Boostrapping a Forth in
40 lines of Lua code

Eduardo Ochs

The core of a conventional Forth system is composed of two main programs:
an outer interpreter, which interprets textual scripts, and an inner interpreter,
which runs bytecodes. The outer interpreter switches between an “immediate
mode”, where words as executed as soon as they are read, and a “compile mode”,
where the words being read are assembled into bytecodes to define new words.

In Forth all variables are accessible from all parts of the system. Several
important words use that to affect the parsing: they read parts of the input text
themselves, process that somehow, and advance the input pointer —and with
that they effectively implement other languages, with arbitrary syntax, on top
of the basic language of the outer interpreter.

Due mostly to cultural reasons, Forths tend to be built starting from very low-
level pieces: first the inner interpreter, in Assembly or C, then the basic libraries
and the outer interpreter, in Forth bytecodes or (rarely) in C. We take another
approach. If we consider that Lua is more accessible to us than C or Assembly —
and thus for us Lua is “more basic” —then it is more natural to start from the
outer interpreter, and the dictionary only has to have the definition for one word,
one that means “interpret everything that follows, up to a given delimiter, as Lua
code, and execute that”. An outer interpreter like that fits in less than 40 lines
of Lua code, and it can be used to bootstrap a whole Forth-like language.

Copyright © 2008 by Eduardo Ochs. Used by permission. 1

2 1 - Boostrapping a Forth in 40 lines of Lua code

Introduction

The real point of this article is to propose a certain way of implementing a Forth
virtual machine; let’s call this new way “mode-based”. The main loop of a mode-
based Forth is just this:

while mode ~= "stop" do modes[mode] () end

In our mode-based Forth, which is implemented in Lua and that we will refer
to as “miniforth”, new modes can be added dynamically very easily. We will
start with a virtual machine that “knows” only one mode — “interpret”, which
corresponds to less than half of the “outer interpreter” of traditional Forths —
and with a dictionary that initially contains just one word, which means “read
the rest of the line and interpret that as Lua code”. That minimal virtual
machine fits in 40 lines of Lua, and is enough to bootstrap the whole system.

But, “Why Forth?”, the reader will ask. “Forth is old and weird, why shouldn’t
we stick to modern civilized languages, and ignore Forth? What do you still
like in Forth?”. My feeling here is that Forth is one of the two quintessential
extensible languages, the other one being Lisp. Lisp is very easy to extend and
to modify, but only within certain limits: its syntax, given by ‘read’, is hard to
change(1). If we want to implement a little language (as in [1]) with a free-from
syntax on top of Lisp, and we know Forth, we might wonder that perhaps the
right tool for that would have to have characteristics from both Lisp and Forth.
And this is where Lua comes in—as a base language for building extensible
languages.

Disclaimer: I'm using the term “Forth” in a loose sense throughout this article.
I will say more about this in the last section.

Forth via examples

Any “normal” Forth has an interactive interface where the user types a line,
then hits the “return” key, and then the Forth executes that line, word by word,
and displays some output; our miniforth does not have an interactive interface,
but most ideas still carry on. Here’s a very simple program; the normal text is
the user input, and the parts with a darker background are the output from the
Forth system. Note that “words” are sequences on non-whitespace characters,
delimited by whitespace.

5 DUP * . -- 25 ok

This program can be “read aloud” as this: “Put 5 on the stack; run ‘DUP’, i.e.,
duplicate the element on the top of the stack; multiply the two elements on the
top of the stack, replacing them by their product; print the element at the top of
the stack and remove it from the stack.”

Here’s a program that defines two new functions ("words”, in the Forth
jargon):

DOCOL DUP * EXIT
00 00 FF FE FF FD FF FF
2000 2002 2004 2006
DOCOL DuUp SQUARE * EXIT
00 00 FF FE 2000 FF FD FF FF
2008 200A 200C 200E 2010

Figure 1. A 16-bit Forth with primitives. Forth instructions with very high values are
primitives.

: SQUARE DUP * ; ok
: CUBE DUP SQUARE * ; ok
5 CUBE . 125 ok

It can be read aloud as this: Define two new words: SQUARE: run DUP, then
multiply; CUBE: run DUP, then run SQUARE, then multiply. Now put 5 on the stack,
CUBE it, and print the result.

The words SQUARE and CUBE are represented in the memory as some kind of
bytecode; different Forths use different kinds of bytecodes. Here we are more
interested in “indirect threaded” Forths (see [3]) that store the dictionary in a
separate region of the memory. Some possible representations would be like
in Figures 1, 2, and 3; in these box diagrams all numbers are in hexadecimal,
and we are assuming a big-endian machine for simplicity. Figure 4 shows the
“bytecode” representation that we will use in miniforth. It is not exactly a
bytecode, as the memory cells can hold arbitrary Lua objects, not just bytes,
but we will call it a “bytecode” anyway, by abuse of language.

Here’s a trace of what happens when we run CUBE in miniforth:

RS={ 5 } mode=head DS={ 5 } head="DOCOL"
RS={ 7 } mode=forth DS={ 5 } instr="DUP"
RS={ 8 } mode=forth Ds={ 5 5 } instr=1

RS={ 8 1 } mode=head DS={ 5 5 } head="DOCOL"
RS={ 8 3 } mode=forth DS={ 55 } instr="DUP"
RS={ 8 4 } mode=forth DS={ 55 5 } instr="x"
RS={ 8 5 } mode=forth DS={ 5 25 } instr="EXIT"
RS={ 9 } mode=forth DS={ 5 25 } instr="x*"
RS={ 10 } mode=forth DsS={ 125 } instr="EXIT"

Note that we don’t have a separate variable for the instruction pointer (IP);
we use the top of the return stack (RS) as IP.

The rightmost part of our traces always describes what is going to be exe-
cuted, while the rest describes the current state. So, in the sixth line in the

4 1 - Boostrapping a Forth in 40 lines of Lua code

(DUP) (*) (EXIT) “
DOCOL DUP * EXIT

—

DOCOL

DUP

SQUARE

EXIT

Figure 2. A 16-bit Forth with no primitives. All Forth instructions point to heads
(double boxes); each head points to a routine in 8086 machine code.

DO || pup * EXIT
CcoL
2000 2001 2002 2004
SQUARE
DO || pupP SQUARE * EXIT
coL 20 00
2005 2006 2007 2009 200B
CUBE

Figure 3. An imaginary 16-bit Forth with 1-byte heads and variable-length Forth
instructions.

memory = {"DOCOL", "DUP", "*", "EXIT",
1 2
SQU.&RE\-\
“DOCOL", "DUP", 1, ", "EXIT")
9

7'8
CUBE

Figure 4. Miniforth. Heads and Forth primitives are represented by strings in the
memory cells. Forth non-primitives are represented by numbers.

trace above we have RS = { 8, 4 }, and we are going to execute the instruction
in memory [4], i.e., "*", in mode “forth”.

Bootstrapping miniforth

The program below is all that we need to bootstrap miniforth. It defines the
main loop (run), one mode (interpret), the dictionary (_F), and one word in the
dictionary: %L, meaning “evaluate the rest of the current line as Lua code”.

-- Global variables that hold the input:
subj = "5 DUP * ." -- what we are interpreting (example)
pos =1 -- where are are (1 = "at the beginning")

-- Low-level functions to read things from "pos" and advance "pos'.
-- Note: the "pat" argument in "parsebypattern" is a pattern with
-- one "real" capture and then an empty capture.
parsebypattern = function (pat)

local capture, newpos = string.match(subj, pat, pos)

if newpos then pos = newpos; return capture end

end
parsespaces = function () return parsebypattern("~([\t]I*)()") end
parseword = function () return parsebypattern("~ ([~ \t\n]+) (") end
parsenewline = function () return parsebypattern(""(\n) ()") end

parserestofline = function () return parsebypattern("~(["\nl*)()") end
parsewordornewline = function () return parseword() or parsenewline() end

-— A "word" is a sequence of one or more non-whitespace characters.

—-- The outer interpreter reads one word at a time and executes it.

-- Note that ‘getwordornewline() or ""’ returns a word, or a newline, or
getword = function () parsespaces(); return parseword() end
getwordornewline = function () parsespaces(); return parsewordornewline() end

-- The dictionary.
-- Entries whose values are functions are primitives.
F=A}

_F["Y%L"] = function () eval(parserestofline()) end

-- The "processor". It can be in any of several "modes".

-- Its initial behavior is to run modes[mode] () - i.e.,

-- modes.interpret() - until ‘mode’ becomes "stop".

mode = "interpret"

modes = {}

run = function () while mode ~= "stop" do modes[mode] () end end

6 1 - Boostrapping a Forth in 40 lines of Lua code

-- Initially the processor knows only this mode, "interpret"...
-- Note that "word" is a global variable.
interpretprimitive = function ()

if type(_F[word]) == "function" then _F[word](); return true end
end
interpretnonprimitive = function () return false end -- stub
interpretnumber = function () return false end -- stub
p_s_i = function () end -- print state, for "interpret" (stub)

modes.interpret = function ()
word = getwordornewline() or ""

p_s_i0)
local _ = interpretprimitive() or
interpretnonprimitive() or
interpretnumber() or
error("Can’t interpret: "..word)
end

The program below is a first program in miniforth. It starts with only "%L"
defined and it defines several new words: what to do on end-of-line, on end-of-
text, and " [L", which evaluates blocks of Lua code that may span more than one
line; then it creates a data stack DS and defines the words "DUP", "*", "5", and
" " which operate on it.

subj = [=[

%L _F["\n"] = function () end

wL _F[""] = function () mode = "stop" end

%L _F["[L"] = function () eval(parsebypattern("~(.-)%sL]1()")) end
(L

DS={n=01}

push = function (stack, x) stack.n = stack.n + 1; stack[stack.n] = x end
pop = function (stack) local x = stack[stack.n]; stack[stack.n] = nil;
stack.n = stack.n - 1; return x end
_F["5"] = function () push(DS, 5) end
_F["DUP"] = function () push(DS, DS[DS.n]) end
_F["*"] = function () push(DS, pop(DS) * pop(DS)) end
_F["."] = function () io.write(" "..pop(DS)) end
L]
1=]
-— Now run it. There’s no visible output.
pos =1
mode = "interpret"
run()

-- At this point the dictionary (_F) has eight words.

After running this program the system is already powerful enough to run
simple Forth programs like, for example,

5 DUP * .
Note that to “run” this Forth program what we need to do is:
subj = "5 DUP * ."; pos = 1; mode = "interpret"; run()

It is as if we were setting the memory (here the subj) and the registers of a
primitive machine by hand, and then pressing its “run” button. Clearly, that
interface could be made better, but here we have other priorities.

The programs above don’t have support for non-primitives; this will have to
be added later. Look at Figure 4: non-primitives, like "SQUARE”, are represented
in the bytecode as numbers (addresses of heads in the memory[]) and we have
not introduced either the memory or the states “head” or “forth” yet.

Note that the names of non-primitives do not appear in the memory, only
in the dictionary, _F. For convenience in such memory diagrams we will draw
the names of non-primitives below their corresponding heads. For instance, in
Figure 4, we have _F["SQUARE"] = 1 and _F["CUBE"] = 5.

Modes

When the inner interpret runs—i.e., when the mode is “head” or “forth”; see
Figure 5—, at each step the processor reads the contents of the memory at IP
and processes it. When the outer interpreter runs, at each step it reads a word
from subj starting at pos, and processes it. There’s a parallel between these
behaviors. ..

I have never seen any references to “modes” in the literature about Forth.
In the usual descriptions of inner interpreters for Forth, the “head” mode is not
something separate; it is just a transitory state that is part of the semantics of
executing a Forth word. Also, the “interpret” and “compile” modes do not exist:
the outer interpreter is implemented as a Forth word containing a loop; it reads
one word at a time, and depending on the value of a state variable, it either
“interprets” or “compiles” that word. So, in a sense, “interpret” and “compile”
are “virtual modes”. ..

Let me explain how I arrived at this idea of “modes” — and what I was trying
to do that led me there.

Some words interfere with the variables of the outer interpreter. For ex-
ample, ":" reads the word the pos is pointing at (for example, SQUARE), adds a
definition for that word (SQUARE) to the dictionary, and advances pos. When the
control returns to modes.interpret (), the variable pos is pointing to the posi-
tion after SQUARE — modes. interpret () never tries to process the word SQUARE.
Obviously, this can be used to implement new languages, with arbitrary syntax,
on top of Forth.

Some words interfere with the variables of the inner interpreter —they mod-
ify the return stack. Let’s use a more colorful terminology: we will speak of

8 1 - Boostrapping a Forth in 40 lines of Lua code

words that “eat text” and of words that “eat bytecode”. As we have seen, ":" is
a word that eats text; numerical literals are implemented in Forth code using a
word, LIT, that eats bytecode. In the program below,

: DOZENS 12 * ; ok
5 DOZENS . 60 ok

the word DOZENS is represented in bytecode in miniforth as:

memory = {"DOCOL", "LIT", 12, "x", "EXIT"}
-1 2 3 4 5
-- DOZENS

When the LIT in DOZENS executes, it reads the 12 that comes after it, and
places it on the data stack; then it changes the return stack so that in the next
step of the main loop the IP will be 4, not 3. Here is a trace of its execution; note
that there is a new mode, “lit”. The effect of “executing” the 12 in memory[3] in
mode “lit” is to put the 12 in DS.

RS={ 1 } mode=head DS={ 5 } head="D0OCOL"
2 } mode=forth DS={ 5 } instr="LIT"
S={ 3 } mode=1lit DS={ 5 } data=12
RS={ 4 } mode=forth DS={ 5 12 } instr="x*"
S={ 5 } mode=forth DS={ 60 } instr="EXIT"

The code in Lua for the primitive LIT and for the mode “lit” can be synthe-
sized from the trace. By analyzing what happens between steps 2 and 3, and 3
and 4, we see that LIT and “lit” must be:

_F["LIT"] function () mode = "lit" end
modes.lit = function ()
push(DS, memory[RS[RS.n]])
RS[RS.n] = RS[RS.n] + 1
mode = "forth"
end

so from this point on we will consider that the traces give enough information,
and we will not show the corresponding code.

Note that different modes read what they will execute from different places:
“head”, “forth”, and “lit” read from memory [RS[RS.n]] (they eat bytecode), whereas
“interpret” and “compile” read from subj, starting at pos (they eat text). Our fo-
cus here will be on modes and words that eat bytecode.

Virtual modes

How can we create words that eat bytecode, like LIT, in Forth? In the program
below, the word TESTLITS call first LIT, then VLIT; VLIT should behave similarly
to LIT, but LIT is a primitive and VLIT is not.

memory = {"DOCOL", "R>P", "PCELL", "P>R", "EXIT",
-1 2 3 4 5

"pocoL", "LIT", 123, 1, 234, "EXIT",}
-- 6 7 8 9 10 11
-- TESTLITS

Here is a trace of TESTLITS:

t=0 RS={ 6 } mode=head ps={ 1} DS={ 1} head="DOCOL"
t=1 RS={ 7 } mode=forth PS={ } DS={ } instr="LIT"
t=2 RS={ 8 } mode=1it ps={ 1} DS={ 1} data=123
t=3 RS={ 9 } mode=forth PS={ 1} DS={ 123 } instr=1

t=4 RS={ 10 1 } mode=head ps={ %} DS={ 123 } head="DOCOL"
t=5 RS={ 10 2 } mode=forth PS={ } DS={ 123 } instr="R>P"
t=6 RS={ 3 } mode=forth PS={ 10 } DS={ 123 } instr="PCELL"
t=7 RS={ 4 } mode=pcell PS={ 10 } DS={ 123 } pdata=234
t=8 RS={ 4 } mode=forth PS={ 11 } DS={ 123 234 } instr="P>R"
t=9 RS={ 11 5 } mode=forth PS={ } DS={ 123 234 } instr="EXIT"
t=10 RS={ 11 } mode=forth PS={ } DS={ 123 234 } instr="EXIT"

This is a full solution, so start by ignoring the cells 2, 3, and 4 of the memory,
and the lines t=5 to t=8 of the trace. From t=5 to t=9 what we need to do is

push(DS, memory[RS[RS.n - 111)
RS[RS.n - 1] = RS[RS.n - 1] + 1

where the -1 is a magic number: roughly, the number of ”call frames” in the
stack between the call to VLIT and the code that will read its literal data,
negated. In other situations this could be —2, -3, ... One way to get rid of that
magic number is to create a new stack —the “parsing stack” (PS)— and to have
“parsing words” that parse bytecode from the position that the top of PS points
to; then a word like VLIT becomes a variation of a word, PCELL, that reads a cell
from memory [PS[PS.n]] and advances PS[PS.n]. The code for VLIT given above
shows how that is done—we wrap PCELL as "R>P PCELL P>R"—and from the
trace we can infer how to define these words.

Note that the transition from t=2 to t=3 corresponds to the transition from
t=4 to t=10; the mode being “lit” corresponds to having the address of the head
of VLIT at the top of RS, and the mode being “head”; using this idea we can
implement virtual modes in Forth. Better yet: it all becomes a bit simpler if we
regard the mode as being an invisible element that is always above the top of
RS. So, an imaginary mode “vlit” would be translated, or expanded, into a 1 (the
head of VLIT), plus a mode “head”; or another word, similar to VLIT, would just
switch the mode to “vlit”, and the action of that word would be to expand it into
the head of VLIT, plus the mode “head”.

10 1 - Boostrapping a Forth in 40 lines of Lua code

A bytecode for polynomials

A polynomial with fixed numerical coefficients can be represented in memory as
first the number of these coefficients, then the value of each of them; for example,
P(z) = 22% 4+ 322 + 42 + 5.5 is represented as {..., 4, 2, 3, 4, 5.5, ...}
We will call this representation —number of coefficients, then coefficients — the
“data of the polynomial”. Let’s start with a primitive, PPOLY, that works like
PCELL, in the sense that it reads the data of the polynomial from the memory,
starting at the position PS[PS.n], and advancing PS[PS.n] at each step. This
PPOLY takes a value from the top of the data stack —it will be 10 in our
examples —and replaces it with the result of applying P on it, —P(10)—, which
is 2345.5 for the example above.
By defining POLY from PPOLY, as we defined VLIT from PCELL

: POLY R>P PPOLY P>R ;

we get a word that eats bytecode; a call to POLY should be followed by data of a
polynomial, just like LIT is followed by a number. And we can also do something
else: we can create new heads, DOPOLY and DOADDR, and represent polynomials as
two heads followed by the data of the polynomial. The program and trace below
test this idea.

memory = {"DOPOLY", "DOADDR", 4, 2, 3, 4, 5.5,
- 1 2 3456 7
-- P &P (X)
— g +
- |
"DOCOL", "LIT", 10, 1, "EXIT"}
- 8 9 10 11 12

-- TESTDOPOLY: put 10 on the stack and call P(X)

RS={ 8 } mode=head ps={ } Ds={ } head="DOCOL"

RS={ 9 } mode=forth PS={ } DS={ } instr="LIT"

RS={ 10 } mode=1it ps={ } Ds={ 1} data=10

RS={ 11 } mode=forth PS={ 1} DS={ 10 } instr=1

RS={ 12 1 } mode=head ps={ 1} DS={ 10 } head="DOPOLY"
RS={ 12 forth } mode=ppolyn PS={ 3 } DS={ 10 } n=4

RS={ 12 forth } mode=ppolyc PS={ 4 } DsS={ 10 } n=4 acc=0 coef=2
RS={ 12 forth } mode=ppolyc PS={ 5 } DS={ 10 } n=3 acc=2 coef=3
RS={ 12 forth } mode=ppolyc PS={ 6 } DS={ 10 } n=2 acc=23 coef=4
RS={ 12 forth } mode=ppolyc PS={ 7 } DsS={ 10 } n=1 acc=234 coef=5.5
RS={ 12 forth } mode=ppolye PS={ 8 } DsS={ 10 } acc=2345.5

RS={ 12 } mode=forth PS={ 8 } DS={ 2345.5 } instr="EXIT"

The trace above does not show what &P (X) does; the effect of running &P (X) is
to put the address of the beginning of data of the polynomial, namely, 3, into the
data stack. Note how a polynomial — which in most other languages would be a

1

piece of passive data—in Forth is represented as two programs, P(X) and &P (X),
that share their data. Compare that with the situation of closures in Lua—two
closures created by the same mother function, and referring to variables that
were local to that mother function, share upvalues.

A bytecode language for propositional calculus

Here is another example. Let’s write => for “implies”, and %’ for “and”. Then
(Q=>R)=>((P&Q)=>(P&R)) is a “formula”, or a “proposition”, in Propositional Cal-
culus; incidentally, it is a tautology, i.e., always true.

In some situations, for example, if we want to find a proof for that proposition,
or if we want to evaluate its truth value for some assignment of truth values to
P, Q, and R, we need to refer to subformulas of that formula. If we represent the
formula in bytecode using Polish Notation (not Reverse Polish Notation! Can
you see why?) then this becomes trivial:

memory = { II=>I|, ll=>ll, IIQII, IIRII, ll=>ll’ Il&ll, IIPII, IIQII, Il&ll, IIPII, IIRII }
- 1 2 3 4 5 6 7 8 9 10 11

Subformulas can now be referred to by numbers: the position in the memory
where they start. We can write a word to parse a proposition starting at some
position in the memory; if that position contains a binary connective like ‘=>’ or
‘%’, then that word calls itself twice to parse the subformulas at the “left” and
at the “right” of the connective. If the word memoizes the resulting structure
by storing it in a table named formulas, then re-parsing the formula that starts
at the position, say, 6, becomes very quick: the result is formulas[6], and the
pointer should be advanced to formulas[6] .next. Here are the contents of that
table after parsing the formula that starts at memory[1].

1: { addr=1, cc="=>", 1=2, 1r=5, next=12, name="((Q=>R)=>((P&Q)=>(P&R)))" }
2: { addr=2, cc="=>", 1=3, r=4, next=5, mname="(Q=>R)" }

3: { addr=3, next=4, name="Q" }

4: { addr=4, next=5, mname="R" }

5: { addr=5, cc="=>", 1=6, r=9, next=12, name="((P&Q)=>(P&R))" }
6: { addr=6, cc="&", 1=7, r=8, next=9, name="(P&Q)" }

7: { addr=7, next=8, name="P" }

8: { addr=8, next=9, name="Q" }

9: { addr=9, cc="&", 1=10, r=11, next=12, name="(P&R)" }

10: { addr=10, next=11, name="P" }

11: { addr=11, next=12, name="R" }

(Meta)Lua on miniforth

The parser for the language for Propositional Calculus in the last section had to
be recursive, but it didn’t need backtracking to work. Here is a language that

12 1 - Boostrapping a Forth in 40 lines of Lua code

is evidently useful —even if at this context it looks like an academic exercise —
and whose parser needs a bit of backtracking, or at least lookahead. Consider
the following program in Lua:

foo = function ()
local storage
return function () return storage end,
function (x) storage = x end
end

It can be represented in bytecode in miniforth as:

memory = {

"fOO", l|=ll’ ":Eunction", ll(ll, u)n,
"local", "storage",
"return", "functiomn", "(", ")", "return", "storage", "end", ",",
"function", "(", "x", ")", "storage", "=", "x", "end",
"end",
"<eof>" }

One way of “executing” this bytecode made of string tokens could be to pro-
duce in another region of the memory a representation in Lua of the bytecode
language that the Lua VM executes; another would be to convert that to an-
other sequence of string tokens —like what MetaLua [5] does. Anyway, there’s
nothing special with our choice of Lua here— Lua just happens to be a simple
language that we can suppose that the reader knows well, but it could have been
any language. And as these parsers and transformers would be written in Lua,
they would be easy to modify.

Why Forth?

Caveat lector: there is no single definition for what “Forth” is... Around 1994
the community had a big split, with some people working to create an ANSI
Standard for Forth, and the creator of the language and some other people going
in another direction, and not only creating new Forths that went against ideas
of the Standard, but also stating that ANS Forth “was not Forth”. I can only
write this section clearly and make it brief if I choose a very biased terminology;
also, I'm not going to be historically precise, either —I will simplify and distort
the story a bit to get my points across. You have been warned!

Forth was very popular in certain circles at a time when computers were
much less powerful than those of today. Some of the reasons for that popularity
were easy to quantify: compactness of programs, speed, proximity to machine
code, simplicity of the core of the language, i.e., of the inner and the outer
interpreters. None of these things matter so much anymore: computers got
bigger and faster, their assembly languages became much more complex, and
we've learned to take for granted several concepts and facilities—malloc and

13

free, high-level data structures, BNF —and now we feel that it is “simpler” to
send characters through stdout than poking bytes at the video memory. Our
notion of simplicity has changed.

In the mid-90s came the ANS-Forth Standard, and with it a way to write
Forth source that would run without changes in Forths with different memory
models, on different CPU architectures. At about the same time the creator
of the language, Chuck Moore, started to distance himself from the rest of the
community, to work on Forths that were more and more minimalistic, and on
specialized processors that ran Forth natively.

My experience with (non-Chuck-Moore-) Forth systems written before and
after the ANS Standard was that in the pre-ANS ones the format of the bytecode
was stated clearly, and users were expected to understand it; in Forths written
after the Standard the bytecode was not something so mundane anymore —it
became a technical detail, hidden under abstractions.

Old Forths were fun to use. When I was a teenager I spent hundreds of
evenings playing with Forths on an IBM-PC: first FIG-Forth and MVP-Forth,
then HS-Forth, a commercial Forth whose memory model (8086 machine code,
dictionary and Forth definitions in different memory segments, indirect-threaded,
no primitives, multiple heads) inspired some of the ideas in this paper. At one
point I spent some weeks writing a program that constructed a “shadow image”
of the Forth segment, with a letter or a number for each byte in a head, a ”.”
for each byte in a Forth instruction, _s and $s for bytes in literal numbers and
strings, ”i’s and ”;”s for the bytes that were addresses in backward or forward
jumps (i.e., the two bytes following each call to BRANCH or 0BRANCH)— and
spaces for the unknown bytes, as I didn’t have the source for the whole core sys-
tem, and some words were tricky to decompile...Then I printed the result, in
five pages, each with a grid of 64x64 characters, and addresses at the borders;
that gave me a map of all the bytes in words in the core system that were not

defined in assembly language.

I've met many people over the years who have been Forth enthusiasts in the
past, and we often end up discussing what made Forth so thrilling to use at
that time—and what we can do to adapt its ideas to the computers of today.
My personal impression is that Forth’s main points were not the ones that I
listed at the beginning of this section, and that I said that were easy to quantify;
rather, what was most important was that nothing was hidden, there were no
complex data structures around with “don’t-look-at-this” parts (think on garbage
collection in Lua, for example, and Lua’s tables — beginners need to be convinced
to see these things abstractly, as the concrete details of the implementation
are hard), and everything — code, data, dictionaries, stacks — were just linear
sequences of bytes, that could be read and modified directly if we wished to. We
had total freedom, defining new words was quick, and experiments were quick to
make; that gave us a sense of power that was totally different from, say, the one
that a Python user feels today because he has huge libraries at his fingertips.

A Forth-like language built on top of Lua should be easier to integrate with
the rest of the system than a ”real” Forth written in C. Also, it’s much easier

14 1 - Boostrapping a Forth in 40 lines of Lua code

to add new syntaxes and bytecode languages to a mode-based Forth than to a
conventional one. And we are not forced to store only numbers in the memory;
we can store also strings —I've used strings for primitives and heads here
because this makes programs more readable —, or any other Lua objects, if we
need to.

I do not intend to claim that miniforth is compact—in terms of memory
usage — or efficient, or useful for practical applications. But the natural ways
for doing things in Forth were different from the ways that are natural in today’s
systems; and I believe that miniforth can be used to give to people glimpses into
interesting ways of thinking that have practically disappeared, and that have
become hard to communicate.

Conclusion

After a draft of this article had been written, Marc Simpson engaged in a long
series of discussions with me about Forths, Lisp, SmallTalk, several approaches
to minimality, etc., and at one point, over the course of one hectic weekend
in December, 2007, he implemented a usable (rather than just experimental)
dialect of Forth—based mainly on Frank Sergeant’s Pygmy Forth and Chuck
Moore’s ecmForth, and borrowing some ideas from this article—on top of Ruby
("RubyForth”), and later ported his system to Python and C. A port of it to Lua
is underway.
I thank Marc D. Simpson and Yuri Takhteyev for helpful discussions.

References

[1] Jon Bentley: More Programming Pearls, Addison-Wesley, 1990 (chapter 9:
Little Languages).

[2] James T. Callahan: HS-Forth (program and manual). Harvard Softworks,
1986-1993.

[3] Anton Ertl: Threaded Code. http://www.complang.tuwien.ac.at/forth/
threaded-code.html

[4] Brad Rodriguez: A BNF Parser in Forth. http://www.zetetics.com/bj/
papers/bnfparse.htm

[5] Fabien Fleutot: MetaLua. http://metalua.luaforge.net/

[6] Kein-Hong Man: A No-Frills Introduction to Lua 5.1 VM
Instructions. http://luaforge.net/docman/view.php/83/98/
ANoFrillsIntroToLua51VMInstructions.pdf

