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All of us know thatany “mathematically relevant” property on categories
is invariant within equivalence types of categories. Furthermore, we all
know that any “mathematically relevant” property on objects and maps
is preserved and reflected by equivalence functors. An obvious problem
arises: How can we conveniently characterize such properties? The problem
is complicated by the factthat the second mentioned piece of common
knowledge, that equivalencef functors preserve and reflect relevant properties
on objects and maps, is just plain wrong.

I first met Sammy in tlile fall of 1958 and within ten minutes he was
selling me on a “stylistic” \point that turns out to be the central clue to
the problem. (How often Sammy’s “stylistic” points have totally changed
entire mathematical viewpoints!) It took me 16 years to make the
connection.

Anequivalence T: A — ;!B preserves equalizers but does not reflect them.
T(x) can be an equalizer of T(y) and T(z) without x being an equalizer
of y and z, albeit for the most perverse of reasons, namely that the
sources and targets of x, y,'and z do not match as they should in A (since
T can identify objects, they: can match in B).

To make the above stated problem amenable, I will restrict attention
to elementary sentences in the language of categories, that is, sentences in

|
|

55




A |

PETER FREYD
|

’

which all quantifiers refer to objects and maps and the “atomic”
predicates are compositions, equality, and source and target assertions. The
standard approach to such a problem is to work with the “Frege notation™*
(v, 3, A, v, etc.) and attempt an induction (not on sentences, but on
formulas in general) on the number of bound variables. We cannot even
begin here. Free formulas are not preserved by equivalence functors; in
fact, none of the negations of atomic predicates are preserved by
equivalence functors.

When 1 first met Sammy I was working on the metatheorem for
abelian categories and he wanted me to state the metatheorem in a
certain way. Note that none of us use the Frege notation very much.
Note that we do write diagrams on the board and move our arms a bit.
Sammy wanted me to formalize the latter. He was right. I must first describe
a diagrammatic notation with which to solve the problem. (At the end, as it
happens, we can translate back to the Frege notation. But only at the end.)

1. The Diagrammatic Language

By a graph I mean a collection of vertices together with a collection of
arrows, each arrow assigned a source vertex and a target vertex. If one insists
upon formalizing this in the standard set-theoretical way, then a graph is a
quadruple (V, 4, s, t), where s and ¢ are functions from A to V.

Any category may be construed as a graph by forgetting compositions.
Given a graph G and a category A, a G-diagram in A is a graph
homomorphism D: G — A. We could of course use the free category
generated by a graph and turn everything into a discussion of functors.
But a finite graph (e.g, one vertex, one arrow) can generate an infinite
category (e.g., the monoid of natural numbers), and hence I stick to graphs.

A path in a graph is a finite word of arrows {ay, ..., a,) such that
the target of a; is the source of a;, for i=1, ..., n— 1. The source of
the path is defined as the source of a, and the target of the path as the
target of a,. A commutativity condition on a graph is an ordered pair of
paths each with the same source and target—unless one of the paths is
empty, in which case we require that the source and target of the other
be equal. A C-Graph is a graph together with a set of commutativity
conditions. For a C-graph G, a G-diagram in A is a graph-homomorphism
D: G — A such that for every commutativity condition {ay, ..., @,> =
¢by, ..., by itis the case that D(a,)D(a;) -~ Dla,) = D(b,) - - D(b,)—unless
m = 0, in which case we require that D(a,) --* D(a,) be an identity map.

! Frege’s notation, of course, was very different. The phrase “Frege notation,” however,
has come into standard use.
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Consider the nested family jof C-graphs shown in Fig. 1. A diagram

from the first is an equalizer diagram if and only if for every extension to
the second there exists an extension to the third such that for every extension
to the fourth there is an extension to the fifth.

A standard simplification of notation is to assume that every conceivable

con.lmuta}tivity condition holds unless we say otherwise. I will say otherwise
by inserting question marks within the graph, where it is to be understood
that the question mark removes only one commutativity condition, namely

that which immediately surrounds it. Figure 2 has three commutativity

'
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conditions, Fig. 3 has two, and Fig. 4 still has one (the outer square). We
may define a product diagram using Fig. 5. That is, a diagram from the
first graph is a product if and only if for all extensions to the second
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there is an extension to the third such that for all extensions to the
fourth there is an extension to the fifth. The last two C-diagrams are
needed for the uniqueness, and jwhen we arm-wave at a blackboard we
customarily omit them and say the word “unique.” Hence Fig. 6 defines
product diagrams.
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Fig. 6

A finite rooted tree, recall, is a finite part‘ially ordered set with a
unique smallest element (the roor) such that two elements have a common
upper bound if and only if one is less than the other. The immediate
successors of the root will be called the near-roots; the tree that sprouts
upwards from a near-root will be called its corresponding subtree.

A CG-tree is a finite rooted tree of C-graphs ordered by extension,
each labeled by V or 3. We define the notion that a diagram D: R— A,
where R is the root, satisfies the tree, recursively, as follows:

If the root is labeled 3(V), D: R — A satisfies the tree if an (if every)
extension of D to a near-root satisfies the corresponding sub-CG-tree.

If the tree is just its root, then D: R — A satisfies the tree if and only if
the root is labeled V.

If R is empty then the tree describes a property on categories,
namely that the empty diagram satisfies the tree. For example, the linear
tree of Fig. 7 is satisfied by & — A if and only if A has binary products.
We will call such properties diagrammatic properties.

Y 3 v el
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Fig. 7

Linear trees do not suffice. For example, the property that A is linearly
connected requires a nonlinear tree such as that shown in Fig. 8. (One
may check that a linear diagrammatic property is preserved under the
formation of products of categories and that linear ordering is not so
preserved.)
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Fig. 8 Fig. 9 Fig. 10
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Given a CG-tree T with root R define the complementary tree 7" as that
obtained by transposing V and 3. Then D: R — A satisfies T" if and only
if it does not satisfy T. Diagrammatic sentences are closed under the
usual Boolean operators of negation, conjunction, and disjunction. If one
excepts the source-target information in the root, then the Boolean
operators are available for C(G-trees. Note that the labels ¥ and 3 serve
both as quantifiers and as conjunctions and disjunctions. Over the years we
have developed notations to avoid nonlinear trees. For example, if Fig. 9
denotes a pullback and - an epimorphism, then the property that
pullbacks transfer epimorphisms is that shown in Fig. 10. If one does not
use such notation, then we are ;forced to the nonlinear tree in Fig. 11.
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2. The Theorem ! }

b
'_I'heorem. An elementary property on categories is invariant within
equivalence types of categories ‘iif and only if it is a diagrammatic property.

Outline of Proof. Induction does now work for the easy direction.
That is, if F: A— B is an equivalence of categories (use only that it is
full, faithful with a representative image) for any CG-tree T with root R and
diagram D: R — A that satisfies T, then R — A5 B also satisfies T. The
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diagrammatic notation successfully avoids the anomalies that result from
the Frege notation.

For the other direction, we define a CI-graph as a C-graph together
with a distinguished set of arrows, called “identity conditions.” If G is a
ClI-graph, then D: G — A is a diagram if besides respecting the commuta-
tivity conditions it carries the distinguished arrows into identity maps in
A. Just as above we define CIG-trees and what it means for a diagram
from the root to satisfy a CIG-tree. Say that a graph is simple if each
vertex appears as a source or target at most once.

Lemma. For any elementary property P(A4,, ..., 4,, x;, ..., X,,) there
is a CIG-tree T with simple root R with {a; ‘- a,) as arrows,
{vy, ..., v,, say, ta,, ..., sa,, ta,} as vertices, such that D;R— A
satisfies T if and only if

P(D(vy), ..., D(v,), D(ay), - .., ))(a,,,))

is true in A. In particular, for every elementary sentence S there is a
CIG-tree T with empty root such that ¢J — A satisfies 7 if and only if A
satisfies S.

Lemma. For every CIG-tree T with empty root there is a CG-tree T”
with empty root such that for all skeletal categories A, ¢ — A satisfies
T if and only if it satisfies T". |

This is the difficult lemma. One proves by a cumbersome induction
over all trees, empty-rooted or not, that for every CIG-tree T with root
R there is a CIG-tree T’ with root R such that D: R — A satisfies T if
and only if it satisfies 7" for all skeletal A, where T’ is such that all
identity conditions involve only arrows that appear in the root. Hence if
R is empty then T' is a CG-tree. T’ tends to be much fatter than T,

The lemmas yield the theorem: If S is a sentence invariant within
equivalence types, let T be an empty-rooted CG-tree such that &J— A
satisfies T if and only if A satisfies S for all skeletal A. Since every
category is equivalent to a skeletal category and ¢ — A satisfying T is
invariant within equivalence types and, by assumption, so is S, then &f - A
satisfies T if and only if A satisfies S for all A, skeletal or not. (By using
the Godel completeness theorem one needs only that all countable categories
are equivalent to skeletal categories, and hence can avoid using the axiom
of choice.)

3. Back to Frege
Consider the Frege language on two sorts: “objects,” A4, B, C, ...;

“maps,” x, ), z, ...; and atomic predicates (x =y), (4= B), (xy=z),
(4 = Ox), (A = x[O), where the last two are pronounced “A is the source

&
N

PROPERTIES INVARIANT WITHIN EQUIVALENCE TYPES OF CATEGORIES 61

(target) of x.” We wish to characterize those sentences invariant ' within
equivalence type. |
We shall interpret the “restricted quantifiers,”
Vassl-] as V[(A=0Ox)A (B= x0O)="]
and Jazl]  as Fl(A=0Ox)A(B=x0O)A -]
Note that 71V s ,{-*"] is equivalent with 3,4, 71[---]. A sentence will

be called a Frege-diagrammatic sentence if all quantified maps are so
restricted and

(1) No map is quantified without its source and target having been
previously quantified;

(2) The atomic predicates (A = [Ox), (B = [Jx) do not appear other
than implicitly in the restricted quantifiers;

(3) The atomic predicate (4 = B) does not appear;

(4) If (x=y) appears as 'an atomic predicate then the restricted
quantifiers for x and y imply that OJx = [(Jy and x[] = y[7J;

(5) If (xy =z) appears as an atomic predicate then the restricted
quantifiers for x, y, and z imply that [(Jx = [Jz, x(J] = Oy, and y[J = z[7;

(6) If x=1, appears as an atomic predicate then the restricted
quantifier implies 4 = []x and A=x0.

It is routine that for an empty-rooted CG-tree T there is a Frege-
diagrammatic sentence S such that (5 — A satisfies T if and only if A
satisfies S. Conversely, we can find for any Frege-diagrammatic sentence
such a CG-tree. Hence, an elementary sentence S is invariant within
equivalence types if and only if there is a Frege-diagrammatic sentence S’
such that the axioms of category theory imply S<>S'. There can be no
algorithm, incidentally, for deciding whether an arbitrary sentence is
invariant within equivalence types. (For any word problem for monoids
there is a sentence S true for all categories if and only if the given word
problem is true. S v V, 4(A = B) is invariant within equivalence types if
and only if S is true for all categories.)

Linear CG-trees correspond to prenex Frege-diagrammatic sentences,
that is, all quantities in front. The sentence

A\ B[(HA‘B(J;C =x)) v (Ipx 4(x = x))]
says that a category is linearly connected. It cannot be put in prenex
Frege-diagrammatic form.
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