Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008bcc.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008bcc.tex && latex 2008bcc.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008bcc.tex && pdflatex 2008bcc.tex")) % (eev "cd ~/LATEX/ && Scp 2008bcc.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (defun d () (interactive) (find-dvipage "~/LATEX/2008bcc.dvi")) % (find-dvipage "~/LATEX/2008bcc.dvi") % (find-pspage "~/LATEX/2008bcc.pdf") % (find-pspage "~/LATEX/2008bcc.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008bcc.ps 2008bcc.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2008bcc.ps 2008bcc.dvi && ps2pdf 2008bcc.ps 2008bcc.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2008bcc.pdf" (ee-twupfile "LATEX/2008bcc.pdf") 'over) % (ee-cp "~/LATEX/2008bcc.pdf" (ee-twusfile "LATEX/2008bcc.pdf") 'over) % (find-angg ".emacs" "dnc-to-std") % (find-angg ".emacs" "std-to-dnc") % «.adjs-of-change-of-base» (to "adjs-of-change-of-base") % «.new-bcc-1» (to "new-bcc-1") % «.bcc-categorically» (to "bcc-categorically") % «.bcc-hyperdoctrine» (to "bcc-hyperdoctrine") % «.bcc-collapse» (to "bcc-collapse") % «.bcc-sums-full-diag» (to "bcc-sums-full-diag") % «.bcc-smaller-diagram» (to "bcc-smaller-diagram") % «.bcc-smaller-diagrams» (to "bcc-smaller-diagrams") % «.bcc-trees» (to "bcc-trees") % «.first-preservations» (to "first-preservations") % «.first-preservations-2» (to "first-preservations-2") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008bcc.dnt %* % (eedn4-51-bounded) \def\Eq{\mathsf{Eq}} %:*'**^{\prime*}* %:*&*\&* %:*\&*\&* %:*b=b'*b{=}b'* {\bf These notes are being changed!!!} \bsk Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Adjoints to change of base} {2} \tocline {BCC, categorically} {3} \tocline {BCC in a hyperdoctrine} {4} \tocline {BCC: collapsing isomorphic objects} {5} \tocline {BCC for dependent sums: full diagram} {6} \tocline {BCC: smaller diagram} {7} \tocline {BCC: smaller diagrams} {8} \tocline {BCC: trees} {9} \tocline {First preservations} {10} \tocline {First preservations (2)} {11} \newpage % -------------------- % «adjs-of-change-of-base» (to ".adjs-of-change-of-base") % (s "Adjoints to change of base" "adjs-of-change-of-base") \myslide {Adjoints to change of base} {adjs-of-change-of-base} %D diagram adjs-to-change-of-base %D 2Dx 100 +30 +30 +35 +30 +40 %D 2D 100 A0 ===> A1 B0 ===> B1 C0 ===> C1 %D 2D - - - - - - %D 2D | <-> | | <-> | | <-> | %D 2D v v v v v v %D 2D +20 A2 <=== A3 B2 <=== B3 C2 <=== C3 %D 2D - - - - - - %D 2D | <-> | | <-> | | <-> | %D 2D v v v v v v %D 2D +20 A4 ===> A5 B4 ===> B5 C4 ===> C5 %D 2D %D 2D +20 a0 |--> a1 b0 |--> b1 c0 |--> c1 %D 2D %D (( A0 .tex= Pab A1 .tex= Îb.Pab %D A2 .tex= Qa A3 .tex= Qa %D A4 .tex= Rab A5 .tex= ýb.Rab %D a0 .tex= a,b a1 .tex= a %D A0 A1 => %D A0 A2 |-> A1 A3 |-> A0 A3 harrownodes nil 20 nil <-> %D A2 A3 <= %D A2 A4 |-> A3 A5 |-> A2 A5 harrownodes nil 20 nil <-> %D A4 A5 => %D a0 a1 |-> %D )) %D (( B0 .tex= Pab B1 .tex= b=b'&Pabb %D B2 .tex= Qabb B3 .tex= Qabb' %D B4 .tex= Rab B5 .tex= b=b'⊃Rab %D b0 .tex= a,b b1 .tex= a,b,b' %D B0 B1 => %D B0 B2 |-> B1 B3 |-> B0 B3 harrownodes nil 20 nil <-> %D B2 B3 <= %D B2 B4 |-> B3 B5 |-> B2 B5 harrownodes nil 20 nil <-> %D B4 B5 => %D b0 b1 |-> %D )) %D (( C0 .tex= Pa C1 .tex= Îa.a=fb.Pb %D C2 .tex= Qfa C3 .tex= Qb %D C4 .tex= Ra C5 .tex= ýa.a=fb⊃Pb %D c0 .tex= a c1 .tex= b %D C0 C1 => %D C0 C2 |-> C1 C3 |-> C0 C3 harrownodes nil 20 nil <-> %D C2 C3 <= %D C2 C4 |-> C3 C5 |-> C2 C5 harrownodes nil 20 nil <-> %D C4 C5 => %D c0 c1 |-> .plabel= a f %D )) %D enddiagram %D $$\diag{adjs-to-change-of-base}$$ % \end{document} % \end{document} \newpage % -------------------- % «bcc-categorically» (to ".bcc-categorically") % (s "BCC, categorically" "bcc-categorically") \myslide {BCC, categorically} {bcc-categorically} This is how the Beck-Chevalley condition (for dependent sums; there is also a variation for dependent products, that we will see soon) is usually stated: \begin{quotation} ``If the square formed by $f,g,f',g'$ in the base category in the diagram below is a pullback, and if $P$ is an object over $C$, then the natural map from $\sum_{f'}g^{\prime*}P$ to $g^*\sum_{f}P$ is an isomorphism.'' \end{quotation} The upper part of the diagram below shows how to build the map $î: \sum_{f'}g^{\prime*}P \to g^*\sum_{f}P$. \bsk But what does that {\sl mean}? %D diagram big-bcc-cat %D 2Dx 100 +45 +45 +60 +45 %D 2D 100 B0 ======================> B1 %D 2D -/\ - %D 2D | \\ | %D 2D v \\ v %D 2D +30 B2 <\> B2' <-> B2'' <===== B3 %D 2D /\ \\ /\ %D 2D +30 \\ B4 =====================> B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +30 B6 <===================== B7 %D 2D %D 2D +20 b0 <-> b0' <-> b0'' |----> b1 %D 2D |-> |-> %D 2D +60 b2 |--------------------> b3 %D 2D %D # g'*P |------------------> Îf'g'*P %D # | ^ | %D # | \ |---> | %D # v \ v %D # g'*f*ÎfP <\-> f'*g*ÎfP <-----| g*ÎfP %D # /\ - ^ %D # \ P |--------------------> ÎfP %D # \ | \ - %D # \ | <---| \ | id %D # - v -v %D # f*ÎfP <------------------| ÎfP %D # %D # Ax_{B}C -----------------> A %D # \ __| f' \ %D # g' \ \ g %D # v v %D # C ---------------------> B %D # f %D (( %D B0 .tex= g'*P B1 .tex= Î_{f'}g'*P %D B2 .tex= g'*f^*Î_fP B2' .tex= h^*Î_{f}P B2'' .tex= f'*g^*Î_fP %D B3 .tex= g^*Î_{f}P %D B4 .tex= P B5 .tex= Î_fP %D B6 .tex= f^*Î_fP B7 .tex= Î_fP %D B0 B1 |-> B0 B2 -> B0 B2' -> B0 B2'' -> B1 B3 -> .plabel= l {î} %D B2 B2' <-> B2' B2'' <-> B2'' B3 <-| %D B0 B4 <-| B2 B6 <-| B2' B7 <-| B3 B7 <-| %D B4 B5 |-> B4 B6 -> B5 B7 -> .plabel= r \id B6 B7 <-| %D B0 B2'' midpoint B1 B3 midpoint harrownodes nil 20 nil -> %D B0 B2 midpoint B4 B6 midpoint dvarrownodes nil 18 nil <- %D B4 B7 harrownodes nil 20 nil <- %D )) %D (( b0 .tex= A×_{B}C b0' .tex= A×_{B}C b0'' .tex= A×_{B}C b1 .tex= A %D b2 .tex= C b3 .tex= B %D b0 b0' = b0' b0'' = b0'' b1 -> .plabel= b f' %D b0 b2 -> .plabel= l g' b0' b3 -> .plabel= l h b1 b3 -> .plabel= l g %D b2 b3 -> .plabel= b f %D b0 relplace 18 10 \pbsymbol{10} %D )) %D enddiagram $$\defÎ{\sum} \diag{big-bcc-cat} $$ \newpage % -------------------- % «bcc-hyperdoctrine» (to ".bcc-hyperdoctrine") % (s "BCC in a hyperdoctrine" "bcc-hyperdoctrine") \myslide {BCC in a hyperdoctrine} {bcc-hyperdoctrine} \widemtos In the case of a hyperdoctrine that means that from an object $\ssst{b,c}{P}$ and a map $a \mto b$ there are two ways to build an object that deserves the name ``$\ssst{a}{Îc.P}$''... \msk ...and without BCC we would know a map between them going in one direction, $î: \ssst{a}{Îc.P} \to \ssst{a}{Îc.P}'$, but we wouldn't know that it is an iso. %D diagram big-bcc-logical %D 2Dx 100 +40 +40 +60 +40 %D 2D 100 B0 ======================> B1 %D 2D -/\ - %D 2D | \\ | %D 2D v \\ v %D 2D +30 B2 <\> B2' <-> B2'' <===== B3 %D 2D /\ \\ /\ %D 2D +30 \\ B4 =====================> B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +30 B6 <===================== B7 %D 2D %D 2D +20 b0 <-> b0' <-> b0'' |----> b1 %D 2D |-> |-> %D 2D +60 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= \s[a,c|P] B1 .tex= \s[a|Îc.P] %D B2 .tex= \s[a,c|Îc.P] B2' .tex= \s[a,c|Îc.P]' B2'' .tex= \s[a,c|Îc.P]'' %D B3 .tex= \s[a|Îc.P]' %D B4 .tex= \s[b,c|P] B5 .tex= \s[b|Îc.P] %D B6 .tex= \s[b,c|Îc.P] B7 .tex= \s[b|Îc.P] %D B0 B1 => B0 B2 |-> B0 B2' |-> B0 B2'' |-> B1 B3 |-> .plabel= l {î} %D B2 B2' <-> B2' B2'' <-> B2'' B3 <= %D B0 B4 <= B2 B6 <= B2' B7 <= B3 B7 <= %D B4 B5 => B4 B6 |-> B5 B7 |-> .plabel= r \id B6 B7 <= %D B0 B2'' midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B0 B2 midpoint B4 B6 midpoint dvarrownodes nil 18 nil <-| %D B4 B7 harrownodes nil 20 nil <-| %D )) %D (( b0 .tex= a,c b0' .tex= a,c b0'' .tex= a,c b1 .tex= a %D b2 .tex= b,c b0' b3 .tex= b %D b0 b0' = b0' b0'' = b0'' b1 |-> %D b0 b2 |-> b0' b3 |-> b1 b3 |-> %D b2 b3 |-> %D b0 relplace 18 10 \pbsymbol{10} %D )) %D enddiagram % BCC: full diagram (no isos hidden), in $\Sub(\Set)$. $$\diag{big-bcc-logical}$$ \newpage % -------------------- % «bcc-collapse» (to ".bcc-collapse") % (s "BCC: collapsing isomorphic objects" "bcc-collapse") \myslide {BCC: collapsing isomorphic objects} {bcc-collapse} One trick to make the previous (big) diagram simpler to draw is to draw the objects that are isomorphic and ``deserve the same name'' --- but that may be different --- as a single object; these collapsed objects (here just $\ssst{a,c}{Îc.P}$) have more than one functor arrow pointing to them, which indicates that they have more than one construction. %D diagram big-bcc-logical-collapsed %D 2Dx 100 +40 +50 +40 %D 2D 100 B0 ======================> B1 %D 2D -/\ - %D 2D | \\ | %D 2D v \\ v %D 2D +30 B2 <\\==================== B3 %D 2D /\ \\ /\ %D 2D +20 \\ B4 =====================> B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +30 B6 <===================== B7 %D 2D %D 2D +20 b0 |---------------------> b1 %D 2D |-> |-> %D 2D +50 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= \s[a,c|P] B1 .tex= \s[a|Îc.P] %D B2 .tex= \s[a,c|Îc.P] B3 .tex= \s[a|Îc.P]' %D B4 .tex= \s[b,c|P] B5 .tex= \s[b|Îc.P] %D B6 .tex= \s[b,c|Îc.P] B7 .tex= \s[b|Îc.P] %D B0 B1 => B0 B2 |-> B1 B3 |-> .plabel= l {î} %D B2 B3 <= %D B0 B4 <= B2 B6 <= B3 B7 <= %D B4 B5 => B4 B6 |-> B5 B7 |-> .plabel= r \id B6 B7 <= %D B0 B2 midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B0 B2 midpoint B4 B6 midpoint dvarrownodes nil 18 nil <-| %D B4 B7 harrownodes nil 20 nil <-| %D )) %D (( b0 .tex= a,c b1 .tex= a %D b2 .tex= b,c b3 .tex= b %D b0 b1 |-> %D b0 b2 |-> b1 b3 |-> %D b2 b3 |-> %D b0 relplace 18 9 \pbsymbol{9} %D )) %D enddiagram % BCC: full diagram (no isos hidden), in $\Sub(\Set)$. $$\diag{big-bcc-logical-collapsed}$$ \newpage % -------------------- % «bcc-sums-full-diag» (to ".bcc-sums-full-diag") % (s "BCC for dependent sums: full diagram" "bcc-sums-full-diag") \myslide {BCC for dependent sums: full diagram} {bcc-sums-full-diag} %D diagram big-bcc %D 2Dx 100 +35 +35 +70 +35 %D 2D 100 B0 ======================> B1 %D 2D -/\ - %D 2D | \\ | %D 2D v \\ v %D 2D +30 B2 <\> B2' <-> B2'' <===== B3 %D 2D /\ \\ /\ %D 2D +30 \\ B4 =====================> B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +30 B6 <===================== B7 %D 2D %D 2D +20 b0 <-> b0' <-> b0'' |----> b1 %D 2D |-> |-> %D 2D +60 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= \s[a,c|d] B1 .tex= \s[a|c,d] %D B2 .tex= \s[a,c|c,d] B2' .tex= \s[a,c|c,d]' B2'' .tex= \s[a,c|c,d]'' %D B3 .tex= \s[a|c,d]' %D B4 .tex= \s[b,c|d] B5 .tex= \s[b|c,d] %D B6 .tex= \s[b,c|c,d] B7 .tex= \s[b|c,d] %D B0 B1 => B0 B2 |-> B0 B2' |-> B0 B2'' |-> B1 B3 |-> .plabel= r {î} %D B2 B2' <-> B2' B2'' <-> B2'' B3 <= %D B0 B4 <= B2 B6 <= B2' B7 <= B3 B7 <= %D B4 B5 => B4 B6 |-> B5 B7 |-> .plabel= r \id B6 B7 <= %D B0 B2'' midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B0 B2 midpoint B4 B6 midpoint dvarrownodes nil 18 nil <-| %D B4 B7 harrownodes nil 20 nil <-| %D )) %D (( b0 .tex= a,c b0' .tex= a,c b0'' .tex= a,c b1 .tex= a %D b2 .tex= b,c b0' b3 .tex= b %D b0 b0' = b0' b0'' = b0'' b1 |-> %D b0 b2 |-> b0' b3 |-> b1 b3 |-> %D b2 b3 |-> %D )) %D enddiagram BCC: full diagram (no isos hidden), in $\Set^\to$. $\diag{big-bcc}$ \newpage % -------------------- % «bcc-smaller-diagram» (to ".bcc-smaller-diagram") % (s "BCC: smaller diagram" "bcc-smaller-diagram") \myslide {BCC: smaller diagram} {bcc-smaller-diagram} %D diagram small-bcc %D 2Dx 100 +35 +40 +35 %D 2D 100 B0 ======================> B1 %D 2D -/\ - %D 2D | \\ | %D 2D v \\ v %D 2D +30 B2 <\\==================== B3 %D 2D /\ \\ /\ %D 2D +20 \\ B4 =====================> B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +30 B6 <===================== B7 %D 2D %D 2D +20 b0 |---------------------> b1 %D 2D |-> |-> %D 2D +50 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= \s[a,c|d] B1 .tex= \s[a|c,d] %D B2 .tex= \s[a,c|c,d] B3 .tex= \s[a|c,d] %D B4 .tex= \s[b,c|d] B5 .tex= \s[b|c,d] %D B6 .tex= \s[b,c|c,d] B7 .tex= \s[b|c,d] %D B0 B1 => B0 B2 |-> B1 B3 |-> .plabel= r {î} %D B2 B3 <= %D B0 B4 <= B2 B6 <= B3 B7 <= %D B4 B5 => B4 B6 |-> B5 B7 |-> .plabel= r \id B6 B7 <= %D B0 B2 midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B0 B2 midpoint B4 B6 midpoint dvarrownodes nil 18 nil <-| %D B4 B7 harrownodes nil 20 nil <-| %D )) %D (( b0 .tex= a,c b1 .tex= a %D b2 .tex= b,c b3 .tex= b %D b0 b1 |-> %D b0 b2 |-> b1 b3 |-> %D b2 b3 |-> %D )) %D enddiagram BCC: smaller diagram. $\diag{small-bcc}$ \newpage % -------------------- % «bcc-smaller-diagrams» (to ".bcc-smaller-diagrams") % (s "BCC: smaller diagrams" "bcc-smaller-diagrams") \myslide {BCC: smaller diagrams} {bcc-smaller-diagrams} BCC: smaller diagrams. %D diagram smaller-bcc %D 2Dx 100 +30 +30 +30 %D 2Dx 100 +20 +25 +20 %D 2D 100 B0 ======================> B1 %D 2D -/\ - %D 2D | \\ | %D 2D v \\ v %D 2D +20 B2 <\\==================== B3 %D 2D /\ \\ /\ %D 2D +10 \\ B4 =====================> B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +20 B6 <===================== B7 %D 2D %D 2D +10 b0 |---------------------> b1 %D 2D |-> |-> %D 2D +30 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= d B1 .tex= c,d %D B2 .tex= c,d B3 .tex= c,d %D B4 .tex= d B5 .tex= c,d %D B6 .tex= c,d B7 .tex= c,d %D B0 B1 => B0 B2 |-> B1 B3 |-> .plabel= l {î} %D B2 B3 <= %D B0 B4 <= B2 B6 <= B3 B7 <= %D B4 B5 => B4 B6 |-> B5 B7 |-> .plabel= r \id B6 B7 <= %D B0 B2 midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B0 B2 midpoint B4 B6 midpoint dvarrownodes nil 15 nil <-| %D B4 B7 harrownodes nil 20 nil <-| %D )) %D (( b0 .tex= a,c b1 .tex= a %D b2 .tex= b,c b3 .tex= b %D b0 b1 |-> %D b0 b2 |-> b1 b3 |-> %D b2 b3 |-> %D b0 relplace 12 7 \pbsymbol{7} %D )) %D enddiagram %D diagram smaller-prod-bcc %D 2Dx 100 +30 +30 +30 %D 2Dx 100 +20 +25 +20 %D 2D 100 B0 <====================== B1 %D 2D -/\ - %D 2D | \\ | %D 2D v \\ v %D 2D +20 B2 =\\===================> B3 %D 2D /\ \\ /\ %D 2D +10 \\ B4 <===================== B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +20 B6 =====================> B7 %D 2D %D 2D +10 b0 |---------------------> b1 %D 2D |-> |-> %D 2D +30 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= c|->d B1 .tex= c|->d %D B2 .tex= d B3 .tex= c|->d %D B4 .tex= c|->d B5 .tex= c|->d %D B6 .tex= d B7 .tex= c|->d %D B0 B1 <= B0 B2 |-> B1 B3 |-> .plabel= l {î} %D B2 B3 => %D B0 B4 <= B2 B6 <= B1 B5 <= # B3 B7 <= %D B4 B5 <= B4 B6 |-> B5 B7 |-> .plabel= r \id B6 B7 => %D B0 B2 midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B0 B2 midpoint B4 B6 midpoint dvarrownodes nil 15 nil <-| %D B4 B7 harrownodes nil 20 nil <-| %D )) %D (( b0 .tex= a,c b1 .tex= a %D b2 .tex= b,c b3 .tex= b %D b0 b1 |-> %D b0 b2 |-> b1 b3 |-> %D b2 b3 |-> %D b0 relplace 12 7 \pbsymbol{7} %D )) %D enddiagram %: b,c|-D %: ------- %: b|-Æc.D %: -------- %: b;p|-p %: ---------------- %: a|-b b,c;d|-\ang{c,d} %: ----------------------- %: a,c;d|-\ang{c,d} %: ----------------------- %: a;p|-\ang{c,d}[c,d:=p] %: %: ^bcc-sum-1 %: $$\cdiag{smaller-bcc} \qquad % \begin{matrix} \cded{bcc-sum-1} % \end{matrix} $$ %: b,c|-D %: ------- %: b|-åc.D %: -------- %: b;f|-f %: --------- %: a|-b b,c;f|-fc %: ---------------- %: a,c;f|-fc %: ---------- %: a;f|-ðc.fc %: %: ^bcc-prod-1 %: $$\cdiag{smaller-prod-bcc} \qquad \begin{matrix} \ded{bcc-prod-1} \end{matrix} $$ \newpage % -------------------- % «bcc-trees» (to ".bcc-trees") % (s "BCC: trees" "bcc-trees") \myslide {BCC: trees} {bcc-trees} %D diagram smaller-bcc-eq %D 2Dx 100 +30 +30 +30 %D 2D 100 B0 ======================> B1 %D 2D -/\ - %D 2D | \\ | %D 2D v \\ v %D 2D +20 B2 <\\==================== B3 %D 2D /\ \\ /\ %D 2D +10 \\ B4 =====================> B5 %D 2D \\ - \\ - %D 2D \\ | \\| %D 2D \\v \v %D 2D +20 B6 <===================== B7 %D 2D %D 2D +10 b0 |---------------------> b1 %D 2D |-> |-> %D 2D +30 b2 |--------------------> b3 %D 2D %D (( %D B0 .tex= d B1 .tex= (c{=}c'),d %D B2 .tex= (c{=}c),d B3 .tex= (c{=}c'),d %D B4 .tex= d B5 .tex= (c{=}c'),d %D B6 .tex= (c{=}c),d B7 .tex= (c{=}c'),d %D B0 B1 => B0 B2 |-> B1 B3 |-> .plabel= l {î} %D B2 B3 <= %D B0 B4 <= B2 B6 <= B3 B7 <= %D B4 B5 => B4 B6 |-> B5 B7 |-> .plabel= r \id B6 B7 <= %D B0 B2 midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B0 B2 midpoint B4 B6 midpoint dvarrownodes nil 15 nil <-| %D B4 B7 harrownodes nil 20 nil <-| %D )) %D (( b0 .tex= a,c b1 .tex= a,c,c' %D b2 .tex= b,c b3 .tex= b,c,c' %D b0 b1 |-> %D b0 b2 |-> b1 b3 |-> %D b2 b3 |-> %D b0 relplace 12 7 \pbsymbol{7} %D )) %D enddiagram %: b,c|-D %: ------- %: b,c,c'|-Æ(c{=}c').D %: ---------------------- %: b,c,c';((c{=}c'),d)|-((c{=}c').d) %: --------------------------------- %: a,c|-b,c b,c;d|-\ang{(c{=}c),d} %: --------------------------------- %: a,c;d|-\ang{(c{=}c),d} %: ----------------------- %: a,c;((c{=}c'),d)|-\ang{(c{=}c'),d} %: %: ^bcc-eq-1-semi %: $$\cdiag{smaller-bcc-eq} \qquad \begin{matrix} \ded{bcc-eq-1-semi} \end{matrix} $$ \newpage % -------------------- % «first-preservations» (to ".first-preservations") % (s "First preservations" "first-preservations") \myslide {First preservations} {first-preservations} %D diagram cob-preserves-T-and-AND %D 2Dx 100 +30 +30 +10 +30 +40 %D 2D 100 PP0 <=========== PP1 %D 2D ^ ^ ^ %D 2D | \ <-| | %D 2D - - - %D 2D +30 PT0 <== PT1 PP2 <-| PP3 <=== PP4 %D 2D - - - - %D 2D | | / <-| | %D 2D v v v v %D 2D +30 PT2 PP5 <=========== PP6 %D 2D %D 2D +20 pta |-> ptb ppa |------> ppb %D 2D %D (( PT0 .tex= \s[a|§] PT1 .tex= \s[b|§] %D PT2 .tex= \s[a|§]' %D pta .tex= a ptb .tex= b %D PT0 PT1 <= PT0 PT2 |-> .plabel= r {î} %D pta ptb |-> %D )) %D (( PP0 .tex= \s[a|P] PP1 .tex= \s[b|P] %D PP2 .tex= \s[a|P&Q]' PP3 .tex= \s[a|P&Q] PP4 .tex= \s[b|P&Q] %D PP5 .tex= \s[a|Q] PP6 .tex= \s[b|Q] %D ppa .tex= a ppb .tex= b %D PP0 PP1 <= %D PP0 PP2 <-| .plabel= r {\pi} PP0 PP3 <-| %D PP1 PP4 <-| .plabel= r {\pi} %D PP0 PP3 midpoint PP1 PP4 midpoint harrownodes nil 20 nil <-| %D PP2 PP3 <-| .plabel= a {î} PP3 PP4 <= %D PP2 PP5 |-> .plabel= r {\pi'} PP3 PP5 |-> %D PP4 PP6 |-> .plabel= r {\pi'} %D PP3 PP5 midpoint PP4 PP6 midpoint harrownodes nil 20 nil <-| %D PP5 PP6 <= %D ppa ppb |-> %D )) %D enddiagram %D diagram cob-preserves-exp %D 2Dx 100 +20 +20 +40 +20 +20 %D 2D 100 E0 <============= E1 %D 2D v /\ v /\ %D 2D +30 E2 <\\=========== E3 \\ %D 2D \\ \\ \\ \\ %D 2D +20 \\ E4 <============= E5 %D 2D \/ - \/ v %D 2D +30 E6 E7 %D 2D %D 2D +20 ea |------------> eb %D 2D %D (( E0 .tex= \s[a|(Q⊃R)&Q] E1 .tex= \s[b|(Q⊃R)&Q] %D E2 .tex= \s[a|R] E3 .tex= \s[b|R] %D E4 .tex= \s[a|Q⊃R] E5 .tex= \s[b|Q⊃R] %D E6 .tex= \s[a|Q⊃R]' E7 .tex= \s[b|Q⊃R] %D ea .tex= a eb .tex= b %D E0 E1 <= E0 E2 |-> E1 E3 |-> E2 E3 <= %D E0 E4 <= E2 E6 => E1 E5 <= E3 E7 => %D E4 E5 <= E4 E6 |-> .plabel= r {î} E5 E7 |-> .plabel= r \id %D E0 E3 harrownodes nil 20 nil <-| %D E0 E2 midpoint E4 E6 midpoint dvarrownodes nil 16 nil |-> %D E1 E3 midpoint E5 E7 midpoint dvarrownodes nil 16 nil <-| %D ea eb |-> %D )) %D enddiagram Change-of-base preserves terminals and binary products: $\diag{cob-preserves-T-and-AND}$ \medskip Change-of-base preserves exponentials: $\diag{cob-preserves-exp}$ \medskip In all the diagrams above the natural morphisms marked `$î$' are required to be isos. \medskip Note that in the diagram for preservation of exponentials the object at the upper left has two constructions; in fact it is two objects, and we are hiding the iso between them. \newpage % -------------------- % «first-preservations-2» (to ".first-preservations-2") % (s "First preservations (2)" "first-preservations-2") \myslide {First preservations (2)} {first-preservations-2} A category with the structure above is a {\bf pre-hyperdoctrine}. A {\bf hyperdoctrine} is a pre-hyperdoctrine that obeys certain extra equations, like this one: \medskip In a pre-hyperdoctrine given $a \mton{f} b$ and two propositions $P(b)$ and $Q(b)$ over the space of `$b$'s we have two different constructions for $P(f(a)) \& Q(f(a))$ over the space of `$a$'s, and a natural morphism from one construction to the other one: \medskip $\dncdisplay[b|P\&Q] := (P(b) \& Q(b))[b:=f(a)]$ $\dncdisplay[b|P\&Q]' := P(b)[b:=f(a)] \, \& \, Q(b)[b:=f(a)]$ \medskip %D diagram cob-preserves-AND %D 2Dx 100 +10 +30 +40 %D 2D 100 PP0 <=========== PP1 %D 2D ^ ^ ^ %D 2D | \ <-| | %D 2D - - - %D 2D +30 PP2 <-| PP3 <=== PP4 %D 2D - - - %D 2D | / <-| | %D 2D v v v %D 2D +30 PP5 <=========== PP6 %D 2D %D 2D +20 ppa |------> ppb %D 2D %D (( PP0 .tex= \s[a|P] PP1 .tex= \s[b|P] %D PP2 .tex= \s[a|P&Q]' PP3 .tex= \s[a|P&Q] PP4 .tex= \s[b|P&Q] %D PP5 .tex= \s[a|Q] PP6 .tex= \s[b|Q] %D ppa .tex= a ppb .tex= b %D PP0 PP1 <= %D PP0 PP2 <-| .plabel= r {\pi} PP0 PP3 <-| .plabel= r {f^*\pi} %D PP1 PP4 <-| .plabel= r {\pi} %D PP0 PP3 midpoint PP1 PP4 midpoint harrownodes nil 20 nil <-| %D PP2 PP3 <-| .plabel= a {î} PP3 PP4 <= %D PP2 PP5 |-> .plabel= r {\pi'} PP3 PP5 |-> .plabel= r {f^*\pi'} %D PP4 PP6 |-> .plabel= r {\pi'} %D PP3 PP5 midpoint PP4 PP6 midpoint harrownodes nil 20 nil <-| %D PP5 PP6 <= %D ppa ppb |-> .plabel= a {f} %D )) %D enddiagram $\diag{cob-preserves-AND}$ \medskip we want these two constructions to be equivalent, so in the definition of hyperdoctrine we include a condition that says that the morphism `$î$' is an iso, i.e., that it has an inverse. %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: