. Prasad argues that we can check for Nash
equilibria in finite Nash games since the set of strategies is finite; out of its
finiteness we can make a finite list of things that matter in the game and by
brute force comparison we end up with the desired equilibria.

That approach certainly holds when we look at the problem in an exten-
sional way, that is, when the sets of strategies and utilities are considered
by themselves without the mediation of any formal language. Such is the
case in all informal approaches. Yet when we go from the domain of infor-
mal mathematics into that of formalized or axiomatized theories, we cease
to handle directly our intuitive, almost concrete initial objects. Formalized
theories are about strings of symbols that purport to represent our intuitions
about concrete objects. When we look at finite games within axiomatic
theories, those naive intuitions about their solvability break down.

We can be more precise here. First, it has been known since R. Harrop'’s
theorem that according to the description given to a finite set we may not be
able to single out its elements [11, 15]. We can give an informal example
of that phenomenon:

A description of a finite set with undecidable propertiest», andn,

be two different positive integers. Lé{k) be an explicit expression
for a noncomputable function defined over the positive integers which
however is known to take values O or 1 (see Section 2 for several
examples of that object). Thentk) = {n10(k) + no(1 — 0(k))} is
equal to{n1} or {n,} for each integek.

Yet for arbitrary integer, there is no decision procedure to check
whethem (k) = {ny} orn(k) = {n,}.

Summary of the Paper

The core of this paper is based on techniques developed by two of the
authors to solve some questions in dynamical systems theory and in other
domains of (axiomatized) physics [5, 6, 7, 8, 10]. Section 2 in this paper
reviews our construction of Richardson’s Functor from Diophantine equa-
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tions into elementary real analysis and lists several general undecidability

and incompleteness results for the language of analysis. Section 3 states
and proves our results on theories of noncooperative games with Nash

equilibria. Finally Section 4 presents our conclusions.

Preliminary Concepts and Notation

Our formal languages are built out of a finite alphabet, andxXfsessions
are defined as being the finite sequences of letters from the basic alphabet.
We therefore reduce everything to finite sequences of letters.

To be precise, we suppose that our theories are formalized within a
first-order classical language with equality and the description operator

We follow the notation of [5] with a few changes that are explicitly
indicated; in particulat» will denote the set of natural numbeisjs the
set of integers, ang are the real numbers. L&t be a first-order consis-
tent axiomatic theory that contains formalized Peano’s arithmetnd
such thatT is strong enough to include the concept of set and classi-
cal elementary analysis. (We can simply take= ZFC, where ZFC is
Zermelo—Fraenkel set theory with the axiom of choicel)fis the formal
language off", we suppose that we can form withiha recursive coding
for L7 so that it becomes a sét- of formal expressions in an adequate
interpretation off'. Terms inL7 will be denoted by lower case italic letters,
such as, y, z, f, g, a, ... Predicates or properties (i.e. open formulas) in
L will be noted P, Q, ... The use of Greek letters and more particular
notation features (such as g for polynomial functional symbols) will be
clear from the context. More generally, arbitrary expressiornsimill be
written&, ¢ ...

We emphasize that proofs ifi are algorithmically defined ways of
handling the objects df.;; for the concept of algorithm see [5]. A review
of concepts from computation theory and applications (algorithms, Turing
machines, formal systems and the like) can be found in [5]. Ideas from
logical number theory, such as the Matijasevich—Davis—Robinson—Jones
theorem and universal polynomials can be found in [12, 14].

2. UNDECIDABILITY AND INCOMPLETENESS INT

We now review the above described previous results by two of the au-
thors on the undecidability and incompleteness of classical analysis. Obvi-
ously our exposition is not rigorous and the reader is referred to the cited
bibliography for complete details.
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DEFINITION 2.1. T is arithmetically consistenif and only if the stan-
dard modeN for N is a model for the first-order arithmetic theoremgof
We also say thal is arithmetically consistent iM if M is a model ofT
andT is arithmetically consistent.

REMARK 2.2. Arithmetic consistency is a stronger requirement than
simple consistency, but it is (metamathematically) satisfied by ZFC. Nev-
ertheless, in several of our results below arithmetic consistency may be
replaced by simple consistency.

Richardson’s Functor and the Incompleteness of Analysis

Let now & be the algebra of polynomial expressions on a finite number
of unknowns over the integes we identify £ to the set of expressions
for Diophantine polynomials iff'. Let & be the set of expressions for real
elementary functions on a finite number of unknowns, wiiles the set of
expressions for real-valued elementary functions on a single variable [5].
We assert:

PROPOSITION 2.3 (Richardson’s Functol)et p,, (x1, x5, ...,x,) = 0

be a family of expressions for Diophantine equations parametrized by the
positive integetin in an arithmetically consistent theoff. Then there is

an algorithmic procedurer: » — & such that out ofp,, € & we can
explicitly obtain an expression

Sm(xX1, x2, .0, x0) = apu (X1, X2, ..., X)),
fm € &, such thatf,, = 0if and only if f,, < 1 if and only if there
are positive integers, xp, ..., x, such thatp,, (x4, ..., x,) = 0 (here we

commit an abuse of languag¢,, = 0 and f,, < 1 obviously mean that
the function represented by expressifntakes the stated values; in order
to avoid rendering too clumsy the statements of our results, we will also
adopt this same convention in the next propositions

Moreover there are algorithmic procedurg§ ;”: £ — F such that
we can obtain out of an expressign, two other expressions for one-
variable functions,g,,(x) = j'p.(x1,...) and h,,(x) = j"pu(x1,...)
such that there are positive integers, ... with p,,(x1,...) = 0if and
only if g,,(x) = 0and#,,(x) < 1, for all real-valuedx.

Proof. See [5]. O

PROPOSITION 2.4 (Incompleteness of Real Analysi$)I is arithmeti-
cally consistent, and if we add the absolute value functigrto ¥ and
close it to obtain an extended set of expressigriswe have:
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1.We can algorithmically construct i a denumerable family of ex-
pressions for real-valued, positive-definite functiépgx) > 0 so that
there is no general algorithm to decide whether one has, for all real
kn(x) =0.

2. FoE 3 modelM in which T is arithmetically consistent, there is an ex-
pression for a real-valued functidr(x) such thatM F Vx € Rk(x) =0
whileT ¥ Vx € Rk(x) =0andT ¥ 3x € Rk(x) # 0.

Proof. See [5]. O
If k,, (asin Proposition 2.4) results out pf,, we writek,, = Ap,,.

Equality is Undecidable i

COROLLARY 2.5. If T is arithmetically consistent iM then for a real-
valued functionf (defined also over the redl¢here is an expressiof
Ly suchthatM F& = f,whileT ¥ & = fandT ¥ —(¢§ = f).

Proof. Puté = f + k(x), for k(x) as in Proposition 2.4. |

The Halting Function and Expressions for Complete Degrees in the
Arithmetical Hierarchy

Let now M, (¢g) be the Turing machine of indexthat acts upon the natural
numberg. Letd(n, g) be thehalting functionfor M, (¢), thatis,0(n, q) =
1if and only if M,,(q) stops ovel, andéd(n, g) = 0 if and only if M, (¢)
doesn’t stop oveq. Remember that the halting functiéi, ¢g) cannot be
algorithmically implemented.

Let p, 4(x1, X2, ..., x,) be a universal polynomial [14]. SincE* has
an expression fopx| (informally one might havéx| = ++/x2), it has an
expression for the sign function(+x) = 40, o(0) = 0. Therefore we
can algorithmically build within the language of analysis (where we can
express quotients and integrations) an expression for the halting function
0(n,q):

PROPOSITION 2.6 (The Halting Functionlf 7 is arithmetically consis-
tent, then:

0(”? Q) = G(Gn,q)a

Goy = [ G
M) 14 Cuy(x)

Cn,q(x) = )"Pn,q(xla ces X)),
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Proof. See [5]. O

REMARK 2.7. Other expressions are available for the halting function;
see [8] for them. One of those expressions is ‘quasi-arithmetical, that is, it
can be constructed X plus a functional symbol.

There are infinitely many expressions foin, ¢) in L7; however due
to incompleteness some of them will never be proved to equal the halting
function inT.

DEFINITION 2.8. A predicateP in Ly is nontrivial if there are terms,
ysuchthatl - P(x) andT + =P (y).

If &€ € L7 is any expression in that language, we wiitg| for its com-
plexity, as measured by the number of letters frbimalphabet irg. Also
we define thecomplexity of a proofCr (¢) of € in L to be the minimum
length that a deduction &f from the axioms off’ can have, as measured
by the total number of letters in the expressions that belong to the proof.
Let P be any nontrivial predicate, and I& > F*.

Then:

PROPOSITION 2.9.1f T is arithmetically consistent, then:

1. There is an expressioh € B so thatT ¥ —P(&) andT ¥ P(§), but
M E P (&), whereT is arithmetically consistent iM.

2. There is a denumerable set of expressions for functipnis) € B,
m € w, such that there is no general decision procedure to ascertain,
for an arbitrary m, whetherP (¢,,) or =P (&,,) is provable inT.

3. Given the sek = {m : T + P(m)}, and given an arbitrary total
recursive functiorg: @ — o, there is an infinite number of values for
m so thatCr (P (m)) > g(|| P (m)]]).

Here m recursively codes the sét, of expressions inL;. That result

was the first general incompleteness theorem obtained by two of the au-
thors [5]. It is (in a certain sense) parallel to Rice’s Theorem in recursion
theory [13].

These results form the core of our techniques for obtaining undecidable
expressions iLy. Using the same principles and standard concepts from
recursion theory it is possible to extend our theorems to problems involving
all degrees of the arithmetical hierarchy and even beyond it. For our present
purposes we only state two of such generalizations that will be used in the
following section (their proofs and all the technical details can be found in

[8)):
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DEFINITION 2.10. The sentences ¢ € Ly aredemonstrably equiva-
lentin 7 (or areT -equivalent) if and only iff & < ¢.

DEFINITION 2.11. The sentencge L is arithmetically expressiblan

T if and only if there is an arithmetic sentengesuch thatl’ - ¢ < ¢.
Similarly we can define when aterm is said to be arithmetically expressible
inT.

PROPOSITION 2.12.If T satisfies some simple conditiofzee€[8]), then
for any nontrivial predicateP in N there is az € Ly such that the as-
sertion P(¢) is T-demonstrably equivalent tola,,,; assertion, but not to
any assertion with a lower rank in the arithmetic hierarchy.

PROPOSITION 2.13 (Nonarithmetic incompletenesl).T is arithmeti-
cally consistent then given any nontrivial propeRy

1.There is a family of expressios € L7 such that there is no general
algorithm to check, for eveny € w, whether or no” ~ P(¢,,).

2.There is an expressian e Ly such thatM E P(¢) whileT ¥ P(¢) and
T ¥ =P().

3.Neither¢,, nor ¢ are arithmetically expressible.

REMARK 2.14. We have thus produced out of every nontrivial predicate
in T intractable problems that cannot be reduced to arithmetic problems.
It should also be noted that the general nonarithmetic undecidable state-
ment P(¢) has been obtained without the help of any kind of forcing
construction.

Problems Equivalent to Some Specific Intractable Problem

REMARK 2.15. A related result is the equivalence between proving
famous arithmetic conjectures and the provability of a given nontrivial
property P within our formal system. The original example dealt with
Fermat's Last Theorem [10], but we can consider here, the well-known
P?N P question, which da Costa and Doria have strong reasons to believe
that it is independent of the axioms of ZFC [9].

The construction goes as follows: an axiomatic theory such as ZFC
is a recursively enumerable set of sentences. As such, there is a Turing
machineMzrc over an adequate alphabet which recursively enumerates
those sentences. §fis a sentence af zrc which is undecidable w.r.t. the
axioms of that theory, then neithemor —& can be proved in ZFC. If we
suppose that ZFC is arithmetically consistent, and:ifandm_; are ade-
quate Godel numbers for those sentences, Mgix(m:) and Mzec(m—;)
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do not stop over those inputs. Therefore we can algorithmically obtain an
expression for a Diophantine polynomigyec(m, ...) such that neither
pzec(me, ...) NOI pzec(m—g, .. .) have roots oM.

Therefore, using the same principles as in the previous constructions,
we can conclude that statements suchvasc(m:) = 0’ are undecidable
in ZFC. For convenience, in the following section such functiéms (m:)
will be denoted simply by8.

3. INCOMPLETENESS OF THEORIES ORONCOOPERATIVE GAMES

We start from the usual mathematical definitions in game theory:

DEFINITION 3.16. A noncooperative gamis given by the von Neu-
mann triplet(N, S;, u;), withi = 1,2, ..., N, whereN is the number of
players,S; is the strategy set of playérandu; is the real-valued utility
function

N
u;: (HSj) —> R,
j=1

foreveryi =1,2,..., N, where each; € S;.

And,

DEFINITION 3.17. A strategy vectat™ = (s7,...), s; € Sk is aNash
equilibrium vectorfor a finite noncooperative ganieif for all strategies
and alli,

ui () = wi ({57, o5 o)) = ui((S1y vy Sky 2 2)).

If we work within some strong theor¥ (like ZFC, for example), it is easy

to transform the above two informal definitions into formal ones by means
of set-theoretical concepts. The result is therefore a Suppes predicate (see
[4]) for noncooperative games and a formalization of the relation between
a game and its corresponding Nash equilibria.

Undecidability and Incompleteness Theorems

Here we work within a formal theory strong enough to develop classical
analysis. Thus, to begin with, let us consider the predi@ate, y) of Ly
which states that is a von Neumann triplet anglis its Nash equilibria. Let
g be the metamathematical Spt= {(11, 1) : 11, 1, are terms oLy AM E
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P, (t1, 1)} (with M as in Proposition 2.4). For notational convenience we
label asI” the elements o. In the next theorem we adopt the following
convention: a predicate (or propert§) ‘applied’ toI" = (t;, ) means in
fact P (11, 12). Then:

PROPOSITION 3.18.If T is arithmetically consistent then:

1. Given any nontrivial property of finite noncooperative games, there is
an infinitely denumerable family of elemeis of ¢ such that for those
m with T + P(T,,), for an arbitrary total recursive functiog: v — o,
there is an infinite number of values for such thatC;(P(T,,)) >
gUIPTwmlD).

2. For any nontrivial propertyP of finite noncooperative games, there is
one definite element of ¢ such thatT + P(I") ifand only if T -+ P =
NP.

3. There is an elemerit of ¢ for which each strategy se%; is finite but
such that we cannot compute its Nash equilibria.

4. There is an elemerit of § for which each strategy se is finite and
such that the computation of its equilibria Tsarithmetically express-
ible as all,,; problem, but not to any, problemk < n.

5. There is an elemenf of g for which each strategy sef; is finite
and such that the computation of its equilibria is not arithmetically
expressible.

Proof. The first statement (1) says that, even if we can p®¢E,,) in T,
there will be infinitely many values of such that the proof of (T",,) in
T will be arbitrarily long. Follows from Proposition 2.9.

The second statement (2) is proved as follows:IlendI'” be two
elements ofg which represent games with the same number of players
but with different strategy sets and different equilibria; let us also assume
thatT + P(I). If u’ andu” are the expressions for the respective utility
functions of the von Neumann triplets termdihandI’” and we takes as
in Remark 2.15, the elementof § with the term, {x = uAu = u'+ Bu"}
for the utility function of its von Neumann triplet is our desired element.

Statement (3) also follows from Proposition 2.9.

Statement (4) follows from similar constructions out of Proposition 2.12,
while statement (5) follows (again using the same type of reasoning) from
Proposition 2.13. O

REMARK 3.19. We should clarify a bit more items (3), (4) and (5)
above. Let us fix some decidability criteridn for sets of real numbers
(Pour-el's one, for example) and 18 (14, t2) be the predicate constructed
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in Ly saying that the termy stands for a von Neumann triplet with-
decidable Nash equilibria term. Then, what we mean when we say that
the equilibria for an element,, ;) of 4 is not computable is simply that

T ¥ Pp(t1, t2). In other words, it is a result about the metamathematics
of T which thus depends solely dris nature. A more proper terminology
would be to say that the equilibria fém, z,) is notT -computable, stressing
the fact that all such results must be taken relative to the formal tffeory

Incompleteness of Weak Theories of Noncooperative Games

We can takd barely beyond the simplest version of formalized arithmetic
N and still find out that the computation of equilibria for finite games
cannot always be made, even if we cannot prove most of the results about
games in that weak theory, and even if the theory is only able to handle
finite objects, or objects that can be inductively obtained out of those.

Now let us takeN* to be the theory whose axioms are a small frag-
ment of ZFC that allows us to develop a theory of finite sets; that theory
encompasses then a good portion of usual arithmetic. Explicitly one has:

DEFINITION 3.20. N* is the theory whose underlying formal language
is the classical first-order predicate calculus with equality to which we add
a binary relation symbo& and a new constart, plus the mathematical
axioms:

1. Equality. VxVyVz((z €ex <> z€y) > x = y).

2. The empty set.Vx(—x € ).

3. Pair. VaVy3IzVw(w € z <> w = x Vw = y).

4. Union. VxVy3zVw(w € z <> w € x Vw € y).
Out of those axioms we define a predicdie) which reads x is an
integer’; we define the numeral ‘0’, and we define the operatioA 1.
We then state, for a formula(x, ¢4, ..., ¢,) on parameters, ... with
at least one free variable:

5. Induction. VxVyVt, ... V5, [(A(O, t1, .. )N(U(WAA(Y, 11, ...) > A(y+
1t,..)) > {UKx)—> Alx, 11, ...)].

We can easily define functions with finite domains and with values in the
objects ofN*. We can also defing- and x for integers, and as a con-
sequence we can form polynomials on the integers*inWe also have
‘discontinuous’ operations such as the truncated differerioghat formal
system.

We have that:
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LEMMA 3.21. N* + 3z(z = (1, fD), ..., (n, f(n)))), wheref is a
function whose domain includes the §&t2, ..., n}.

Proof. The Pair axiom implies the existence of orderegles. Since we
can construct functions iN*, the lemma follows. O

We rework the definition of strategies and utility functions given above
in Definitions 3.16 and 3.17 to restrict them to the objectdNtf With

the help of the underlying first-order predicate calculus and description
operaton we can also define a st in L v+ analogous to our previous set

g constructed irl 7. Then, with the help of Lemma 3.21 we can use an ‘un-
decidable’ polynomiak (see [7] for its construction) and take the element
'* of ¢* with the terme, {x = u* A u* = u’ + qu”} for the utility function

of its von Neumann triplet (where’ andu” are the expressions for the
utility functions of two given elements ¢f* with and without equilibria,
respectively). The remainder of the argument goes as usual. Thus:

PROPOSITION 3.22.1f N* is consistent then there is an elemétit of
g* such that the assertion{x = u* Au* = u' +u"} < ,{y = u'}is
undecidable inN*.

REMARK 3.23. Lemma 3.21 implies the existence of sets of strate-
gies. We can therefore construct integer-valued functions, and in particular
utility functions on those sets of strategies.

Finite or Infinite Games?

We go back to our extended theofyand to our sefj. We say that an
elementl’ = (11, 1) of G is finite or infinite if 1, stands for a finite or
infinite von Neumann triplet, respectively.

PROPOSITION 3.24.LetIl"’, I’ be such thaf" F I’ is finite,andT + I’
is infinite. Then there is an elemefitin ¢ such that the assertion is finite
is undecidable .

Proof. For 8 as in Remark 2.15, we can write (with an obvious abuse of
languagel” =TIV + BI'”. O

REMARK 3.25. We can obviously obtain here in Proposition 3.24 state-
ments similar to (and as nasty as) those in Proposition 3.18.
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A Blocked Backroute or a Problem to be Found Everywhere?

Godel-like incompleteness theorems are warning posts that indicate block-
ed routes; they mean that one cannot go farther along some direction in
mathematical theories. Incompleteness is known to appear in lost back-
alleys within the domains of mathematics; yet we have always strongly
believed that the incompleteness phenomenon is part of the actual practice
in any axiomatized science. The authors’ endeavor proved a fruitful one
when it was shown that simple questions in chaos theory (‘given a dynam-
ical system, can we check whether it is chaotic? Can we prove that it is
chaotic?’) led to undecidability and incompleteness [5].

Finite Games: From Informal Theories to Axiomatic Ones

When it comes to the theory of finite games the situation again looks very
neat at first. If we can extensionally describe the game by tables, it should
have computable equilibria; if not, its description within a formal language
may have some undecidable properties which are dependent on the axioms
of this same formal language (of course we refer to properties which are
relevant from the point of view of game theory).

The axiomatic background is made explicit for clarity. The incomplete-
ness phenomenon means that within a (consistent) prescribed axiomatic
framework certain facts cannot be proved. Assuredly, if we add stronger
axioms to our system, those facts may become provable. Yet the stronger
axioms may also be debatable on philosophical grounds, so that the proof
of a desired fact from the enriched system turns out to be technically
correct but philosophically (and perhaps empirically) doubtful. (For a re-
cent reflection on the import of incompleteness to foundational issues and
on some new techniques for the construction of undecidable sentences
see [13].)

4. CONCLUSION

The main point of the present paper was to stress the gap between an ex-
tensional approach to game theory (or to any other microeconomic theory
in general) and its intensional counterpart. Our results have thus an un-
appealingly abstract look. Yet they have an immediate consequence for
a question of great practical and historical importance: the controversy
on economic planning between L. von Mises and O. Lange (see on that
controversy [19, I, p. 115ff]). We have dealt with decision problems about
finite games. Intuitively everything should be computable; however when
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we try to clarify our intuitions we see that they break down and an essential
noncomputability appears.

The central problem of economic planning is an allocation problem;
very frequently allocation is to be done on the basis of maximizing (or min-
imizing) simple functions on finite sets. We have shown that trouble is to
be expected even when the problem of planning is reduced to the problem
of determining equilibria for a set of expressions of finite noncooperative
Nash games. So, the main argument by Lange in favor of a planned econ-
omy (by the way, an argument also shared by von Mises) is not as forceful
as it appears to be. Lange thought that given the possibly many explicit
equations defining an economy, a huge and immensely powerful computer
would alwaysbe able to figure out the equilibrium prices, therefore allow-
ing (at least theoretically) the existence of an efficient global policy maker
(note the intensional flavor of Lange’s formulation). However the present
paper (or the previous results by Lewis [16, 17]) disproves Lange’s con-
jecture: there will be an explicit set of equations, even in a finite humber,
describing a market economy whose equilibria will not be computable (if,
as we insist, our computations are thought as being performed within an
adequate formal theory).

The rather coarse hierarchy of problems in Proposition 3.18 easily ex-
tends to a competitive market situation. This means that we can go from
computable but extremely hard to calculate equilibrium prices (or equilib-
rium prices whose computation is equivalent to the proof of problems like
the P?N P) to prices in all levels of the arithmetical hierarchy, and even
beyond.

However we do not mean to say that our whole mathematical machin-
ery has its value solely determined by a couple of interesting but local,
restricted practical consequences. We would like to fit it into the historical
framework of mathematical modeling in economics. We followed tradition
here, since our techniques stemmed from physics and found their original
applications in the natural sciences. It is no accidental feature that most
methods in the mathematized social sciences have originated in the ‘hard’
scientific domains. So, limitations to our scientific knowledge found in
the latter could reasonably be expected to emerge in the former. That fact
points out to a still badly perceived common ground between the natural
and social domains. The search for that common epistemological ground
has been one of our motivations for the present work.
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