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ABSTRACT. We first state a few previously obtained results that lead to general unde-
cidability and incompleteness theorems in axiomatized theories that range from the theory
of finite sets to classical elementary analysis. Out of those results we prove several incom-
pleteness theorems for axiomatic versions of the theory of noncooperative games with Nash
equilibria; in particular, we show the existence offinite games whose equilibria cannot be
proven to be computable.
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1. INTRODUCTION

The Santa Fe Institute has recently started a multidisciplinary program
headed by J. Casti and J. Traub whose aim is to investigate the limits
of scientific knowledge [2, 3]. Rather reasonably, concepts such as those
that deal with the complexity and intractability of computations and with
noncomputable functions [20] were taken as starting points for that inves-
tigation which is still under course, as our scientific endeavor is mainly
concerned with the development of mathematical models for reality and
their application. Since economics and other areas in the social sciences are
now heavily dependent on sophisticated mathematical tools, the limitations
intrinsically inherent in those tools have to be investigated and pondered in
their applications. Examples of deep mathematical questions that arise in
the biological and social sciences may be seen in the widely used nonlinear
reaction–diffusion equations in ecology. Their computational intractability
was already well-known; there are related systems whose chaotic behavior
can be proved; and now the Gödel incompleteness phenomenon has been
shown to be of import in those models [8].

More precisely, we may say that economists and social scientists have
until now been concerned with positive (or negative) existential theorems
that prove (or disprove) facts about particular mathematical models in their
domains of activity. Archetypal examples are the Arrow–Debreu model
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554 MARCELO TSUJI ET AL.

and Arrow’s Impossibility Theorem. Yet, more recently that concern with
existential results has been extended to metamathematical aspects of eco-
nomic models, and specifically with their computational aspects, such as
the algorithmic resources required by the economic agents to carry out the
effective implementation of those models. The existence of a journal solely
dedicated to those questions,Computational Economics, bears witness to
this growing concern.

Internal and External Epistemological Questions

The use of metamathematical tools has also spread to questions with a
stronger philosophical flavor in economics. Epistemic logic and recursion
theory have been used in the theory of games to discuss and assess the sta-
tus of notions of solution, equilibria and rationality proposed by different
authors. The special issue ofTheory and Decisionthat deals with the rela-
tions between logic and game theory is very illuminating; see [1]. In such
an approach we deal with theinternal epistemology and computabilityof
the theory of games. This means that we consider epistemological and
computational questions that affect theplayersand, in general, the inner
structure of the game – almost all papers published in economic journals
adopt this point of view.

Another possibility, more in line with the problem on the limits of scien-
tific knowledge is the one that may be called theexternal epistemological
and computabilityof game theory. Here we deal with the relation between
the scientist who uses the game theoretical model and the model itself. We
have an economic model, or alternatively a class of models: and here the
question is, what can we get out of these?

We consider the questions arising from this second point of view; i.e.
we show that when we see game theory as a formal axiomatized theory,
some unsuspected incompleteness phenomena appear that establish limits
to the external epistemological power of the theory of games. It should
be stressed that analogous results could be obtained for any mathematized
microeconomic theory – here game theory is used for being an archetypal
example in economic theory.

Previous Results

In this external epistemological approach the most striking result in the
metamathematics of economic models was the recent proof by Lewis [16]
that the (formal) theory of Walrasian models with a computable presenta-
tion is an undecidable theory. (A weaker but equally interesting result by
the same author is the proof of the Gödel-incompleteness of the theory of
Hamiltonian models [17].) In a similar vein Prasad [18] demonstrated the
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existence of a class of countably infinite games for which the problem of
finding a Nash equilibrium is algorithmically unsolvable. When faced with
the same question in the finite situation, Prasad remarks:

For such games (i.e., with finite numbers of players and strategies) it is easy to describe a
computational procedure for finding Nash equilibria. Since the problem is inherently finite,
one approach would be to consider exhaustively all possible strategy combinations and to
check if any player can gain from unilateral deviation.

On Descriptions of Finite Sets

Let’s think a bit about that. Prasad argues that we can check for Nash
equilibria in finite Nash games since the set of strategies is finite; out of its
finiteness we can make a finite list of things that matter in the game and by
brute force comparison we end up with the desired equilibria.

That approach certainly holds when we look at the problem in an exten-
sional way, that is, when the sets of strategies and utilities are considered
by themselves without the mediation of any formal language. Such is the
case in all informal approaches. Yet when we go from the domain of infor-
mal mathematics into that of formalized or axiomatized theories, we cease
to handle directly our intuitive, almost concrete initial objects. Formalized
theories are about strings of symbols that purport to represent our intuitions
about concrete objects. When we look at finite games within axiomatic
theories, those naive intuitions about their solvability break down.

We can be more precise here. First, it has been known since R. Harrop’s
theorem that according to the description given to a finite set we may not be
able to single out its elements [11, 15]. We can give an informal example
of that phenomenon:

A description of a finite set with undecidable properties.Let n1 andn2

be two different positive integers. Letθ(k) be an explicit expression
for a noncomputable function defined over the positive integers which
however is known to take values 0 or 1 (see Section 2 for several
examples of that object). Thenn(k) = {n1θ(k) + n2(1 − θ(k))} is
equal to{n1} or {n2} for each integerk.
Yet for arbitrary integersk, there is no decision procedure to check
whethern(k) = {n1} or n(k) = {n2}.

Summary of the Paper

The core of this paper is based on techniques developed by two of the
authors to solve some questions in dynamical systems theory and in other
domains of (axiomatized) physics [5, 6, 7, 8, 10]. Section 2 in this paper
reviews our construction of Richardson’s Functor from Diophantine equa-
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tions into elementary real analysis and lists several general undecidability
and incompleteness results for the language of analysis. Section 3 states
and proves our results on theories of noncooperative games with Nash
equilibria. Finally Section 4 presents our conclusions.

Preliminary Concepts and Notation

Our formal languages are built out of a finite alphabet, and itsexpressions
are defined as being the finite sequences of letters from the basic alphabet.
We therefore reduce everything to finite sequences of letters.

To be precise, we suppose that our theories are formalized within a
first-order classical language with equality and the description operatorι.

We follow the notation of [5] with a few changes that are explicitly
indicated; in particularω will denote the set of natural numbers,Z is the
set of integers, andR are the real numbers. LetT be a first-order consis-
tent axiomatic theory that contains formalized Peano’s arithmeticN and
such thatT is strong enough to include the concept of set and classi-
cal elementary analysis. (We can simply takeT = ZFC, where ZFC is
Zermelo–Fraenkel set theory with the axiom of choice.) IfLT is the formal
language ofT , we suppose that we can form withinT a recursive coding
for LT so that it becomes a setLT of formal expressions in an adequate
interpretation ofT . Terms inLT will be denoted by lower case italic letters,
such asx, y, z, f, g, a, . . . Predicates or properties (i.e. open formulas) in
LT will be notedP,Q, . . . The use of Greek letters and more particular
notation features (such asp, q for polynomial functional symbols) will be
clear from the context. More generally, arbitrary expressions inLT will be
written ξ, ζ . . .

We emphasize that proofs inT are algorithmically defined ways of
handling the objects ofLT ; for the concept of algorithm see [5]. A review
of concepts from computation theory and applications (algorithms, Turing
machines, formal systems and the like) can be found in [5]. Ideas from
logical number theory, such as the Matijasevich–Davis–Robinson–Jones
theorem and universal polynomials can be found in [12, 14].

2. UNDECIDABILITY AND INCOMPLETENESS IN T

We now review the above described previous results by two of the au-
thors on the undecidability and incompleteness of classical analysis. Obvi-
ously our exposition is not rigorous and the reader is referred to the cited
bibliography for complete details.
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DEFINITION 2.1. T is arithmetically consistentif and only if the stan-
dard modelN for N is a model for the first-order arithmetic theorems ofT .
We also say thatT is arithmetically consistent inM if M is a model ofT
andT is arithmetically consistent.

REMARK 2.2. Arithmetic consistency is a stronger requirement than
simple consistency, but it is (metamathematically) satisfied by ZFC. Nev-
ertheless, in several of our results below arithmetic consistency may be
replaced by simple consistency.

Richardson’s Functor and the Incompleteness of Analysis

Let now P be the algebra of polynomial expressions on a finite number
of unknowns over the integersZ; we identify P to the set of expressions
for Diophantine polynomials inT . Let E be the set of expressions for real
elementary functions on a finite number of unknowns, whileF is the set of
expressions for real-valued elementary functions on a single variable [5].
We assert:

PROPOSITION 2.3 (Richardson’s Functor).Let pm(x1, x2, . . . , xn) = 0
be a family of expressions for Diophantine equations parametrized by the
positive integerm in an arithmetically consistent theoryT . Then there is
an algorithmic procedureα: P → E such that out ofpm ∈ P we can
explicitly obtain an expression

fm(x1, x2, . . . , xn) = αpm(x1, x2, . . . , xn),

fm ∈ E , such thatfm = 0 if and only if fm ≤ 1 if and only if there
are positive integersx1, x2, . . . , xn such thatpm(x1, . . . , xn) = 0 (here we
commit an abuse of language:fm = 0 andfm ≤ 1 obviously mean that
the function represented by expressionfm takes the stated values; in order
to avoid rendering too clumsy the statements of our results, we will also
adopt this same convention in the next propositions).

Moreover there are algorithmic procedures ′,  ′′: P → F such that
we can obtain out of an expressionpm two other expressions for one-
variable functions,gm(x) =  ′pm(x1, . . .) and hm(x) =  ′′pm(x1, . . .)

such that there are positive integersx1, . . . with pm(x1, . . .) = 0 if and
only if gm(x) = 0 andhm(x) ≤ 1, for all real-valuedx.

Proof.See [5]. 2

PROPOSITION 2.4 (Incompleteness of Real Analysis).If T is arithmeti-
cally consistent, and if we add the absolute value function|x| to F and
close it to obtain an extended set of expressionsF ∗, we have:
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1. We can algorithmically construct inT a denumerable family of ex-
pressions for real-valued, positive-definite functionskm(x) ≥ 0 so that
there is no general algorithm to decide whether one has, for all realx,
km(x) = 0.

2. For a modelM in whichT is arithmetically consistent, there is an ex-
pression for a real-valued functionk(x) such thatM � ∀x ∈ Rk(x) = 0
whileT 0 ∀x ∈ Rk(x) = 0 andT 0 ∃x ∈ Rk(x) 6= 0.

Proof.See [5]. 2

If km (as in Proposition 2.4) results out ofpm, we writekm = λpm.

Equality is Undecidable inLT

COROLLARY 2.5. If T is arithmetically consistent inM then for a real-
valued functionf (defined also over the reals) there is an expressionξ ∈
LT such thatM � ξ = f , whileT 0 ξ = f andT 0 ¬(ξ = f ).

Proof.Putξ = f + k(x), for k(x) as in Proposition 2.4. 2

The Halting Function and Expressions for Complete Degrees in the
Arithmetical Hierarchy

Let nowMn(q) be the Turing machine of indexn that acts upon the natural
numberq. Let θ(n, q) be thehalting functionforMn(q), that is,θ(n, q) =
1 if and only ifMn(q) stops overq, andθ(n, q) = 0 if and only ifMn(q)

doesn’t stop overq. Remember that the halting functionθ(n, q) cannot be
algorithmically implemented.

Let pn,q(x1, x2, . . . , xn) be a universal polynomial [14]. SinceF ∗ has
an expression for|x| (informally one might have|x| = +√x2), it has an
expression for the sign functionσ(±x) = ±0, σ(0) = 0. Therefore we
can algorithmically build within the language of analysis (where we can
express quotients and integrations) an expression for the halting function
θ(n, q):

PROPOSITION 2.6 (The Halting Function).If T is arithmetically consis-
tent, then:

θ(n, q) = σ(Gn,q),

Gn,q =
∫ +∞
−∞

Cn,q(x)e
−x2

1+ Cn,q(x) dx,

Cn,q(x) = λpn,q(x1, . . . , xr ).
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Proof.See [5]. 2

REMARK 2.7. Other expressions are available for the halting function;
see [8] for them. One of those expressions is ‘quasi-arithmetical, that is, it
can be constructed inN plus a functional symbol.

There are infinitely many expressions forθ(n, q) in LT ; however due
to incompleteness some of them will never be proved to equal the halting
function inT .

DEFINITION 2.8. A predicateP in LT is nontrivial if there are termsx,
y such thatT ` P(x) andT ` ¬P(y).
If ξ ∈ LT is any expression in that language, we write||ξ || for its com-
plexity, as measured by the number of letters fromT ’s alphabet inξ . Also
we define thecomplexity of a proofCT (ξ) of ξ in LT to be the minimum
length that a deduction ofξ from the axioms ofT can have, as measured
by the total number of letters in the expressions that belong to the proof.
Let P be any nontrivial predicate, and letB ⊃ F ∗.

Then:

PROPOSITION 2.9.If T is arithmetically consistent, then:

1. There is an expressionξ ∈ B so thatT 0 ¬P(ξ) andT 0 P(ξ), but
M � P(ξ), whereT is arithmetically consistent inM .

2. There is a denumerable set of expressions for functionsξm(x) ∈ B,
m ∈ ω, such that there is no general decision procedure to ascertain,
for an arbitrarym, whetherP(ξm) or ¬P(ξm) is provable inT .

3. Given the setK = {m : T ` P(m̂)}, and given an arbitrary total
recursive functiong: ω → ω, there is an infinite number of values for
m so thatCT (P (m̂)) > g(||P(m̂)||).

Here m̂ recursively codes the setξm of expressions inLT . That result
was the first general incompleteness theorem obtained by two of the au-
thors [5]. It is (in a certain sense) parallel to Rice’s Theorem in recursion
theory [13].

These results form the core of our techniques for obtaining undecidable
expressions inLT . Using the same principles and standard concepts from
recursion theory it is possible to extend our theorems to problems involving
all degrees of the arithmetical hierarchy and even beyond it. For our present
purposes we only state two of such generalizations that will be used in the
following section (their proofs and all the technical details can be found in
[8]):
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DEFINITION 2.10. The sentencesξ, ζ ∈ LT aredemonstrably equiva-
lent in T (or areT -equivalent) if and only ifT ` ξ ↔ ζ .

DEFINITION 2.11. The sentenceξ ∈ LT is arithmetically expressiblein
T if and only if there is an arithmetic sentenceζ such thatT ` ξ ↔ ζ .
Similarly we can define when a term is said to be arithmetically expressible
in T .

PROPOSITION 2.12.If T satisfies some simple conditions(see[8]), then
for any nontrivial predicateP in N there is aζ ∈ LT such that the as-
sertionP(ζ ) is T -demonstrably equivalent to a5m+1 assertion, but not to
any assertion with a lower rank in the arithmetic hierarchy.

PROPOSITION 2.13 (Nonarithmetic incompleteness).If T is arithmeti-
cally consistent then given any nontrivial propertyP :

1.There is a family of expressionsζm ∈ LT such that there is no general
algorithm to check, for everym ∈ ω, whether or notT ` P(ζm).

2.There is an expressionζ ∈ LT such thatM � P(ζ ) whileT 0 P(ζ ) and
T 0 ¬P(ζ ).

3.Neitherζm nor ζ are arithmetically expressible.

REMARK 2.14. We have thus produced out of every nontrivial predicate
in T intractable problems that cannot be reduced to arithmetic problems.
It should also be noted that the general nonarithmetic undecidable state-
ment P(ζ ) has been obtained without the help of any kind of forcing
construction.

Problems Equivalent to Some Specific Intractable Problem

REMARK 2.15. A related result is the equivalence between proving
famous arithmetic conjectures and the provability of a given nontrivial
propertyP within our formal system. The original example dealt with
Fermat’s Last Theorem [10], but we can consider here, the well-known
P?NP question, which da Costa and Doria have strong reasons to believe
that it is independent of the axioms of ZFC [9].

The construction goes as follows: an axiomatic theory such as ZFC
is a recursively enumerable set of sentences. As such, there is a Turing
machineMZFC over an adequate alphabet which recursively enumerates
those sentences. Ifξ is a sentence ofLZFC which is undecidable w.r.t. the
axioms of that theory, then neitherξ nor¬ξ can be proved in ZFC. If we
suppose that ZFC is arithmetically consistent, and ifmξ andm¬ξ are ade-
quate Gödel numbers for those sentences, thenMZFC(mξ) andMZFC(m¬ξ )
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do not stop over those inputs. Therefore we can algorithmically obtain an
expression for a Diophantine polynomialpZFC(m, . . .) such that neither
pZFC(mξ, . . .) norpZFC(m¬ξ , . . .) have roots onM .

Therefore, using the same principles as in the previous constructions,
we can conclude that statements such as ‘θZFC(mξ) = 0’ are undecidable
in ZFC. For convenience, in the following section such functionsθZFC(mξ)

will be denoted simply byβ.

3. INCOMPLETENESS OF THEORIES OFNONCOOPERATIVE GAMES

We start from the usual mathematical definitions in game theory:

DEFINITION 3.16. A noncooperative gameis given by the von Neu-
mann triplet〈N, Si, ui〉, with i = 1,2, . . . , N , whereN is the number of
players,Si is the strategy set of playeri andui is the real-valued utility
function

ui :
( N∏
j=1

Sj

)
−→ R,

for everyi = 1,2, . . . , N , where eachsi ∈ Si.
And,

DEFINITION 3.17. A strategy vectors∗ = 〈s∗1, . . .〉, s∗k ∈ Sk is aNash
equilibrium vectorfor a finite noncooperative game0 if for all strategies
and alli,

ui(s
∗) = ui(〈s∗1, . . . , s∗k , . . .〉) ≥ ui(〈s1, . . . , sk, . . .〉).

If we work within some strong theoryT (like ZFC, for example), it is easy
to transform the above two informal definitions into formal ones by means
of set-theoretical concepts. The result is therefore a Suppes predicate (see
[4]) for noncooperative games and a formalization of the relation between
a game and its corresponding Nash equilibria.

Undecidability and Incompleteness Theorems

Here we work within a formal theoryT strong enough to develop classical
analysis. Thus, to begin with, let us consider the predicatePg(x, y) of LT
which states thatx is a von Neumann triplet andy is its Nash equilibria. Let
G be the metamathematical setG = {〈t1, t2〉 : t1, t2 are terms ofLT ∧M �
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Pg(t1, t2)} (with M as in Proposition 2.4). For notational convenience we
label as0 the elements ofG. In the next theorem we adopt the following
convention: a predicate (or property)P ‘applied’ to0 = 〈t1, t2〉 means in
factP(t1, t2). Then:

PROPOSITION 3.18.If T is arithmetically consistent then:

1. Given any nontrivial propertyP of finite noncooperative games, there is
an infinitely denumerable family of elements0m of G such that for those
mwithT ` P(0m), for an arbitrary total recursive functiong: ω→ ω,
there is an infinite number of values form such thatCT (P (0m)) >
g(||P0m||).

2. For any nontrivial propertyP of finite noncooperative games, there is
one definite element0 of G such thatT ` P(0) if and only ifT ` P =
NP .

3. There is an element0 of G for which each strategy setSi is finite but
such that we cannot compute its Nash equilibria.

4. There is an element0 of G for which each strategy setSi is finite and
such that the computation of its equilibria isT -arithmetically express-
ible as a5n+1 problem, but not to any6k problem,k ≤ n.

5. There is an element0 of G for which each strategy setSi is finite
and such that the computation of its equilibria is not arithmetically
expressible.

Proof.The first statement (1) says that, even if we can proveP(0m) in T ,
there will be infinitely many values ofm such that the proof ofP(0m) in
T will be arbitrarily long. Follows from Proposition 2.9.

The second statement (2) is proved as follows: let0′ and0′′ be two
elements ofG which represent games with the same number of players
but with different strategy sets and different equilibria; let us also assume
thatT ` P(0′). If u′ andu′′ are the expressions for the respective utility
functions of the von Neumann triplets terms in0′ and0′′ and we takeβ as
in Remark 2.15, the element0 of G with the termιx{x = u∧u = u′+βu′′}
for the utility function of its von Neumann triplet is our desired element.

Statement (3) also follows from Proposition 2.9.
Statement (4) follows from similar constructions out of Proposition 2.12,

while statement (5) follows (again using the same type of reasoning) from
Proposition 2.13. 2

REMARK 3.19. We should clarify a bit more items (3), (4) and (5)
above. Let us fix some decidability criterionD for sets of real numbers
(Pour-el’s one, for example) and letPD(t1, t2) be the predicate constructed
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in LT saying that the termt1 stands for a von Neumann triplet withD-
decidable Nash equilibria termt2. Then, what we mean when we say that
the equilibria for an element〈t1, t2〉 of G is not computable is simply that
T 0 PD(t1, t2). In other words, it is a result about the metamathematics
of T which thus depends solely onT ’s nature. A more proper terminology
would be to say that the equilibria for〈t1, t2〉 is notT -computable, stressing
the fact that all such results must be taken relative to the formal theoryT .

Incompleteness of Weak Theories of Noncooperative Games

We can takeT barely beyond the simplest version of formalized arithmetic
N and still find out that the computation of equilibria for finite games
cannot always be made, even if we cannot prove most of the results about
games in that weak theory, and even if the theory is only able to handle
finite objects, or objects that can be inductively obtained out of those.

Now let us takeN∗ to be the theory whose axioms are a small frag-
ment of ZFC that allows us to develop a theory of finite sets; that theory
encompasses then a good portion of usual arithmetic. Explicitly one has:

DEFINITION 3.20. N∗ is the theory whose underlying formal language
is the classical first-order predicate calculus with equality to which we add
a binary relation symbol∈ and a new constant∅, plus the mathematical
axioms:

1. Equality. ∀x∀y∀z((z ∈ x ↔ z ∈ y)→ x = y).
2. The empty set.∀x(¬x ∈ ∅).
3. Pair. ∀x∀y∃z∀w(w ∈ z↔ w = x ∨w = y).
4. Union. ∀x∀y∃z∀w(w ∈ z↔ w ∈ x ∨w ∈ y).

Out of those axioms we define a predicateI (x) which reads ‘x is an
integer’; we define the numeral ‘0’, and we define the operation ‘x+1.’
We then state, for a formulaA(x, t1, . . . , tn) on parameterst1, . . . with
at least one free variable:

5. Induction. ∀x∀y∀t1 . . .∀tn[(A(0, t1, . . .)∧(I (y)∧A(y, t1, . . .)→ A(y+
1, t1, . . .)))→ (I (x)→ A(x, t1, . . .))].

We can easily define functions with finite domains and with values in the
objects ofN∗. We can also define+ and× for integers, and as a con-
sequence we can form polynomials on the integers inN∗. We also have
‘discontinuous’ operations such as the truncated difference·− in that formal
system.

We have that:

LOM59625.tex; 13/11/1998; 12:05; p.11



564 MARCELO TSUJI ET AL.

LEMMA 3.21. N∗ ` ∃z(z = 〈〈1, f (1)〉, . . . , 〈n, f (n)〉〉), wheref is a
function whose domain includes the set{1,2, . . . , n}.
Proof. The Pair axiom implies the existence of orderedn-ples. Since we
can construct functions inN∗, the lemma follows. 2

We rework the definition of strategies and utility functions given above
in Definitions 3.16 and 3.17 to restrict them to the objects ofN∗. With
the help of the underlying first-order predicate calculus and description
operatorι we can also define a setG∗ in LN∗ analogous to our previous set
G constructed inLT . Then, with the help of Lemma 3.21 we can use an ‘un-
decidable’ polynomialq (see [7] for its construction) and take the element
0∗ of G∗ with the termιx{x = u∗ ∧ u∗ = u′ + qu′′} for the utility function
of its von Neumann triplet (whereu′ andu′′ are the expressions for the
utility functions of two given elements ofG∗ with and without equilibria,
respectively). The remainder of the argument goes as usual. Thus:

PROPOSITION 3.22.If N∗ is consistent then there is an element0∗ of
G∗ such that the assertionιx{x = u∗ ∧ u∗ = u′ + u′′} ↔ ιy{y = u′} is
undecidable inN∗.

REMARK 3.23. Lemma 3.21 implies the existence of sets of strate-
gies. We can therefore construct integer-valued functions, and in particular
utility functions on those sets of strategies.

Finite or Infinite Games?

We go back to our extended theoryT and to our setG. We say that an
element0 = 〈t1, t2〉 of G is finite or infinite if t1 stands for a finite or
infinite von Neumann triplet, respectively.

PROPOSITION 3.24.Let0′, 0′′ be such thatT ` 0′ is finite, andT ` 0′′
is infinite. Then there is an element0 in G such that the assertion0 is finite
is undecidable inT .

Proof. For β as in Remark 2.15, we can write (with an obvious abuse of
language)0 = 0′ + β0′′. 2

REMARK 3.25. We can obviously obtain here in Proposition 3.24 state-
ments similar to (and as nasty as) those in Proposition 3.18.
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A Blocked Backroute or a Problem to be Found Everywhere?

Gödel-like incompleteness theorems are warning posts that indicate block-
ed routes; they mean that one cannot go farther along some direction in
mathematical theories. Incompleteness is known to appear in lost back-
alleys within the domains of mathematics; yet we have always strongly
believed that the incompleteness phenomenon is part of the actual practice
in any axiomatized science. The authors’ endeavor proved a fruitful one
when it was shown that simple questions in chaos theory (‘given a dynam-
ical system, can we check whether it is chaotic? Can we prove that it is
chaotic?’) led to undecidability and incompleteness [5].

Finite Games: From Informal Theories to Axiomatic Ones

When it comes to the theory of finite games the situation again looks very
neat at first. If we can extensionally describe the game by tables, it should
have computable equilibria; if not, its description within a formal language
may have some undecidable properties which are dependent on the axioms
of this same formal language (of course we refer to properties which are
relevant from the point of view of game theory).

The axiomatic background is made explicit for clarity. The incomplete-
ness phenomenon means that within a (consistent) prescribed axiomatic
framework certain facts cannot be proved. Assuredly, if we add stronger
axioms to our system, those facts may become provable. Yet the stronger
axioms may also be debatable on philosophical grounds, so that the proof
of a desired fact from the enriched system turns out to be technically
correct but philosophically (and perhaps empirically) doubtful. (For a re-
cent reflection on the import of incompleteness to foundational issues and
on some new techniques for the construction of undecidable sentences
see [13].)

4. CONCLUSION

The main point of the present paper was to stress the gap between an ex-
tensional approach to game theory (or to any other microeconomic theory
in general) and its intensional counterpart. Our results have thus an un-
appealingly abstract look. Yet they have an immediate consequence for
a question of great practical and historical importance: the controversy
on economic planning between L. von Mises and O. Lange (see on that
controversy [19, I, p. 115ff]). We have dealt with decision problems about
finite games. Intuitively everything should be computable; however when
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we try to clarify our intuitions we see that they break down and an essential
noncomputability appears.

The central problem of economic planning is an allocation problem;
very frequently allocation is to be done on the basis of maximizing (or min-
imizing) simple functions on finite sets. We have shown that trouble is to
be expected even when the problem of planning is reduced to the problem
of determining equilibria for a set of expressions of finite noncooperative
Nash games. So, the main argument by Lange in favor of a planned econ-
omy (by the way, an argument also shared by von Mises) is not as forceful
as it appears to be. Lange thought that given the possibly many explicit
equations defining an economy, a huge and immensely powerful computer
wouldalwaysbe able to figure out the equilibrium prices, therefore allow-
ing (at least theoretically) the existence of an efficient global policy maker
(note the intensional flavor of Lange’s formulation). However the present
paper (or the previous results by Lewis [16, 17]) disproves Lange’s con-
jecture: there will be an explicit set of equations, even in a finite number,
describing a market economy whose equilibria will not be computable (if,
as we insist, our computations are thought as being performed within an
adequate formal theory).

The rather coarse hierarchy of problems in Proposition 3.18 easily ex-
tends to a competitive market situation. This means that we can go from
computable but extremely hard to calculate equilibrium prices (or equilib-
rium prices whose computation is equivalent to the proof of problems like
theP?NP ) to prices in all levels of the arithmetical hierarchy, and even
beyond.

However we do not mean to say that our whole mathematical machin-
ery has its value solely determined by a couple of interesting but local,
restricted practical consequences. We would like to fit it into the historical
framework of mathematical modeling in economics. We followed tradition
here, since our techniques stemmed from physics and found their original
applications in the natural sciences. It is no accidental feature that most
methods in the mathematized social sciences have originated in the ‘hard’
scientific domains. So, limitations to our scientific knowledge found in
the latter could reasonably be expected to emerge in the former. That fact
points out to a still badly perceived common ground between the natural
and social domains. The search for that common epistemological ground
has been one of our motivations for the present work.
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