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Abstract:

Often, in cross-sectional-follow-up studies, survival data are obtained from preva-
lent cases only. This sampling mechanism introduces lenght-bias. An added
difficulty is that in some cases the times of the onset cannot be ascertained or
are recorded with great uncertainty. Such was the situation in the Canadian
Study of Health and Aging (CSHA), an ongoing nation-wide study of dementia
conducted by Health Canada. This paper proposes methods to estimate the
survival function nonparametrically, when the data are length-biased and only
partially observed. By using the “forward recurrence times” only, we suggest
how one can overcome the difficulty caused by missing onset times, while by
using the “backward recurrence times” only, one can avoid the cost and effort
of follow-up. We illustrate our methods through an application to data derived
from the CSHA.
J1 : I

1 Introduction

The Canadian Study of Health and Aging (CSHA) (CSHA 1994) is one of the
largest epidemiological studies of dementia conducted so far. In the study, over
10,000 subjects were screened for cognitive impairment. A total of 1,132 people
were identified with dementia, including Alzheimer’s disease, as CSHA-1, the
initial data collection process, which took place between February 1991 and May
1992. During this initial phase, dates of onset of symptoms were ascertained
from caregivers. Those subjects with dementia were then followed for a further
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five-year period. CSHA-2 data collection started in January 1996 and ended by
May 1997.

One might term the CSHA a cross-sectional-follow-up study. The observed
survival times do not constitute a random sample from the true survival dis-
tribution. Rather, they are length-biased (Cox 1969); only those who have
survived to the sampling time point (CSHA-1 in our example) have a chance of
being selected into the study.

Consider a cohort of subjects who experience two major events: the initiating
event and the terminating event. Let X denote the time interval between these
two events, which is of primary interest. Suppose that the random variable X
is independent of the J1|2Iinitiating event. This is the case in many practical
simulations. For example, in the CSHA, the initiating event corresponds to the
onset of dementia, the terminating event to the death of the individual, and X
to the survival time of an individual from onset. For the majority of dementias,
survival times have remained relatively independent of dates of onset. One focus
of CSHA was to estimate the survival distibution of subjects with an umbrella
diagnosis of dementia, as well as the survival distributions of the subgroups of
those diagnosed with possible Alzheimer’s disease, probable Alzheimer’s disease,
and vascular dementia.

Wolfson et al (2001) analyzed the CSHA data in the presence of right censor-
ing, and estimated the survival function of patients with dementia adjusting for
length-bias. There are several difficulties that often arise when cross-sectional
data are used fro survival analysis, some of which arose in the analysis of the
CSHA data.

1. The survival times and the censoring times are not independent; in fact
censoring is informative, which means that most of the J2|3Istandard results
of surviavl analysis, established under the assumption of non-informative cen-
soring, are not automatically valid. This drawback can be avoided when esti-
mation of the survival function is of interest, by using a so-called “conditional”
estimator (Wang 1991). An added benefit of conditioning is that the estima-
tor obtained is robust against non-stationarity of the onset times (Wang 1991).
Alternatively, under stationarity (our situation) Asgharian et al (2001) derived
the nonparametric maximum likelihood estimator and its asymptotic.

2. There may either be complete or partial ignorance of the initiation date.
In fact, among the 1,132 CSHA subjects, 185 of them, i.e., more than 10% of
the data, have missing recorded dates of onset. If the full (possibly censored)
observed survival times are to be used in the analysis, these 185 subjects must
be excluded. Apart from a fairly large loss of information, their exclusion could
be related to their survival. This would lead to an aditional bias, apart from
length-bias. Further, since the onset of dementia is insidious, the dates of onset
recorded cannot be precise.
J3|4I
We shall show how the difficulties laid out in 1 and 2 above may be over-

come when basing our analysis on partially observed prevalence data. Recently,
Helmer et al (2000, 2001) have proposed a method that accounts for onset date
uncertainty, in incident data.
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The main objective in this paper is to estimate the survival function, non-
parametrically, in studies involving cross-sectional sampling, and in which part
of the data could be missing or unreliable. We shall consider two ways in which
our data may be incomplete: Type I data: The initiation dates are unkown or
only known with great uncertainty. Type II data: Alternatively, assuming the
initiation dates are known it may be desired to estimate the survival function
based only on the current survival times collected as part of a cross-sectional
study without follow-up. The latter type of study, of course, avoids the cost and
effort of follow-up, and its analysis is discussed here because of its similarity with
the analysis of Type I data.

For data of type I we are required to estimate the survival function using only
the (possibly censored) “forward recurrence times”, while for data of type II we
must use only the “backward recurrence times”. It may sometimes be assumed
in length-biased sampling that the (unseen) initiating events follow a stationary
Poisson process on a certain interval (Blumenthal 1967, Cox 1969). We shall
refer to analyses based on this assumption as “unconditional methods”; this pa-
per focuses on “unconditional methods”, in contrast to “conditional methods,”
for fully observed survival times, that allow the initiating points to be arbi-
trary (Wang 1991). We shall exploit the key relationship between the forward
recurrence time density and the unbiased survival function,

fFT (x) =
1− F (x)

µ
=
S(x)
µ

(1)

where F (x) is the distribution function of X and S(x) = 1 − F (x) is the sur-
vival function. Equation (1(1.2)) is also well-known in the theory of renewal
processes as the stationary J4|5Iforward and backward recurrence time densi-
ties (Resnick 1992, chapter 3). It is convenient that the “backward recurrence
times” have the same distribution as the “forward recurrence times”, owing to
the stationary assumption (Cox 1969), which means that (1(1.2)) holds when we
replace fFT (x) by fBT (x), the backward recurrence time density.

It is often reasonable to assume that we have random right censoring of
the forward recurrence times. Thus the Kaplan-Meier estimator of the forward
recurrence time survivor function retains its usual properties when based on the
randomly right-censored [forward recurrence] times that arise from type I data.

A kernel estimator that averages this Kaplan-Meier estimator may be used
to estimate fFT (x) and hence, finally, we may define

Ŝ(x) =
f̂FT (x)

f̂FT (0)
, (2)

using (1(1.2)). In similar fashion one may estimate S(x) by using only the
uncensored backward recurrence times and a kernel estimator of fBT (x) based
on the empirical distribution function of the backward recurrence times.

In section 2 we introduce the terminology of this paper. Section 3 considers
kernel density estimators. It is a well-known phenomenon that if a probability
density function has bounded support then kernel density estimators are often
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biased at and near the boundary points of of the support. Since we need to
estimate fFT (0), where 0 is the boundary point we must address this issue.
A method of boundary correction for kernel density estimation, the reflection
method (Zhang et al 1999), will be discussed in section 3. Section 4 outlines
some algorithms that we use for estimation of the survival function, J5|6IS(x)
as well as its mean and median. A bootstrap scheme is also given to estimate
the variances of these estimators. A simulation study is performed in section 5,
which demonstrates the plausibility of our method. Finally in section 6 we apply
our methods to the CSHA data to estimate the survival function of patients with
dementia, and compare our results with those found by using the full survival
times after excluding those with missing dates of onset.

While much of the ensuing discussion is motivated by the problem of es-
timating survival with dementia from a cross-sectional follow-up, the methods
will be seen to have much broader applicability.
J7I

2 Terminology and a proposed estimator

Let U and V be the times of meaningful initiating and terminating events,
respectively, and let

X = V − U (3)

denote the “lifetime”. Suppose that the random variable X has the cumulative
distribution function F with the probability density function f . Let µ be the
(finite) mean of X, which is unknown.

In a cross-sectional study, suppose that for a random variable T , only an
individual whose time of initiation U ′ ≤ T and whose failure time V ′ satisfies
V ′ > T , will be observed. Let

X ′ = U ′ − V ′. (4)

J7|8IThe random variable X ′ is left truncated, or length-biased, and T is called
the left truncation time of X.

Let

TF = V ′ − T (5)

and let

TB = T − U ′. (6)

Then TF and TB are called, respectively, the forward and backward recur-
rence times in analogy with their counterparts in renewal theory (Resnick 1992).
Notice that

X ′ = TB + TF . (7)
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In cross-sectional sampling, under the stationary assumption (Wang, 1991)
it is well-known that X had the p.d.f., X ′,

fLB(x) =
xf(x)
µ

, (8)

where f is the density of X (see (3(2.1))) (Cox 1969).
J8|9I
Let C ′ be the censoring variable which measures the time interval from

initiation U ′ to the time of censoring or of potential censoring, and let

Y ′ = min(X ′, C ′). (9)

Further, write

C ′ = TB +D′, (10)

where D′ is the forward recurrence censoring time measured from the recruit-
ment date. Since X ′ (see (7(2.5))) and C ′ have TB in common, they are not,
in general, independent. The censoring mechanism of X ′ is, therefore, informa-
tive, and, consequently, the Meier estimator is not the non-parametric maximum
likelihood estimator for the survival function of the length-biased survival time
(Vardi 1985).

Under the assumption that the initiating events follow a stationary Poisson
process, which we shall term “the stationarity assumption”, we shall exploit
the relationship, (1(1.2)), between the forward recurrence time density and the
unbiased survival function to estimate latter.
J9|10I
Since

S(z) = µfFT (z), z ≤ 0, (11)

where S(0) = 1,

µ = 1/fFT (0). (12)

It follows that fFT (z) is a decreasing function.
J10|11I
Let

Z = min(TF , D′),

the censored forward recurrence time, and suppose that D′ is independent of
TF , so called random censoring. Let δ be the censoring indicator, which takes
the value 1 if TF ≤ D′, and 0 otherwise.

Suppose that TF1, TF2, . . . TFn are n i.i.d. of forward recurrence times with
p.d.f. (1(1.2)) and with corresponding censoring times D′1, D

′
2, . . . , D

′
n. We

actually observe

{(Zi, δi); i = 1, 2, . . . , n}, (13)
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where Zi = min(TFi, D′i) and δi are the censoring indicators. From (11(2.10))
and (12(2.11)) a natural estimator for S(z) is then

Ŝ(z) = f̂FT (z)/f̂FT (0), (14)

although it should be pointed out that this is not the nonparametric maximum
likelihood estimator of S(z). Our task is, therefore, to estimate the density
function fFT (z) from the observed data, {(Zi, δi); i = 1, 2, . . . , n}, for all z ≤ 0,
noting that

µ̂ = 1/f̂FT (0) (15)

would be an estimator of the mean µ of the unbiased lifetime X.
In section 3 we discuss point estimation of fFT and later address the issue

of how to estimate the variance of Ŝ(z).
J11|12I

3 Kernel density estimator

J12|13|14I
It G̃ is the empirical distribution function of sample {Xi; i = 1, 2, . . . , n},

which is the nonparametric maximum likelihood estimator of G (NPLME), then
the kernel density estimator of the p.d.f. g, of G, is given by,

g̃n(x) = Khn ∗ dG̃(x) (16)

=
1
hn

∫
K(

x− y
hn

)dG̃(y),

for given kernel K (Devroye, 1984).
J14|15I
In the presence of right censoring, however, the expression (16(3.4)) suggests

the use of the Kaplan-Meier estimator of G [,] to replace the empirical distribu-
tion function [,] G̃. Let G̃ denote the Kaplan-Meier estimator of the distribution
function G from the censored data {(Yi, δi); i = 1, 2, . . . , n}. That is, G̃ = 1− S̃,
where S̃ [is] the Kaplan-Meier estimator of the survival function.

Indeed, it can be shown that the modified kernel estimator

g̃n(x) = Khn ∗ dG̃(x) (17)

=
1
hn

∫
K(

x− y
hn

)dG̃(y)

is consistent for g (Padgett and McNichols 1984).
Equation (17(3.5)) is the key in the sequel.
The density of the forward recurrence times fFT , defined by (1.2), has sup-

port [0,∞] with 0 as the only boundary point. Further, in order to use (14(2.13))
to estimate S(t), estimation of µ = fFT (0) is crucial. We shall, without loss
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of generality, therefore, focus on this special case, assuming that g has support
[0,∞].

When the support of the p.d.f., g, has boundary points, the kernel estimator
g̃n defined by (16(3.4)) is often seriously biased at and near the boundary points
(Schuster 1985). J15|16IVarious methods have been developed to adjust for
this bias at the expense of increasing the variance of the estimator. Among
these, the most notable one, perhaps, is the reflection method (Schuster 1985,
Zhang et al 1999): this consists of reflecting the density g to the other side of
the boundary point 0 and modifying the estimator (16(3.4)) as

g̃Rn =
1
hn

∫ (
K(

x− y
hn

) +K(
x+ y

hn
)
)
dG̃(y). (18)

This estimator works well when g′(0) = 0, as an estimator of g. Zhang et al
(1999) proposed an improved estimator which minimizes the Mean Square Error
(MSE) at and near the boundary point. Their estimator is

g̃tn =
1
hn

∫ (
K(

x− y
hn

) +K(
x+ t(y)
hn

)
)
dG̃(y). (19)

where t is the transform

t(y) = y + dy2 +Ad2y3 (20)

with d = g′(0)/g(0), provided that g is differentiable at x = 0, that g(0) > 0,
and A > 1

3 . Unfortunately, the choice of A requires the knowledge of g′′(0), the
second order derivative of g at zero. If we have no information about g′′(0),
we could take A = 1 to avoid serious bias. Zhang et al (1999) suggested that
although d is unknown it can be estimated by

dn =
log g̃n(hn)− log g̃0

n(0)
hn

, (21)

J16|17Iwhere g̃n(hn) is the usual kernel estimator of g at hn, defined by
(16(3.4)), and

g̃0
n(0) =

1
nbh0

n∑
i=1

K(0)(
−Xi

bhn
). (22)

Here K(0) is a so-called endpoint kernel supported on [−1, 0] satisfying∫ 0

−1

K(0)(t) dt = 1,
∫ 0

−1

tK(0)(t) dt = 0, and
∫ 0

−1

t2K(0)(t) dt 6= 0,

and

b =

((∫
t2K(t) dt

)2 ∫ (K(0)(t))2 dt(∫
t2K(0)(t) dt

)2 ∫ (K(t))2 dt

)1/5

. (23)
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The function g̃0
n(0) is an estimator of g proposed by Zhang and Karunamuni

(1998).
Thus, in the presence of censoring, a proposed kernel density estimator is

ĝtn(x) =
1
hn

∫ (
K(

x− y
hn

) +K(
x+ tn(y)

hn
)
)
dĜ(y), (24)

where
tn(y) = y + dny

2 +Ad2
ny

3

with the problematic A an unresolved difficulty.

dn =
log ĝn(hn)− log ĝ0

n(0)
hn

. (25)

In particular, if g′(0) is known to be 0, we propose,

ĝtn(x) =
1
hn

∫ (
K(

x− y
hn

) +K(
x+ y

hn
)
)
dĜ(y). (26)

J17|18I

4 An algorithm and a bootstrap scheme

In this section we present an algorithm for estimating the survival function,
S(x), of the unbiased survival time X, using the estimator Ŝ(x) defined by
(14(2.13)). We assume that the derivative f ′FT (0) exists.

4.1 Algorithm

1. Given the observed data (13(2.12)) of censored forward recurrence times

{(Zi, δi); i = 1, 2, . . . , n},

where Zi = min(TFi, Di) and δi are the censoring indicators, calculate the
Kaplan-Meier estimator Ĝ of the distribution function of the forward recurrence
times TF . For convenience we assume Z1 ≤ Z2 ≤ . . . ≤ Zn. Then

Ĝ(x) = 1−
kx∏
i=1

(
n− i

n− i+ 1
)δi .

Here kx is the value of k such that x ∈ [Zk, Zk+1].
2. Calculate the variance σ̂2 of Z1, Z2, . . . , Zn, and let the bandwidth

hn = σ̂(
15e
√

2π
8n

)
1
5 = 1.6644σ̂n−

1
5 ,

(see (Devroy 1984) for a discussion of bandwidth choice). J18|19IAlthough
our choice of bandwidths is probably not “optimal” because of the censoring,
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our experience with large data sets is that the optimality of bandwidths is not
important.

3. Choosing an appropriate kernel K and a suitable endpoint kernel K(0),
calculate the crude kernel density estimator (17(3.5))

g̃n(x) =
1
hn

∫
K(

x− y
hn

)dG̃(y)

for x = hn and the endpoint kernel density estimate (22(3.10)) at x = 0:

g̃0
n(0) =

1
nbh0

n∑
i=1

K(0)(
−Xi

bhn
).

4. Estimate the derivative of log(fFT (x)) at x = 0, i.e., fFT ′(0)/fFT (0), by
(25(3.13)):

dn =
log ĝn(hn)− log ĝ0

n(0)
hn

.

5. Estimate the density function for x ≤ 0 by (24(3.12)):

f̂FT (x) =
1
hn

∫ (
K(

x− y
hn

) +K(
x+ tn(y)

hn
)
)
dĜ(y),

where tn(y) = y+dny
2 +d2

ny
3. Let gi denote the jump of Ĝ at Zi. Since gi = 0

if TFi is censored (i.e., when TFi 6= Zi),

f̂FT (x) =
1
hn

n∑
i=1

(
K(

x− TFi
hn

) +K(
x+ tn(TFi)

hn
)
)
gi

=
1
hn

n∑
i=1

(
K(

x− Zi
hn

) +K(
x+ tn(Zi)

hn
)
)
gi.

J19|20I
6. Estimate the mean µ of the lifetime X by (14(2.13)):

µ̂ = 1/f̂FT (0).

7. Combine steps 5 & 6 to finally obtain an estimator of the survival function
Ŝ(x) by (15(2.14)):

Ŝ(x) = µ̂f̂FT (x) = f̂FT /f̂FT (0), x ≤ 0.

Remark: d = fFT
′(0)/fFT (0) = S′(0). In cases where S′(0) is known, or

can be approximated from prior knowledge of the distribution X, steps 3 & 4
can be omitted.
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4.2 Bootstrap scheme

In order to find confidence intervals of the estimators derived above, we use the
bootstrap (Davidson and Hinkley 1997). There are several bootstrap resampling
schemes with regard to survival data. The most straightforward method is
simply to resample from the observed pairs {(Z1, δi); i = 1, 2, . . . , n} (Efron
1981). The procedure is as follows: let Ĥ be the empirical distribution function
on R × {0, 1}, of the observed n pairs; the distribution puts mass 1/n at each
pair (Zi, δi).

1. Draw a bootstrap sample {(Z∗i , δ∗i ); i = 1, 2, . . . , n} by independently
sampling n times with replacement from the set {(Z1, δi); i = 1, 2, . . . , n}. This
is equivalent to drawing a random sample from Ĥ.
J20|21I
2. Applying steps 1–7 listed in the previous section to these artificial boot-

strapped data, calculate accordingly µ̂∗, Ŝ∗(x), and m̂∗, the estimated mean,
survival function, and median, respectively.

3. Repeat independently steps 1 & 2N times, obtaining {µ̂k; k = 1, 2, . . . , N},
{Ŝ∗k(x); k = 1, 2, . . . , N}, and {m̂∗k; k = 1, 2, . . . , N}.

4. Calculate the bootstrap variances of µ̂, Ŝ(x), and m̂, i.e., the sample
variances respectively from those data obtained in step 3. Confidence intervals
can be constructed based on normal theory.

5. Various other types of bootstrap confidence intervals, such as percentile,
basic bootstrap, and studentized confidence intervals, can also be constructed
based on the data obtained in setp 3 (Davidson and Hinkley 1997).
J21|22I

5 Simulations

Consider the one-parameter Gamma family

fa(x) =
xa−1e−x

Γ(α)
, x ≥ 0 (27)

with parameter α > 0. Let X be a random variable with density (5.1), mean

µ = mean(X) = α (28)

and survival function

Sα(x) =
1

Γ(α)

∫ ∞
x

ta−1e−t dt, x ≥ 0, (29)

which cannot, in general, be expressed in closed form. The density of the forward
recurrence times induced by length-biased sampling, is, by (1(1.2)) and (28(5.2)),

ga(x) =
Sa(x)
µ

=
Sa(x)
α

, x ≤ 0. (30)
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The goal of the following simulation study was to evaluate the performance
of the nonparametric estimator, Ŝ(x), computed from the forward recurrence
times only. If α < 1, the density g has no derivative at 0, and so our method
does not apply; if α = 1, then (27(5.1)), (29(5.3)), and (30(5.4)) are all identical
to the p.d.f. of the exponential distribution. Hence, we assumed α > 1. In this
case g′(0) = 0, and formula (26(3.14)) can be used for the estimation of (30(5.4)).

We began by examining the behaviour of the estimator Ŝα(x) when there is
no censoring.

Let {Yi; i = 1, 2, . . . , n} be a random sample from probability density (30(5.4)),
let

hn = σ̂(
15e
√

2π
8n

)
1
5 = 1.6644σ̂n−

1
5 ,

J22|23Ithe bandwidth, where σ̂2
n is the sample variance of {Yi; i = 1, 2, . . . , n},

and let K be a kernel. Without censoring, the kernel density estimate of (30(5.4))
is

ĝα(x) =
1
hn

n∑
i=1

(
K(

x− Yi
hn

) +K(
x+ Yi
hn

)
)
, x ≥ 0. (31)

Our simulations consisted of three parts. In all simulations, samples of
size 500 were used. To generate samples from density (30(5.4)), Von Neumann’s
rejection method (Devroye 1985, chapter 8) was employed. Three typical kernels
were examined. They are the Gaussian kernel

K(x) =
1√
2π
e−

x2
2 ,

the Epanechnikov kernel

K(x) =
3
4

(1− x2), −1 ≤ x ≤ 1,

and the box kernel
K(x) =

1
2
− 1 ≤ x ≤ 1.

As pointed out earlier, since the estimation of the density function at the
boundary point x = 0, is crucial, the first part of the simulation was to investi-
gate the estimation of the mean µ for different values of α:

µ̂α =
1

ĝα(0)
,

which also estimates α since α = µ. The summary results are reported in Tables
5.1–3 for the three different kernels given above. The value of µ̂α represents the
average over 400 J23|24Irepetitions. The bias and the variance of µ̂α were also
estimated based on the 400 repetitions.

Table 5.1. Estimation of µ = α with the Gaussian kernel
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α µ̂α Bias Variance
1.5 1.5399 0.0399 0.0239
2 2.0374 0.0374 0.0510
3 3.0543 0.0543 0.1704
5 5.1752 0.1752 0.8811
10 10.6078 0.6078 9.8478

Table 5.2. Estimation of µ = α with the Epanechnikov kernel

α µ̂α Bias Variance
1.5 1.5499 0.0499 0.0503
2 2.0573 0.0573 0.1153
3 3.1134 0.1134 0.4265
5 5.4065 0.4065 2.9459
10 10.9903 0.9903 21.4525

Table 5.3. Estimation of µ = α with the box kernel

α µ̂α Bias Variance
1.5 1.5567 0.0567 0.0407
2 2.0466 0.0466 0.0999
3 3.1176 0.1176 0.4067
5 5.3701 0.3701 2.0475
10 10.9541 0.9541 20.0773

J24|25I
The second part of the simulation examined the behavior of the nonpara-

metric estimator for the survival function Sα(x):

Ŝα(x) =
ĝα(x)
ĝα(0)

, x ≥ 0.

We plot 10 typical realizations of the estimator in Figures 5.1–3 with the three
given kernels.
J25|26I

Figure 5.1. Estimates of Sα(x) with the Gaussian kernel
J26|27I

Figure 5.2. Estimates of Sα(x) with the Epanechnikov kernel
J27|28I

Figure 5.3. Estimates of Sα(x) with the box kernel
J28|29I
Remarks:
1. The modified kernel density estimator works very well for densities with

substantial mass near the boundary point (Zhang et al 1999). This is the case
for the densities gα defined by (30(5.4)) with small values of α, as illustrated
through Tables 5.1–3 and Figures 5.1–3. For larger α, there is much less mass
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near x = 0. We demonstrate this by plotting the densities gα for α = 2 and
α = 5 in Figure 5.4. The mean and the variance of gα can be easily calculated:
E[gα(X)] = (α + 1)/2 and Var[gα(X)] = (α + 1)(α + 5)/12. With the value of
α increasing, the mean of the sample is further away from 0 and the variance
becomes larger. As a result, the bias and the variability of our estimators
increase as α increases.

Figure 5.4. Densities gα for α = 2 & 5
2. Among the three kernels, the Gaussian kernel performs best. There is

little difference between the Epanechnikov kernel and the box kernel.
J29|30I
3. For large values of α, our estimators still perform reasonably well when

the sample size is large. This is illustrated in Table 5.4 and Figure 5.5, in which
samples of size 1000 and the Gaussian kernel was used. The values in Table 5.4
were calculated over 400 repetitions.

Table 5.4. Estimation of µ = α for large α

α µ̂α Bias Variance
10 10.4434 0.4434 3.5558
15 15.6831 0.6831 13.0304

Figure 5.5. Estimates of S10(x) from samples of size 1000
J30|31I
In the last part of the simulation, we investigated the eefect on the estimator

due to censoring. Samples from the density gα (see (30(5.4))), were randomly
censored with an exponential random variable with mean λ and with censor-
ing proportion set at about 15%. For instance, with α = 3 and λ = 12, the
censoring probability is about 0.15. In this case, formula (31(5.5)) is no longer
valid. Instead, to estimate gα, the density in (30(5.4)), we use the kernel density
estimator

ĝα(x) =
1
hnn

n∑
i=1

(
K(

x− zi
hn

) +K(
x+ zi
hn

)
)
gi, x ≤ 0,

where Zi, i = 1, 2, . . . , n, are the censored data, and gi is the jump of the
Kaplan-Meier estimator at Zi (see (26(3.14))).

Again, samples of size 500 were taken, and estimation was based on 400
repetitions. Summary results of the estimator µ̂α are reported in Table 5.5, and
10 realizations of the estimator Ŝα are plotted in Figure 5.6, using the Gaussian
kernel. We did this for moderate values of α. With large α, the sample size
needs to be increased in order to achieve reasonble accuracy, as noted in Remark
1 above.

Table 5.5 Estimation of µ = α in the presence of censoring

α µ̂α Bias Variance
3 3.0601 0.0601 0.0346
5 5.0863 0.0863 0.0946

Zhang/Asgharian/Wolfson (typeset 2002may15 18:40) — working draft



14

J31|32I
Figure 5.6 Estimates of Sα(x) in the presence of censoring

J32|33I

6 Application to survival with dementia

In the Canadian study of Health and Aging (see Introduction), there were ques-
tions raised about the reliability of the recorded dates of onset of patients, and
concerns over a substantial proportion of missing onset times. These concerns
can be avoided by using the methods described in Sections 2 and 3. In the
CSHA, the forward recurrence times are the time intervals from CSHA-1, the
first phase of the study during the year of 1991, to failure; when there is censor-
ing, they are the time intervals from CSHA-1 to loss of follow-up or to CSHA-2,
when the study ended in 1996. Among the 1,332 patients diagnosed with de-
mentia, a total number of 901 patients were classified into the categories of
“probable Alzheimer’s disease”, “possible Alzheimer’s disease”, and “vascular
dementia”, with 433, 277, and 201 subjects in these categories, respectively.
One of the goals of the study was the estimation of the survival distribution
from onset, of individuals with dementia of these three types.

We first apply the methods described in Sections 2 and 3 by assuming that
the derivative of the survival function at time zero is zero. This is essentially
equivalent to the assumption that subjects cannot fail in some very small interval
after onset, which seems reasonable by the nature of the disease.

We computed the estimator, Ŝ(t), of the unbiased survival distribution, S(t),
from these forward recurrence times, following the procedure proposed in 4.1,
with the J33|34IGaussian kernel K = 1√

2π
e−

x2
2 . Then the bootstrap scheme

described in 4.2, repeated 1,000 times, was used to calculate a 95% pointwise
confidence band for S(t). The results are summarized in Figure 6.1.

We further computed the estimated survival distributions for the three dif-
ferent diagnostic categories, respectively. They are plotted in Figure 6.2. There
is little difference between the survival distributions of the groups “possible
Alzheimer’s disease” and “vascular dementia”. Although the estimated survival
probability of the group “probable Alzheimer’s disease” is greater than those of
the two other groups, the difference is not statistically significant.

Table 6.1 displays the estimated mean and median survival times of these
groups, along with their respective 95% confidence intervals, which were com-
puted over 1,000 bootstrap replications. Notice that all the confidence intervals
of the three groups overlap.
Table 6.1. Estimated Mean and Median Survival Times by Diagnosis Category
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Diagnosis Total group Probable
Alzheimer’s

Possible
Alzheimer’s

Vascular
Dementia

Median survival
time (months)

53 56 51 47

95% Confidence
interval

(47, 59) (49, 63) (41, 61) (37, 57)

Mean survival
time (months)

61 67 62 56

95% Confidence
interval

(55, 67) (58, 76) (52, 72) (46, 66)

J34|35I
Figure 6.1. Estimated Survival Curve with 95% Confidence Band

Figure 6.2. Comparison of Survival Curves — By Diagnostic Categories
J35|36I
Although the survival probability at any time between 1 to 5 years post

onset of dementia can be roughly approximated from Figures 6.1 and 6.2, we
list the estimated survival probabilities at 1–5 years post onset, with their 95%
confidence intervals, in Table 6.2.

Table 6.2. Estimated Survival Probabilities at 1–5 Years Post Onset of Dementia

Diagnosis 1 Year 2 Year 3 Year 4 Year 5 Year
Total group 0.95

(0.90, 1.00)
0.84
(0.73, 0.94)

0.70
(0.60, 0.80)

0.58
(0.48, 0.68)

0.39
(0.31, 0.48)

Probable
Alzheimer’s

0.99
(0.93, 1.00)

0.94
(0.78, 1.00)

0.81
(0.63, 0.98)

0.65
(0.50, 0.81)

0.43
(0.31, 0.56)

Possible
Alzheimer’s

0.94
(0.89, 0.99)

0.79
(0.66, 0.91)

0.65
(0.49, 0.81)

0.54
(0.39, 0.69)

0.38
(0.24, 0.51)

Vascular
Dementia

0.92
(0.87, 0.97)

0.77
(0.63, 0.90)

0.64
(0.48, 0.80)

0.49
(0.34, 0.64)

0.30
(0.18, 0.42)

One of the drawbacks of using the forward recurrence times is that we are
unable to estimate the distribution beyond the follow-up period. In our exam-
ple, we cannot estimate the survival distribution beyond the 5-year period, the
follow-up time period of the CSHA. We do not have this obstacle while working
with the backward recurrence times.

To illustrate our method, we also used the backward recurrence times to
estimate the survival distribution of patients with dementia. As mentioned in
the introduction, among the subjects diagnosed in the CSHA, about 10% of
them had missing dates of onset. Out of the total number of 901 subjects in
the three categories of “probable Alzheimer’s disease”, “possible Alzheimer’s
disease”, and “vascular dementia”, 81 had no dates of J36|37Ionset recorded.
Thus there are 820 backwards recurrence times, with 396, 251, and 173 in the
three categories, respectively. Table 6.3 gives the summary results of the mean
and median survival times, Figure 6.3 plots the survival distribution for the
total group, along with its pointwise 95% confidence band, and Figure 6.4 plots
the survival distributions for the three categories.

Table 6.3. Estimated Median Survival Times by Diagnosis Category
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— Using Backwards Recurrence Times

Diagnosis Total group Probable
Alzheimer’s

Possible
Alzheimer’s

Vascular
Dementia

Median survival
time (months)

55 58 68 57

95% Confidence
interval

(50, 60) (51, 65) (59, 77) (48, 66)

Mean survival
time (months)

66 68 82 67

95% Confidence
interval

(61, 71) (61, 75) (73, 91) (57, 77)

J37|38I
Figure 6.3. Estimated Survival Curve with 95% Confidence Band

— Using Backward Recurrence Times
Figure 6.4. Comparison of Estimated Survival Curves

— By Diagnostic Categories
J38|39I
There is considerable discrepancy between Figure 6.2 and Figure 6.4. From

Figure 6.2 we see that patients in the category “probable Alzheimer’s disease”
have better survival than that of the patients in the other two categories; while
from Figure 6.4 we find that the patients in the category of “possible Alzheimer’s
disease” have better survival. It is important to point out that it is not the
methodology that causes the discrepancy but the two figures are plotted based
on different data sets. This shows that the missing dates of onset were not
randomly missing and we conclude that patients with missing onset may be
different from the others. It is, therefore, dangerous to simply exclude those
patients with missing onset in the study. We further illustrate this by overlay-
ing Figure 6.1 and Figure 6.3 together in Figure 6.5, the two survival curves
estimated based on forward and backward recurrence times, respectively, of the
two different data sets. They are not comparable methodologically, but the
comparison of the survival of two slightly different groups of patients.

If we wish to compare the results of the two methods, we should use the same
set of subjects. Figure 6.6 overlays the two estimated survival curves by using
forward and backward recurrence times, respectively, based on the same group of
patients in the CSHA — a total of 820 subjects in the three categories “probable
Alzheimer’s disease”, “possible Alzheimer’s disease”, and “vascular dementia”,
excluding those who had missing dates of onset. The close correspondence of
the two curves shown in Figure 6.6 also supports our “stationary assumption”
imposed at the very beginning, the asumption that the initiating events follow
a stationary Poisson process. Under this assumption, the distributions of the
forward and backward recurrence times are very similar.
J39|40I

Figure 6.5. Comparison of Survival Curves
— Forward and Backward Recurrence Times

Figure 6.6. Comparison of Survival Curves
— Forward and Backward Recurrence Times, Same Subjects
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J40|41I
Notice that in Figure 6.6 there is a moderate separation of the two estimated

survival curves beyond 30 months. Censoring of the forward recurrence times
might account for the discrepancy.

Comparing our results, especially Table 6.1, with those found by Wolfson
et al (2000) by using the full survival times after excluding those with missing
dates of onset, our estimated median survival times are much longer, though
all the corresponding 95% confidence intervals overlap. Their estimated median
survival time for the total group was 40 months with a 95% confidence interval
of (32, 48), and their estimated medians for the three categories, “probable
Alzheimer’s disease” “possible Alzheimer’s disease”, and “vascular dementia”,
were 38 (18, 58) months, 42 (28, 54) months, and 40 (28, 52) months respectively.

One possible explanation for this discrepancy could be that the asumption
we made at the beginning of this section, that the derivative of the survival
function at time zero is zero, is not accurate. To avoid this assumption, we
have to estimate the derivative of the logarithm of the density of the forward
recurrence times at zero, f ′FT (0)/fFT (0), following steps 3 and 4 in 4.1, In
doing so we used the Gaussian kernel and the following endpoint kernel (recall
(22(3.10))) proposed by Zhang and Karunamuni (1998):

K(0)(t) = 12(1 + t)(0.5 + t)I[−1,0](t),

where I[−1,0](t) denotes the indicator function of the interval [−1, 0].
Summary results are shown in Table 6.4, which are very close to those es-

timates calculated by Wolfson et al (2000), although our methods are different
from theirs since they used the full survival data. We also plot the estimated
survival curve for the total J41|42Igroup along with a 95% confidence band in
Figure 6.7, as well as the estimated survival curves for the three categories, in
Figure 6.8.

Table 6.4. Estimated Mean and Survival Times by Diagnosis Category

Diagnosis Total group Probable
Alzheimer’s

Possible
Alzheimer’s

Vascular
Dementia

Median survival
time (months)

44 51 41 41

95% Confidence
interval

(36, 52) (39, 63) (29, 53) (31, 51)

Mean survival
time (months)

50 55 50 48

95% Confidence
interval

(43, 57) (37, 73) (40, 60) (40, 56)

Figure 6.7. Estimated Survival Curve with 95% Confidence Band
J42|43I

Figure 6.8. Comparison of Survival Curves
— By Diagnostic Categories

Observe that in Figue 6.8, the survival of patients in the category of “prob-
able Alzheimer’s disease” is much better than the other two groups, compared
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to what we have seen in Figure 6.2 and 6.4. There is no contradiction here since
we get much wider 95% confidence intervals this time This is mainly due to the
bias introduced by the estimation of f ′FT (0)/fFT (0) and the lack of knowledge
of f ′′FT (0) (see (20(3.8))). This is the price we pay for not using the full informa-
tion (full survival times); sometimes we do not have a choice. Notice that all
the confidence intervals calculated in Table 6.4 overlap the corresponding confi-
dence intervals presented in Table 6.1. This also suggests that the assumption,
that the derivative of the survival function at time zero is zero, we made at the
beginning, may not be unreasonable.
J43|44I
The same procedures can be also applied to the backward recurrence times.

The estimated survival curves are plotted in Figures 6.9. Confidence intervals
can be obtained by bootstrapping.

Figure 6.9. Estimated Survival Curves
— By Diagnostic Categories

J44|45I

7 Conclusion

The methods proposed in this thesis represent a first attempt to estimate a
full survival distribution nonparametrically based only on forward or backward
recurrence times. They allow us to estimate the full survival distribution with-
out following up subjects. This would surely save cost and time. Moreover,
backward recurrence times cannot be censored. Alternatively, by using only
the forward recurrence times our methods allow us to estimate the survival
distribution without knowing the onset times. For many situations this is the
case. Finally our methods may be useful even if we had full data. For we could
estimate the survival function of those with missing onset times and compare
it with the survival function of those with observed onset times. Differences
between these two estimated survival functions may indicate that those with
missing onset times are not missing at random.

Our methods work very well with large data sets with substantial mass
near the origin. The estimator (14(2.13)), Ŝ(t) = f̂FT (t)/f̂FT (0) (or Ŝ(t) =
f̂BT (t)/f̂BT (0)), is very sensitive to the estimation of the value of the density
of the forward or backward recurrence times at the origin. It is always difficult
to estimate a density function at a boundary point. When there are few ob-
servations near the origin, serious bias could occur. In particular, without the
knowledge of the derivative of the survival function at time zero, we have to, in
addition, estimate f ′FT (0)/fFT (0) (or its counterpart with the backward recur-
rence times). This could J45|46Iintroduce further serious bias. Therefore, our
methods should be used with caution when there are not enough data points
near the origin.
J46|47I
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