Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008comprcat.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008comprcat.tex && latex 2008comprcat.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008comprcat.tex && pdflatex 2008comprcat.tex")) % (eev "cd ~/LATEX/ && Scp 2008comprcat.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008comprcat.dvi") % (find-pspage "~/LATEX/2008comprcat.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008comprcat.ps 2008comprcat.dvi") % (find-pspage "~/LATEX/2008comprcat.ps") % (ee-cp "~/LATEX/2008comprcat.pdf" (ee-twupfile "LATEX/2008comprcat.pdf") 'over) % (ee-cp "~/LATEX/2008comprcat.pdf" (ee-twusfile "LATEX/2008comprcat.pdf") 'over) \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008comprcat.dnt % «.dtt-exchange» (to "dtt-exchange") % «.dtt-unpack» (to "dtt-unpack") % «.dtt-structural-rules» (to "dtt-structural-rules") % «.dtt-type-rules» (to "dtt-type-rules") % «.dtt-alt-sum-rules» (to "dtt-alt-sum-rules") % «.dtt-alt-equality» (to "dtt-alt-equality") % «.dtt-adjunctions» (to "dtt-adjunctions") % «.dtt-conversions» (to "dtt-conversions") % «.rules-dtt» (to "rules-dtt") % «.ccw1» (to "ccw1") % «.ccw1-bij» (to "ccw1-bij") % «.ccw1-bigbij» (to "ccw1-bigbij") % «.ccw1-three-rules» (to "ccw1-three-rules") % «.ccompc-prodI-and-prodE» (to "ccompc-prodI-and-prodE") % «.ccompc-sumI» (to "ccompc-sumI") % «.ccompc-sumE+» (to "ccompc-sumE+") % «.dtt-unpack-2» (to "dtt-unpack-2") % «.elisp» (to "elisp") Index of the slides: \msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {DTT: the exchange rule} {2} \tocline {DTT: the ``unpack'' rule} {3} \tocline {DTT: structural rules} {4} \tocline {DTT: type rules} {5} \tocline {DTT: alternate rules for strong sum} {6} \tocline {DTT: Alternate rules for strong equality} {7} \tocline {Adjunction diagrams} {8} \tocline {Conversions} {9} \tocline {Comprehension categories with unit} {10} \tocline {Comprehension categories with unit: a bijection} {11} \tocline {Comprehension categories with unit: big bijection} {12} \tocline {Comprehension categories with unit: three rules} {13} \tocline {Interpreting $\Pi$I and $\Pi$E in a CCompC} {14} \tocline {Interpreting $\Sigma$I in a CCompC} {15} \tocline {Interpreting $\Sigma \mathrm{E}^+$ in a CCompC} {16} \tocline {The ``unpack'' rule (2)} {17} \tocline {Rules for DTT} {18} \newpage %* % (eedn4-51-bounded) % (find-diagxypage 23) % (find-dn4 "dednat41.lua" "lplacement") % (find-dn4file "experimental.lua") % (find-LATEXfile "diagxy.tex") % (find-LATEXfile "diagxy.tex" "\\def\\domorphism") % (eedn4-51-bounded) % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (find-LATEXfile "2008topos-str.tex") % -------------------- % «dtt-exchange» (to ".dtt-exchange") % (s "DTT: the exchange rule" "dtt-exchange") \myslide {DTT: the exchange rule} {dtt-exchange} \def{\underline} \def\unpackasin#1#2#3{\text{unpack $#1$ as $\ang{#2}$ in $#3$}} \def\unpackin#1#2{\text{unpack $#1$ in $#2$}} \def\withvia#1#2#3{\text{$#1$ with $#2$ via $#3$}} \def\wvia#1#2{\text{with $#1$ via $#2$}} \def\via#1#2{\text{$#1$ via $#2$}} \def\eqdef{\overset{\text{def}}{=}} \def\eqeta{\overset{\eta}{=}} \def\eqbeta{\overset{\beta}{=}} \def\Type{Ð{Type}} \def\Eq{¯{Eq}} In Jacobs (10.1) the exchange rule for DTT is stated like this: %: \GG,x:,y:,\DD|-M: %: -------------------- %: \GG,y:,x:,\DD|-M: %: %: ^exchange-jacobs %: $$\ded{exchange-jacobs}$$ with a side-condition: ``$x$ is not free in $$''. \msk Let's translate this: %: \vec{a}¨\vec{A},b¨B_{\vec{a}},c¨C_{\vec{a}},\vec{d}¨\vec{D}_{\vec{a}bc}|-e_{\vec{a}bc\vec{d}}¨E_{\vec{a}bc\vec{d}} %: ----------------------------------------------------------------------------------------------------- %: \vec{a}¨\vec{A},c¨C_{\vec{a}},b¨B_{\vec{a}},\vec{d}¨\vec{D}_{\vec{a}bc}|-e_{\vec{a}bc\vec{d}}¨E_{\vec{a}bc\vec{d}} %: %: ^exchange-abcde-big %: $$\ded{exchange-abcde-big}$$ Note that if we had used $c:C_{\vec{a}b}$ instead of $c:C_{\vec{a}}$ the bottom judgment would have made no sense. \msk Let's make this shorter. We can hide the annotations that indicate dependencies, the types, and the ``vector'' marks: %: \vec{a}¨\vec{A},b¨B,c¨C,\vec{d}¨\vec{D}|-e¨E %: ------------------------------------ %: \vec{a}¨\vec{A},c¨C,b¨B,\vec{d}¨\vec{D}|-e¨E %: %: ^exchange-abcde-tv %: %: \vec{a},b,c,\vec{d}|-e %: ---------------------- %: \vec{a},c,b,\vec{d}|-e %: %: ^exchange-abcde-v %: %: a,b,c,d|-e %: ---------- %: a,c,b,d|-e %: %: ^exchange-abcde %: $$\ded{exchange-abcde-tv} \qquad \ded{exchange-abcde-v} \qquad \ded{exchange-abcde}$$ It is this last form that we will use. \bsk \bsk {\bf Exercise:} rewrite the first translation with % $$\begin{array}{rcl} (\vec{a}¨\vec{A}) & := & (a_1¨A_1[\,],\ldots,a_n¨A_n[a_1,...,a_{n-1}]) \\ (\vec{d}¨\vec{D}_{\vec{a}bc}) & := & (d_1¨D_1[a_1,...,a_{n},b,c],\ldots, \\ & & \phantom{(}d_m¨D_m[a_1,...,a_{n},b,c,d_1,...,d_{m-1}]) \\ \end{array} $$ and check that the rule becomes unbearably big. \newpage % -------------------- % «dtt-unpack» (to ".dtt-unpack") % (s "DTT: the ``unpack'' rule" "dtt-unpack") \myslide {DTT: the ``unpack'' rule} {dtt-unpack} In Jacobs (10.1, but after 10.1.2) the strong sum-elimination rule is stated as this: %: %: \GG,z:Æx:.|-:\Type \GG,x:,y:|-Q:[\ang{x,y}/z] %: -----------------------------------------------------(¯{strong}) %: \GG,z:Æx:.|-(\unpackasin{z}{x,y}{Q}): %: %: ^unpack-ren-1 %: $$\ded{unpack-ren-1}$$ In an ``unpack'' term like % $$\unpackasin{P}{x,y}{Q}$$ the ``unpack'' binds two variables in $Q$, $x$ and $y$, at the same time, and sets their values to the components of the (dependent) pair $P$. \msk In the presence of $$ and $'$ we can {\sl define}: % $$(\unpackasin{P}{x,y}{Q}) := Q[x:=P,y:='P].$$ Let's change the ``unpack'' notation one step at a time: $$\begin{array}{rl} & \unpackasin{P}{x,y}{Q} \\ \funto & \unpackin{P=:x,y}{Q} \\ \funto & Q[x,y:=P] \\ \end{array} $$ \msk Now let's rewrite the rule: %: \GG,z:Æx:.|-:\Type \GG,x:,y:|-Q:[z:=\ang{x,y}] %: ----------------------------------------------------- %: \GG,z:Æx:.|-Q[x,y:=z]: %: %: ^unpack-ren-2 %: %: \vec{a}¨\vec{A},p¨(Æb¨B.C)|-D¨\Type \vec{a}¨\vec{A},b¨B,c¨C|-d¨D[p:=\ang{b,c}] %: ----------------------------------------------------- %: \vec{a}¨\vec{A},p¨(Æb¨B.C)|-d[b,c:=p]¨D %: %: ^unpack-ren-3 %: %: \vec{a}¨\vec{A},(b,c)¨(Æb¨B.C)|-D¨\Type \vec{a}¨\vec{A},b¨B,c¨C|-d¨D[(b,c):=\ang{b,c}] %: ----------------------------------------------------- %: \vec{a}¨\vec{A},(b,c)¨(Æb¨B.C)|-d[b,c:=(b,c)]¨D %: %: ^unpack-ren-4 %: %: \vec{a},(b,c)|-D \vec{a},b,c|-d %: --------------------------------- %: \vec{a},(b,c)|-d[b,c:=(b,c)] %: %: ^unpack-ren-5 %: %: a,(b,c)|-D a,b,c|-d %: --------------------------ƯE^+ %: a,(b,c)|-d[b,c:=(b,c)] %: %: ^unpack-ren-6 %: %: a,(b,c)|-D a,b,c|-d %: ---------------------ƯE^+ %: a,(b,c)|-d %: %: ^unpack-ren-7 %: $$\ded{unpack-ren-2}$$ $$\ded{unpack-ren-3}$$ $$\ded{unpack-ren-4}$$ $$\ded{unpack-ren-5}$$ $$\ded{unpack-ren-6}$$ $$\ded{unpack-ren-7}$$ We will use the two last forms. \newpage % -------------------- % «dtt-structural-rules» (to ".dtt-structural-rules") % (s "DTT: structural rules" "dtt-structural-rules") \myslide {DTT: structural rules} {dtt-structural-rules} %: a|-b a|-B=B' %: Conversion: -------------¯{conv} %: a|-b' %: %: ^10.1-conv %: %: a|-B %: Projection: ------¯{v} %: a,b|-b %: %: ^10.1-var %: %: a,b,b',c|-D a,b,b',c|-d %: Contraction: -----------¯{contr} -----------¯{contr} %: a,b,c|-D a,b,c|-d %: %: ^10.1-Contr ^10.1-contr %: %: a|-b a,b,c|-D a|-b a,b,c|-d %: Substitution: --------------¯s --------------¯s %: a,c|-D a,c|-d %: %: ^10.1-Subst ^10.1-subst %: %: a|-B a|-C a|-B a|-c %: Weakening: ----------¯w ----------¯w %: a,b|-C a,b|-c %: %: ^10.1-Weak ^10.1-weak %: %: a,b,c,d|-E a,b,c,d|-e %: Exchange: ----------¯{exch} ----------¯{exch} %: a,c,b,d|-E a,c,b,d|-e %: %: ^10.1-Exch ^10.1-exch These ones are used very often: $$\begin{array}{lcc} \text{Variable:} & \cded{10.1-var} \\ \\ \text{Substitution:} & \cded{10.1-Subst} & \cded{10.1-subst} \\ \\ \text{Weakeking:} & \cded{10.1-Weak} & \cded{10.1-weak} \\ \\ \end{array} $$ These ones not so much: $$\begin{array}{lcc} \text{Conversion:} & \cded{10.1-conv} \\ \\ \text{Contraction:} & \cded{10.1-Contr} & \cded{10.1-contr} \\ \\ \text{Exchange:} & \cded{10.1-Exch} & \cded{10.1-exch} \\ \\ \end{array} $$ Note: ``Variable'' is called ``Projection'' at [Jacobs]. \newpage % -------------------- % «dtt-type-rules» (to ".dtt-type-rules") % (s "DTT: type rules" "dtt-type-rules") \myslide {DTT: type rules} {dtt-type-rules} We have four different type-formers: singleton, (dependent) products, (dependent) sums, and equality. For each one of them we have a type-building rule, an introduction rule, and elimination rules. \msk There are several options for elimination rules for dependent sums and equality. \msk In a system with ``weak sums'' the rule is $ƯE^-$. In a system with ``strong sums'' the rule is $ƯE^+$, or, equivalently, $+'$. \msk In a system with ``weak equality'' the rule is $¯{EqE}^-$. In a system with ``strong equality'' the rule is $¯{EqE}^+$, or, equivalently, ee+ur (``externalization of equality'' plus ``uniqueness of reflexivity''). %: %: Type: Intro: Elim: %: %: a|-*' %: Singleton: ---1 ---1¯I -------1¯E %: |-1 |-* a|-*'=* %: %: ^10.1-1 ^10.1-1I ^10.1-1E %: %: a,b|-C a,b|-c a|-b a|-b|->c %: DepProds: ---------å --------å¯I --------------å¯E %: a|-åb:B.C a|-b|->c a|-c %: %: ^10.1-prod ^10.1-prodI ^10.1-prodE %: %: a,b|-C a|-B a,b|-C %: DepSums: ---------Æ ------------ƯI (see below) %: a|-Æb:B.C a,b,c|-(b,c) %: %: ^10.1-sum ^10.1-sumI %: %: a|-B a|-B %: Equality: ----------------¯{Eq} ----------¯{EqI} (see below) %: a,b,b'|-¯W[b=b'] a,b|-(b=b) %: %: ^10.1-eq ^10.1-eqI \def\twol#1#2{\begin{array}[m]{ll}\text{#1} \\ \text{#2}\end{array}} \def\twol#1#2{\text{#2}} $$\begin{array}{lccc} \text{Singleton:} & \cded{10.1-1} & \cded{10.1-1I} & \cded{10.1-1E} \\ \\ \twol{Dependent} {Products:} & \cded{10.1-prod} & \cded{10.1-prodI} & \cded{10.1-prodE} \\ \\ \twol{Dependent} {Sums:} & \cded{10.1-sum} & \cded{10.1-sumI} & \text{(See below)} \\ \\ \text{Equality:} & \cded{10.1-eq} & \cded{10.1-eqI} & \text{(See below)} \\ \\ \end{array} $$ %: Elimination rules: %: DepSums: Equality: %: %: a|-D a,b,c|-d a,b,b',c|-D a,b,c|-d %: Weak: --------------ƯE^- ---------------------¯{EqE}^- %: a,(b,c)|-d a,b,b',(b=b'),c|-d %: %: ^10.1-sumE- ^10.1-eqE- %: %: a,(b,c)|-D a,b,c|-d a,b,b',(b=b')|-C a,b|-c %: Strong: --------------------ƯE^+ ------------------------¯{EqE}^+ %: a,(b,c)|-d a,b,b',(b=b')|-c %: %: ^10.1-sumE+ ^10.1-eqE+ %: %: a|-b,c a|-b,c a|-(b=b') a|-(b=b)' %: AltStrong: ------ ------' ---------¯{ee} ---------------¯{ur} %: a|-b a|-c a|-b=b' a|-(b=b)'=(b=b) %: %: ^10.1-pi ^10.1-pi' ^10.1-ee ^10.1-ur $$\begin{array}{ccc} \ded{10.1-sumE-} & & \ded{10.1-eqE-} \\ \\ \ded{10.1-sumE+} & & \ded{10.1-eqE+} \\ \\ \ded{10.1-pi} \qquad \ded{10.1-pi'} & & \ded{10.1-ee} \quad\;\; \ded{10.1-ur} \\ \\ \end{array} $$ \newpage %* % (eedn4-51-bounded) % -------------------- % «dtt-alt-sum-rules» (to ".dtt-alt-sum-rules") % (s "DTT: alternate rules for strong sum" "dtt-alt-sum-rules") \myslide {DTT: alternate rules for strong sum} {dtt-alt-sum-rules} Jacobs, 10.1.3 (i): The rules $$ and $'$ can be defined from $ÆE^+$: %: %: a,b|-C a|-B %: -------Æ ------¯v %: a|-Æb.C a|-B a,b|-C a,b|-b %: --------------¯w --------------¯w %: a,(b,c)|-B a,b,c|-b %: ----------------------------ÆE^+ %: a|-(b,c) a|-(b,c) a,(b,c)|-b %: -------- ------------------------------¯s %: a|-b := a|-b %: %: ^strongsum1 ^strongsum2 %: %: %: a,b|-C %: ========== %: a,(b,c)|-b a,b|-C a,b|-C %: -------------------¯s --------¯v %: a,(b,c)|-C a,b,c|-c %: ------------------------------ÆE^+ %: a|-(b,c) a|-(b,c) a,(b,c)|-c %: --------' -------------------------------------¯s %: a|-c := a|-c %: %: ^strongsum3 ^strongsum4 %: $$\ded{strongsum1} \quad := \quad \ded{strongsum2}$$ $$\ded{strongsum3} \quad := \quad \ded{strongsum4}$$ \bsk \bsk The rule $ÆE^+$ can be defined from $$ and $'$: %: %: a,b|-C %: -------Æ %: a,b|-C a|-Æb.C a,b,c|-d %: ========== ------------------¯{w} %: a,b|-C a,(b,c)|-b a,(b,c),b,c|-d %: ==========' -----------------------------¯s %: a,(b,c)|-D a,b,c|-d a,(b,c)|-c a,(b,c),c|-d %: ----------------------ÆE^+ ------------------------------¯s %: a,(b,c)|-d := a,(b,c)|-d %: %: ^strongsum5 ^strongsum6 %: $$ \begin{array}{l} \ded{strongsum5} \quad \\ \quad := \quad \ded{strongsum6} \end{array} $$ \newpage % -------------------- % «dtt-alt-equality» (to ".dtt-alt-equality") % (s "DTT: alternate rules for strong equality" "dtt-alt-equality") \myslide {DTT: Alternate rules for strong equality} {dtt-alt-equality} The $ƯE^+$ rule is equivalent to the two rules ee and ur, that say that from ``witnesses of equality'' we can prove external equality - i.e., that some terms are equal. This equivalence $ƯE^+ \iff (¯{ee},¯{ur})$ is of a different nature from the ones that we have seen before - this one uses $\bb/\ee/{:=}$ and lives intrinsically in the (P+T) structure - it cannot be restricted to the T-part (i.e., to the syntactical world). $$\begin{array}{rcl} a,b,b',e & \vdash & b \\ & \eqeta & \withvia{b[b':=b, e:=r]}{b=b'}{e} \\ & = & \withvia{b'[b':=b, e:=r]}{b=b'}{e} \\ & \eqeta & b' \\ \end{array} $$ $$\begin{array}{rcl} a,b,b',e & \vdash & e \\ & \eqeta & \withvia{e[b':=b, e:=r]}{b=b'}{e} \\ & = & \withvia{r[b':=b, e:=r]}{b=b'}{e} \\ & \eqeta & r \\ \end{array} $$ \newpage % -------------------- % «dtt-adjunctions» (to ".dtt-adjunctions") % (s "Adjunction diagrams" "dtt-adjunctions") \myslide {Adjunction diagrams} {dtt-adjunctions} %D diagram Hyperdoctrine-foo %D 2Dx 100 +45 +85 +40 %D 2D 100 eq0 =====> eq1 aw0 =====> aw1 %D 2D - - - - %D 2D | <--> | | <--> | %D 2D v v v v %D 2D +40 eq2 <===== eq3 aw2 <===== aw3 %D 2D - - %D 2D | <--> | %D 2D v v %D 2D +40 aw4 =====> aw5 %D 2D %D 2D +20 eq4 |----> eq5 aw6 |----> aw7 %D %D (( eq0 .tex= \s[a,b|c] eq1 .tex= \s[a,b,b'|(b{=}b'),c] %D eq2 .tex= \s[a,b|d] eq3 .tex= \s[a,b,b'|d] %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 2 @ 3 <= sl_ @ 2 @ 3 |-> sl^ .plabel= a {ñ} %D # @ 0 @ 2 |-> @ 1 @ 3 |-> @ 0 @ 3 harrownodes nil 20 nil <-> %D @ 0 @ 2 |-> .PLABEL= _(0.43) a,b;c|-d %D @ 1 @ 3 |-> .PLABEL= ^(0.43) a,b,b';e,c|-d[\via{b=b'}{e}] %D @ 0 @ 2 |-> .PLABEL= _(0.57) a,b;c|-d[b':=b,e:=r] %D @ 1 @ 3 |-> .PLABEL= ^(0.57) a,b,b';e,c|-d %D @ 0 @ 3 harrownodes nil 20 nil |-> sl^ %D @ 0 @ 3 harrownodes nil 20 nil <-| sl_ %D )) %D (( eq4 .tex= a,b eq5 .tex= a,b,b' %D @ 0 @ 1 |-> %D )) %D (( aw0 .tex= \s[a,b|c] aw1 .tex= \s[a|b,c] %D aw2 .tex= \s[a,b|d] aw3 .tex= \s[a|d] %D aw4 .tex= \s[a,b|e] aw5 .tex= \s[a|{b|->e}] %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 2 @ 3 <= sl_ @ 2 @ 3 |-> sl^ .plabel= a {ñ} %D @ 4 @ 5 => %D @ 0 @ 2 |-> .PLABEL= _(0.43) a,b;c|-d %D @ 1 @ 3 |-> .PLABEL= ^(0.43) a;p|-d[b,c:=p] %D @ 0 @ 2 |-> .PLABEL= _(0.57) a,b;c|-d[p:=\ang{b,c}] %D @ 1 @ 3 |-> .PLABEL= ^(0.57) a;p|-d %D @ 0 @ 3 harrownodes nil 20 nil |-> sl^ %D @ 0 @ 3 harrownodes nil 20 nil <-| sl_ %D @ 2 @ 4 |-> .PLABEL= _(0.43) a,b;d|-fb %D @ 3 @ 5 |-> .PLABEL= ^(0.43) a;d|-f %D @ 2 @ 4 |-> .PLABEL= _(0.57) a,b;d|-e %D @ 3 @ 5 |-> .PLABEL= ^(0.57) a;d|-ðb.e %D @ 2 @ 5 harrownodes nil 20 nil <-| sl^ %D @ 2 @ 5 harrownodes nil 20 nil |-> sl_ %D )) %D (( aw6 .tex= a,b aw7 .tex= a %D @ 0 @ 1 |-> %D )) %D enddiagram $$\diag{Hyperdoctrine-foo}$$ \bsk \bsk %D diagram beta-and-eta-for-sums %D 2Dx 100 +40 %D 2D 100 aw0 =====> aw1 %D 2D - - %D 2D | <--> | %D 2D v v %D 2D +40 aw2 <===== aw3 %D 2D %D 2D +30 bw0 =====> bw1 %D 2D - - %D 2D | <--> | %D 2D v v %D 2D +40 bw2 <===== bw3 %D 2D %D (( aw0 .tex= \s[a,b|c] aw1 .tex= \s[a|b,c] %D aw2 .tex= \s[a,b|d] aw3 .tex= \s[a|d] %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 2 @ 3 <= sl_ @ 2 @ 3 |-> sl^ .plabel= a {ñ} %D @ 0 @ 2 |-> .PLABEL= _(0.43) a,b;c|-d %D @ 0 @ 2 |-> .PLABEL= _(0.57) a,b;c|-d[b,c:=p][p:=\ang{b,c}] %D @ 1 @ 3 |-> .PLABEL= ^(0.43) a;p|-d[b,c:=p] %D @ 1 @ 3 |-> .PLABEL= ^(0.57) a;p|-d[b,c:=p] %D @ 0 @ 3 harrownodes nil 20 nil |-> sl^ %D @ 0 @ 3 harrownodes nil 20 nil <-| sl_ %D )) %D (( bw0 .tex= \s[a,b|c] bw1 .tex= \s[a|b,c] %D bw2 .tex= \s[a,b|d] bw3 .tex= \s[a|d] %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 2 @ 3 <= sl_ @ 2 @ 3 |-> sl^ .plabel= a {ñ} %D @ 0 @ 2 |-> .PLABEL= _(0.43) a,b;c|-d[p:=\ang{b,c}] %D @ 1 @ 3 |-> .PLABEL= ^(0.43) a;p|-d[p:=\ang{b,c}][b,c:=p] %D @ 0 @ 2 |-> .PLABEL= _(0.57) a,b;c|-d[p:=\ang{b,c}] %D @ 1 @ 3 |-> .PLABEL= ^(0.57) a;p|-d %D @ 0 @ 3 harrownodes nil 20 nil |-> sl^ %D @ 0 @ 3 harrownodes nil 20 nil <-| sl_ %D )) %D enddiagram $\diag{beta-and-eta-for-sums}$ %* % (eedn4a-bounded) % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") \newpage % -------------------- % «ccw1-conversions» (to ".ccw1-conversions") % (s "Conversions" "ccw1-conversions") \myslide {Conversions} {ccw1-conversions} Conventions: $\bb$-conversions first, then $\eta$-conversions. Underlined names are terms. ${(b{=}b)}$ is the reflexivity term. $\begin{array}{rcl} (ðb.c)b &=& c[b=:b] \\ ðb.fb &=& f \\ \unpackasin{\ang{b,c}}{b,c}{d} &=& d[b=:b,c=:c] \\ \unpackasin{{(b,c)}}{b,c}{d[\ang{b,c}=:(b,c)]} &=& d[{(b,c)}=:(b,c)] \\ \withvia {d} {b=b} {{(b{=}b)}} &=& d \\ \withvia {d[b=:b',{(b{=}b)}=:(b{=}b)']} {b'=b} {(b{=}b)'} &=& d \\ \end{array} $ \bsk $$\begin{array}{rcccl} a & \vdash & f & \eqbeta & ðb.fb \\ a,b & \vdash & e & \eqeta & (ðb.e)b \\ a,b,c & \vdash & d & = & d[b,c:=\ang{b,c}] \\ a,p & \vdash & d & = & d[p:=\ang{b,c}][b,c:=p] \\ a,b,c & \vdash & d & = & d[\wvia{b=b}{r}] \\ a,b,b',e,c & \vdash & d & = & d[b':=b,e:=r][\wvia{b'=b}{e}] \\ \end{array} $$ % (find-LATEXfile "edrx08.sty") %: \GG,x:,x':,\DD|-:\Type \GG,x:,\DD[x/x']|-Q:[x/x'] %: --------------------------------------------------------(¯{weak}) %: \GG,x:,x':,z:\Eq_(x,x'),\DD|-(\withvia{Q}{x'=x}{z}): %: %: ^Jacobs-587.2 %: %: a,b,b',c|-D a,b,c[b=:b']|-d:D[b=:b'] %: ----------------------------------------------(¯{weak}) %: a,b,b',(b=b'),c|-(\withvia{d}{b'=b}{(b=b')}):D %: %: ^Jacobs-587.2-my %: $$\ded{Jacobs-587.2}$$ $$\ded{Jacobs-587.2-my}$$ %* \newpage % -------------------- % «ccw1» (to ".ccw1") % (s "Comprehension categories with unit" "ccw1") \myslide {Comprehension categories with unit} {ccw1} \def\EtoBto{\mathbb{E} \to \mathbb{B}^\to} % (find-jacobspage (+ 19 616)) Jacobs, 10.4.7 (p.616): A fibration $p: \mathbb{E} \to \mathbb{B}$ with a terminal object functor $1: \mathbb{B} \to \mathbb{E}$ (where we know by lemma 1.8.8 that $p \dashv 1$ and that $\eta_I = \id$) is {\sl comprehension category with unit} if 1 has a right adjoint. We call this right adjoint $\{-\}$. %D diagram ccwu-adjs-dnc %D 2Dx 100 +30 +30 %D 2D 100 a0 |---> a1 |---> a2 %D 2D || ^ /\ ^ || %D 2D || | || | || %D 2D \/ v || v \/ %D 2D +30 a3 |---> a4 |---> a5 %D 2D %D (( a0 .tex= \s[a|b] a1 .tex= \s[c|*] a2 .tex= \s[d|e] %D a3 .tex= a a4 .tex= c a5 .tex= d,e %D @ 0 @ 1 |-> @ 1 @ 2 |-> %D @ 0 @ 3 => .plabel= l p %D @ 1 @ 4 <= .plabel= r 1 %D @ 2 @ 5 => .plabel= r \{-\} %D @ 0 @ 4 varrownodes nil 20 nil <-> %D @ 1 @ 5 varrownodes nil 20 nil <-> %D @ 3 @ 4 |-> @ 4 @ 5 |-> %D )) %D enddiagram %D $$\diag{ccwu-adjs-dnc}$$ \msk Jacobs, 10.4.7 (p.616): Definition of the functor $\EtoBto$: its action on objects is $X \mto p_X$. %D diagram ccwu-p %D 2Dx 100 +30 +30 +40 +30 +30 %D 2D 100 a0 |------------> a2 b0 |------------> b2 %D 2D /\ ^ // || /\ ^ // || %D 2D || | // || || | // || %D 2D || - \/ \/ || - \/ \/ %D 2D +30 a3 |---> a4 |---> a5 b3 |---> b4 |---> b5 %D 2D %D (( a0 .tex= 1\{X\} a2 .tex= X %D a3 .tex= \{X\} a4 .tex= \{X\} a5 .tex= pX %D a0 a2 -> .plabel= a _X %D a3 a4 -> .plabel= b \id %D a4 a5 -> .plabel= b p_X %D a0 a3 <-| a2 a4 |-> a2 a5 |-> %D a0 a4 varrownodes nil 20 nil <-| %D )) %D (( b0 .tex= \s[d,e|*] b2 .tex= \s[d|e] %D b3 .tex= d,e b4 .tex= d,e b5 .tex= d %D b0 b2 |-> b3 b4 |-> b4 b5 |-> %D b0 b3 <= b2 b4 => b2 b5 => %D b0 b4 varrownodes nil 20 nil <-| %D )) %D enddiagram $$\diag{ccwu-p}$$ % (fooi "|->" "->" "<-|" "<-" "=>" "|->" "<=" "<-|") % (fooi "|->" "=>" "<-|" "<=" "->" "|->" "<-" "<-|") \msk % (find-dn4exfile "eedemo2.tex") %D diagram ccwu-pb %D 2Dx 100 +30 -15 +15 +15 +15 +30 %D 2D 100 a0 %D 2D /\/ %D 2D || \ %D 2D || v %D 2D +25 a1 |--> a2 a3 %D 2D - - ||/ %D 2D \ \ || \ %D 2D v v\/ \ %D 2D +25 a4 |---> a5 \ %D 2D - - v %D 2D +25 a6 |-> a7 |------------------> a8 %D 2D /\ /\ \ // || %D 2D || || \ // || %D 2D || || v \/ \/ %D 2D +25 a9 |-> a10 |---------> a11 |-> a12 %D 2D %D (( a0 .tex= 1I %D a1 .tex= \{1I\} a2 .tex= I a3 .tex= X %D a4 .tex= \{X\} a5 .tex= pX %D a6 .tex= 1I a7 .tex= 1\{Y\} a8 .tex= Y %D a9 .tex= I a10 .tex= \{Y\} a11 .tex= \{Y\} a12 .tex= pY %D a0 a1 |-> a0 a2 <-| %D a3 a4 |-> a3 a5 |-> %D a6 a9 <-| a7 a10 <-| a8 a11 |-> a8 a12 |-> %D a1 a2 -> sl_ .plabel= b _{1I} %D a1 a2 <- sl^ .plabel= a \eta_I %D a1 a4 -> .plabel= l \{g\} %D a2 a4 -> .plabel= m g^\vee %D a0 a3 -> .plabel= a g %D a2 a5 -> .plabel= m u %D a4 a5 -> .plabel= b _X %D a3 a8 -> .PLABEL= ^(0.33) f %D a4 a11 -> .PLABEL= ^(0.33) \{f\} %D a5 a12 -> .PLABEL= ^(0.33) pf %D a6 a7 -> .plabel= b 1v %D a7 a8 -> .PLABEL= _(0.5) _Y %D a9 a10 -> .plabel= b v %D a10 a11 -> .plabel= b \id %D a11 a12 -> .plabel= b _Y %D )) %D enddiagram %D diagram ccwu-pb-dnc %D 2Dx 100 +30 -15 +15 +15 +15 +30 %D 2D 100 a0 %D 2D /\/ %D 2D || \ %D 2D || v %D 2D +25 a1 |--> a2 a3 %D 2D - - ||/ %D 2D \ \ || \ %D 2D v v\/ \ %D 2D +25 a4 |---> a5 \ %D 2D - - v %D 2D +25 a6 |-> a7 |------------------> a8 %D 2D /\ /\ \ // || %D 2D || || \ // || %D 2D || || v \/ \/ %D 2D +25 a9 |-> a10 |---------> a11 |-> a12 %D 2D %D (( a0 .tex= \s[i|*] %D a1 .tex= i,* a2 .tex= i a3 .tex= \s[a|b] %D a4 .tex= a,b a5 .tex= a %D a6 .tex= \s[i|*] a7 .tex= \s[c,d|*] a8 .tex= \s[c|d] %D a9 .tex= i a10 .tex= c,d a11 .tex= c,d a12 .tex= c %D a0 a2 <= a0 a1 => %D a3 a4 => a3 a5 => %D a6 a9 <= a7 a10 <= a8 a11 => a8 a12 => %D a0 a3 |-> %D a1 a2 <-> a1 a4 |-> a2 a4 |-> %D a2 a5 |-> a3 a8 |-> .plabel= a {ñ} a4 a5 |-> %D a4 a11 |-> a5 a12 |-> %D a6 a7 |-> a7 a8 |-> %D a9 a10 |-> a10 a11 |-> a11 a12 |-> %D )) %D enddiagram The functor $\EtoBto$ is a comprehension category, i.e., it takes cartesian morphisms to pullback squares. We want to check that the image of a cartesian morphism is a pullback. Given two maps $i \mto a$ and $i \mto c,d$ such that $a \mto c$ is well-defined, we need to construct a mediating map $i \mto a,b$. % $$\diag{ccwu-pb} \qquad \diag{ccwu-pb-dnc} $$ \newpage % -------------------- % «ccw1-bij» (to ".ccw1-bij") % (s "Comprehension categories with unit: a bijection" "ccw1-bij") \myslide {Comprehension categories with unit: a bijection} {ccw1-bij} Jacobs, 10.4.9 (i): In a CCw1, pack a morphism $u: I \to J$ in the base category, and an object $Y$ over $J$. Then the vertical morphisms $1I \to u^*Y$ are in bijection with morphisms from $u$ to $_Y$ in $\mathbb{B}/J$. %D diagram 1049 %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 a0 |-> a1 b0 |-> b1 %D 2D /\ || / /\ || / %D 2D || || \ || || \ %D 2D || \/ v || \/ v %D 2D +30 a2 |-> a3 a4 b2 |-> b3 b4 %D 2D / / || / / || %D 2D \ \ || \ \ || %D 2D v v \/ v v \/ %D 2D +30 a5 |-> a6 b5 |-> b6 %D 2D %D (( a0 .tex= 1I a1 .tex= u^*Y %D a2 .tex= I a3 .tex= I a4 .tex= Y %D a5 .tex= \{Y\} a6 .tex= J %D a0 a1 -> %D a0 a2 <-| a0 a4 -> a1 a3 |-> a1 a4 -> sl^^ .plabel= a {ñ} a1 a4 <-| %D a2 a3 -> .plabel= b \id a2 a5 -> a3 a6 -> .PLABEL= ^(0.3) u a4 a5 |-> a4 a6 |-> %D a5 a6 -> .plabel= b _Y %D )) %D (( b0 .tex= \s[a,b|*] b1 .tex= \s[a,b|c] %D b2 .tex= a,b b3 .tex= a,b b4 .tex= \s[a|c] %D b5 .tex= a,c b6 .tex= a %D b0 b1 |-> %D b0 b2 <= b0 b4 |-> b1 b3 => b1 b4 |-> sl^ .plabel= a {ñ} b1 b4 <= sl_ %D b2 b3 |-> b2 b5 |-> b3 b6 |-> b4 b5 => b4 b6 => %D b5 b6 |-> %D )) %D enddiagram %D $$\diag{1049}$$ \newpage % -------------------- % «ccw1-bigbij» (to ".ccw1-bigbij") % (s "Comprehension categories with unit: big bijection" "ccw1-bigbij") \myslide {Comprehension categories with unit: big bijection} {ccw1-bigbij} Jacobs, 10.4.9 (ii): % \widemtos %D diagram 10.4.9-ii %D 2Dx 100 +45 +40 +45 +45 %D 2Dx +15 +15 %D 2D 100 a0 <-> a1 <========= a2 %D 2D - - - - %D 2D | / / | %D 2D v v v v %D 2D +30 a3 =========> a4 <-> a5 %D 2D /\ /\ %D 2D \\ \\ %D 2D \\ \\ %D 2D +20 a6 ===============> a7 %D 2D %D 2D +15 a8 %D 2D /\ %D 2D \\ %D 2D \\ %D 2D +20 b0 |---------------> b1 a9 %D 2D -- -- %D 2D | \ | \ %D 2D | v | v %D 2D +20 | b2 |--------------> b3 %D 2D v |-> v |-> %D 2D +20 b4 b5 %D 2D %D (( a0 .tex= 1L a1 .tex= (Qu^*A)^*1I a2 .tex= 1I %D a3 .tex= u'^*X a4 .tex= \prod_{u^*A}u'^*X a5 .tex= u^*\prod_{A}X %D a6 .tex= X a7 .tex= \prod_{A}X %D a8 .tex= u^*A a9 .tex= A %D b0 .tex= L b1 .tex= I %D b2 .tex= J b3 .tex= K %D b4 .tex= \{X\} b5 .tex= \{\prod_{A}X\} %D a0 a1 <-> a1 a2 <-| %D a0 a3 -> a1 a3 -> a2 a4 -> a2 a5 -> %D a3 a4 |-> a4 a5 <-> %D a3 a6 <-| a5 a7 <-| %D a6 a7 |-> %D a8 a9 <-| %D b0 b1 -> .plabel= a Qu^*A %D b0 b2 -> .PLABEL= ^(0.6) u'=QA^*u b1 b3 -> .plabel= r u %D b2 b3 -> .plabel= a QA %D b0 b4 -> b4 b2 -> .plabel= r _X b1 b5 -> b5 b3 -> .plabel= r _{\prod_{A}X} %D )) %D enddiagram %D $$\diag{10.4.9-ii}$$ \bsk $a,c; b \vdash d$ $a; b \vdash c \mto d$ %D diagram 10.4.9-ii-dnc %D 2Dx 100 +45 +40 +45 +45 %D 2Dx +15 +15 %D 2D 100 a0 <-> a1 <========= a2 %D 2D - - - - %D 2D | / / | %D 2D v v v v %D 2D +30 a3 =========> a4 <-> a5 %D 2D /\ /\ %D 2D \\ \\ %D 2D \\ \\ %D 2D +20 a6 ===============> a7 %D 2D %D 2D +15 a8 %D 2D /\ %D 2D \\ %D 2D \\ %D 2D +20 b0 |---------------> b1 a9 %D 2D -- -- %D 2D | \ | \ %D 2D | v | v %D 2D +20 | b2 |--------------> b3 %D 2D v |-> v |-> %D 2D +20 b4 b5 %D 2D %D (( a0 .tex= \s[a,b,c|*] a1 .tex= \s[a,b,c|*] a2 .tex= \s[a,b|*] %D a3 .tex= \s[a,b,c|d] a4 .tex= \s[a,b|{c|->d}] a5 .tex= \s[a,b|{c|->d}] %D a6 .tex= \s[a,c|d] a7 .tex= \s[a|{c|->d}] %D a8 .tex= \s[a,b|c] a9 .tex= \s[a|c] %D b0 .tex= a,b,c b1 .tex= a,b %D b2 .tex= a,c b3 .tex= a %D b4 .tex= a,c,d b5 .tex= a,(c|->d) %D a0 a1 <-> a1 a2 <= %D a0 a3 |-> .plabel= l a,b,c|-d %D a1 a3 |-> a2 a4 |-> %D a2 a5 |-> .plabel= r a,b|-c|->d %D a3 a4 => a4 a5 <-> %D a3 a6 <= a5 a7 <= %D a6 a7 => %D a8 a9 <= %D b0 b1 |-> %D b0 b2 |-> b1 b3 |-> %D b2 b3 |-> %D b0 b4 |-> b4 b2 |-> b1 b5 |-> b5 b3 |-> %D )) %D enddiagram %D $$\diag{10.4.9-ii-dnc}$$ \newpage % -------------------- % «ccw1-three-rules» (to ".ccw1-three-rules") % (s "Comprehension categories with unit: three rules" "ccw1-three-rules") \myslide {Comprehension categories with unit: three rules} {ccw1-three-rules} Jacobs, 10.3.3: % (find-dn4file "diagxy.tex" "\\newdir") % \newdir^{ (}{{ }*!/-.5em/@^{(}}% \newdir^{) }{{ }*!/.5em/@^{)}}% %D diagram sumI %D 2Dx 100 +30 +30 %D 2D 100 a0 / %D 2D // || /\ \ %D 2D // || \\ v %D 2D \/ \/ \\ %D 2D +30 a2 |--> a3 a1 %D 2D / / // || %D 2D \ // || %D 2D v \/ v \/ %D 2D +30 a4 |--> a5 %D 2D %D (( a0 .tex= \s[a,b|c] a1 .tex= \s[a|b,c] %D a2 .tex= a,b,c a3 .tex= a,b %D a4 .tex= a,(b,c) a5 .tex= a %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 0 @ 2 => @ 0 @ 3 => @ 1 @ 4 => @ 1 @ 5 => %D @ 2 @ 3 |-> @ 2 @ 4 |-> @ 3 @ 5 |-> @ 4 @ 5 |-> %D )) %D enddiagram %D diagram sumE+ %D 2Dx 100 +30 +15 +30 %D 2D 100 a0 |------> a1 %D 2D / / %D 2D \ \ %D 2D v v %D 2D +30 a2 |------> a3 %D 2D %D (( a0 .tex= a,b,c,d a1 .tex= a,b,c %D a2 .tex= a,(b,c),d a3 .tex= a,(b,c) %D @ 0 @ 1 |-> sl_ @ 0 @ 1 <-' sl^ %D @ 0 @ 2 <-> @ 1 @ 3 <-> %D @ 2 @ 3 |-> sl_ @ 2 @ 3 <-' sl^ %D @ 0 relplace 15 7 \pbsymbol{7} %D )) %D enddiagram %D diagram sumE- %D 2Dx 100 +30 +40 +35 %D 2D 100 {a,b,c} |----------\ %D 2D - |-> v %D 2D +20 | a,b,c,d |--> a,(b,c),d |--> a,d %D 2D \ - _| - _| - %D 2D \ | | | %D 2D v v v v %D 2D +30 a,b,c |----> a,(b,c) |----> a %D 2D %D (( {a,b,c} # 0 %D a,b,c,d a,(b,c),d a,d # 1 2 3 %D a,b,c a,(b,c) a # 4 5 6 %D @ 0 @ 4 |-> @ 0 @ 1 |-> @ 0 @ 2 |-> %D @ 1 @ 2 |-> @ 2 @ 3 |-> %D @ 1 @ 4 |-> @ 2 @ 5 |-> @ 3 @ 6 |-> %D @ 4 @ 5 |-> @ 5 @ 6 |-> %D @ 1 _| @ 2 _| %D )) %D enddiagram %: %: a,b|-C %: ------------ƯI %: a;b,c|-(b,c) %: %: ^sumI %: %: %: a|-D a,b,c|-d %: --------------ƯE^- %: a,(b,c)|-d %: %: ^sumE- %: %: %: a,(b,c)|-D a,b,c|-d %: ---------------------ƯE^+ %: a,(b,c)|-d %: %: ^sumE+ %: The categorical interpretation of the rules for dependent sums: $$\begin{array}{cc} \cded{sumI} & \cdiag{sumI} \\ \\ \cded{sumE+} & \cdiag{sumE+} \\ \\ \cded{sumE-} & \cdiag{sumE-} \\ \end{array} $$ (Oops, the diagram for $ƯE^-$ is wrong) \newpage % -------------------- % «ccompc-prodI-and-prodE» (to ".ccompc-prodI-and-prodE") % (s "Interpreting $å¯I$ and $å¯E$ in a CCompC" "ccompc-prodI-and-prodE") \myslide {Interpreting $å¯I$ and $å¯E$ in a CCompC} {ccompc-prodI-and-prodE} (Jacobs, 10.5.3) % std->dnc: (fooi ">->" "`->" "|->" "=>" "<-|" "<=" "->" "|->" "<-" "<-|") % dnc->std: (fooi "`->" ">->" "|->" "->" "<-|" "<-" "=>" "|->" "<=" "<-|") %D diagram 1053-prodI %D 2Dx 100 +30 +40 +35 %D 2D 100 a0 <== a1 b0 <== b1 %D 2D - - - - %D 2D | |-> | | |-> | %D 2D v v v v %D 2D +30 a2 ==> a3 b2 ==> b3 %D 2D %D 2D +25 a4 b4 %D 2D //|| //|| %D 2D // || // || %D 2D \/ \/ \/ \/ %D 2D +25 a5 |-> a6 b5 |-> b6 %D 2D %D (( a0 .tex= 1\{X\} a1 .tex= 1I a2 .tex= Y a3 .tex= å_XY %D a4 .tex= X a5 .tex= \{X\} a6 .tex= I %D a0 a1 <-| %D a0 a2 -> .plabel= l f %D a1 a3 -> .plabel= r ð_Xf %D a2 a3 |-> %D a0 a3 harrownodes nil 20 nil -> %D a4 a5 |-> a4 a6 |-> a5 a6 -> .plabel= b _X %D )) %D (( b0 .tex= \s[a,b|*] b1 .tex= \s[a|*] %D b2 .tex= \s[a,b|c] b3 .tex= \s[a|b{|->c}] %D b4 .tex= \s[a|b] b5 .tex= a,b b6 .tex= a %D b0 b1 <= %D b0 b2 |-> .plabel= l a,b|-c %D b1 b3 |-> .plabel= r a|-(b|->c) %D b2 b3 => %D b0 b3 harrownodes nil 20 nil |-> %D b4 b5 => b4 b6 => b5 b6 |-> %D )) %D enddiagram %D $$\defÆ{\coprod} \defå{\prod} \diag{1053-prodI} $$ %D diagram 1053-prodE %D 2Dx 100 +35 +35 +35 +35 +35 %D 2D 100 a0 <== a1 <== a2 c0 <== c1 <== c2 %D 2D - - - - - - %D 2D | <-| | <-| | | <-| | <-| | %D 2D v v v v v v %D 2D +30 a3 <== a4 ==> a5 c3 <== c4 ==> c5 %D 2D %D 2D +25 b0 |--------> b2 d0 |--------> d2 %D 2D /\ // || /\ // || %D 2D || // || || // || %D 2D || \/ || || \/ || %D 2D +25 b3 |-> b4 |-> b5 d3 |-> d4 |-> d5 %D 2D %D (( a0 .tex= 1I a1 .tex= _X^*1I a2 .tex= 1I %D a3 .tex= h^{\vee*}Y a4 .tex= Y a5 .tex= å_XY %D b0 .tex= 1I b2 .tex= X %D b3 .tex= I b4 .tex= \{X\} b5 .tex= I %D a0 a1 <-| a1 a2 <-| %D a0 a3 -> .plabel= l gh %D a1 a4 -> .plabel= m g^\wedge %D a2 a5 -> .plabel= r g %D a0 a4 harrownodes nil 20 nil <-| %D a1 a5 harrownodes nil 20 nil <-| %D a3 a4 <-| a4 a5 |-> %D b0 b2 -> .plabel= a h %D b0 b3 <-| b2 b4 |-> b2 b5 |-> %D b0 b4 varrownodes nil 17 nil |-> %D b3 b4 >-> .plabel= b h^\vee b4 b5 -> .plabel= b _X %D )) %D (( c0 .tex= \s[a|*] c1 .tex= \s[a,b|*] c2 .tex= \s[a|*] %D c3 .tex= \s[a|c] c4 .tex= \s[a,b|c] c5 .tex= \s[a|b{|->}c] %D d0 .tex= \s[a|*] d2 .tex= \s[a|b] %D d3 .tex= a d4 .tex= a,b d5 .tex= a %D c0 c1 <= c1 c2 <= %D c0 c3 |-> .plabel= l a|-c %D c1 c4 |-> %D c2 c5 |-> .plabel= r a|-(b|->c) %D c0 c4 harrownodes nil 20 nil <-| %D c1 c5 harrownodes nil 20 nil <-| %D c3 c4 <= c4 c5 => %D d0 d2 |-> .plabel= a a|-b %D d0 d3 <= d2 d4 => d2 d5 => %D d0 d4 varrownodes nil 17 nil |-> %D d3 d4 `-> d4 d5 |-> %D )) %D enddiagram %D $$\diag{1053-prodE}$$ In the top left vertex of the diagram for $å¯E$ we have omitted an iso to keep the diagram shorter: $1I \cong h^{\vee*}_X^*1I$. \newpage % -------------------- % «ccompc-sumI» (to ".ccompc-sumI") % (s "Interpreting $ƯI$ in a CCompC" "ccompc-sumI") \myslide {Interpreting $ƯI$ in a CCompC} {ccompc-sumI} (Jacobs, 10.5.3) %D diagram 1053-sumI %D 2Dx 100 +35 +35 +35 +35 +35 %D 2D 100 a* c* %D 2D - - %D 2D | | %D 2D v v %D 2D +30 a0 <== a1 ==> a2 c0 <== c1 ==> c2 %D 2D - - - - - - %D 2D | <-| | <-| | | <-| | <-| | %D 2D v v v v v v %D 2D +30 a3 <== a4 <== a5 c3 <== c4 <== c5 %D 2D %D 2D +25 b0 |--------> b2 d0 |--------> d2 %D 2D /\ // || /\ // || %D 2D || // || || // || %D 2D || \/ || || \/ || %D 2D +25 b3 |-> b4 |-> b5 d3 |-> d4 |-> d5 %D 2D %D (( a* .tex= 1I %D a0 .tex= f^{\vee*}X a1 .tex= Y a2 .tex= Æ_XY %D a3 .tex= Æ_XY a4 .tex= _X^*Æ_XY a5 .tex= Æ_XY %D b0 .tex= 1I b2 .tex= X %D b3 .tex= I b4 .tex= \{X\} b5 .tex= I %D a* a0 -> .plabel= r g %D a* a3 -> .slide= -15pt .PLABEL= _(0.25) \ang{f,g} %D a0 a1 <-| a1 a2 |-> %D a0 a3 -> %D a1 a4 -> %D a2 a5 -> .plabel= r \id %D a0 a4 harrownodes nil 20 nil <- %D a1 a5 harrownodes nil 20 nil <- %D a3 a4 <-| a4 a5 <-| %D b0 b2 -> .plabel= a f %D b0 b3 <-| b2 b4 |-> b2 b5 |-> %D b0 b4 varrownodes nil 17 nil -> %D b3 b4 >-> .plabel= b f^\vee b4 b5 -> .plabel= b _X %D )) %D (( c* .tex= \s[a|*] %D c0 .tex= \s[a|c] c1 .tex= \s[a,b|c] c2 .tex= \s[a|b,c] %D c3 .tex= \s[a|b,c] c4 .tex= \s[a,b|b,c] c5 .tex= \s[a|b,c] %D d0 .tex= \s[a|*] d2 .tex= \s[a|b] %D d3 .tex= a d4 .tex= a,b d5 .tex= a %D c* c0 |-> .plabel= r a|-c %D c* c3 |-> .slide= -12.5pt .PLABEL= _(0.25) a|-(b,c) %D c0 c1 <= c1 c2 => %D c0 c3 |-> %D c1 c4 |-> %D c2 c5 |-> %D c0 c4 harrownodes nil 20 nil <-| %D c1 c5 harrownodes nil 20 nil <-| %D c3 c4 <= c4 c5 <= %D d0 d2 |-> .plabel= a a|-b %D d0 d3 <= d2 d4 => d2 d5 => %D d0 d4 varrownodes nil 17 nil |-> %D d3 d4 `-> d4 d5 |-> %D )) %D enddiagram %D $$\diag{1053-sumI}$$ \newpage % -------------------- % «ccompc-sumE+» (to ".ccompc-sumE+") % (s "Interpreting $ƯE^+$ in a CCompC" "ccompc-sumE+") \myslide {Interpreting $ƯE^+$ in a CCompC} {ccompc-sumE+} (Jacobs, 10.5.3) %D diagram 1053-strongsumI-dnc %D 2Dx 100 +50 +50 +50 +50 %D 2Dx +50 +50 +50 +50 %D 2D %D 2D 100 a0 |----------> a2 a3 a4 %D 2D /\ // || // || // || %D 2D || // || // || // || %D 2D || \/ \/ \/ \/ \/ \/ %D 2D +25 b0 |--> b1 |--> b2 |--> b3 |--> b4 %D 2D %D 2D +40 c0 |----------> c2 c3 %D 2D /\ // || // || %D 2D || // || // || %D 2D || \/ \/ \/ \/ %D 2D +25 d0 |--> d1 |--> d2 |--> d3 %D 2D %D (( a0 .tex= \s[a,b,c|*] a2 .tex= \s[a,b,c|d] a3 .tex= \s[a,b|c] a4 .tex= \s[a|b] %D b0 .tex= a,b,c b1 .tex= a,b,c,d b2 .tex= a,b,c b3 .tex= a,b b4 .tex= a %D c0 .tex= \s[a,(b,c)|*] c2 .tex= \s[a,(b,c)|d] c3 .tex= \s[a|b,c] %D d0 .tex= a,(b,c) d1 .tex= a,(b,c),d d2 .tex= a,(b,c) d3 .tex= a %D a0 a2 |-> .plabel= a a,b,c|-d %D a0 b0 <= a2 b1 => a2 b2 => a3 b2 => a3 b3 => a4 b3 => a4 b4 => %D b0 b1 |-> b1 b2 |-> b2 b3 |-> b3 b4 |-> %D c0 c2 |-> .plabel= a a,(b,c)|-d %D c0 d0 <= c2 d1 => c2 d2 => c3 d2 => c3 d3 => %D d0 d1 |-> d1 d2 |-> d2 d3 |-> %D b0 d0 <-> b1 d1 <-> b2 d2 <-> b3 d3 |-> %D a0 c0 <= sl_ a0 c0 |-> sl^ .PLABEL= ^(0.72) {ñ} %D a2 c2 <= sl_ a2 c2 |-> sl^ .PLABEL= ^(0.72) {ñ} %D a3 c3 => sl_ a3 c3 |-> sl^ .PLABEL= ^(0.72) {¯{co}ñ} %D b0 relplace 13 7 \pbsymbol{7} %D b1 relplace 13 7 \pbsymbol{7} %D b2 relplace 13 7 \pbsymbol{7} %D )) %D enddiagram %D $$\diag{1053-strongsumI-dnc}$$ %D diagram 1053-strongsumI %D 2Dx 100 +50 +50 +50 +50 %D 2Dx +50 +50 +50 +50 %D 2D %D 2D 100 a0 |----------> a2 a3 a4 %D 2D /\ // || // || // || %D 2D || // || // || // || %D 2D || \/ \/ \/ \/ \/ \/ %D 2D +25 b0 |--> b1 |--> b2 |--> b3 |--> b4 %D 2D %D 2D +40 c0 |----------> c2 c3 %D 2D /\ // || // || %D 2D || // || // || %D 2D || \/ \/ \/ \/ %D 2D +25 d0 |--> d1 |--> d2 |--> d3 %D 2D %D (( a0 .tex= 1\{Y\} a2 .tex= \kk^*Z a3 .tex= Y a4 .tex= X %D b0 .tex= \{Y\} b1 .tex= \{\kk^*Z\} b2 .tex= \{Y\} b3 .tex= \{X\} b4 .tex= I %D c0 .tex= 1\{Æ_XY\} c2 .tex= Z c3 .tex= Æ_XY %D d0 .tex= \{Æ_XY\} d1 .tex= \{Z\} d2 .tex= \{Æ_XY\} d3 .tex= I %D a0 a2 -> .plabel= a h %D a0 b0 <-| a2 b1 |-> a2 b2 |-> a3 b2 |-> a3 b3 |-> a4 b3 |-> a4 b4 |-> %D b0 b1 -> .PLABEL= ^(0.6) h^\vee %D b1 b2 -> .plabel= a _{\kk^*Z} %D b2 b3 -> .plabel= a _Y %D b3 b4 -> .plabel= a _X %D c0 c2 -> .plabel= a (\kk^{-1};\overline{h})^\wedge %D c0 d0 <-| c2 d1 |-> c2 d2 |-> c3 d2 |-> c3 d3 |-> %D d0 d1 -> .plabel= b \kk^{-1};\overline{h} %D d1 d2 -> .plabel= b _Z %D d2 d3 -> .plabel= b _{\{Æ_XY\}} %D b0 d0 <-> .plabel= a \kk %D b1 d1 <-> %D b2 d2 <-> .plabel= a \kk %D b3 d3 -> .plabel= a _X %D a0 c0 <-| sl_ a0 c0 -> sl^ .PLABEL= ^(0.72) 1\kk %D a2 c2 <-| sl_ a2 c2 -> sl^ .PLABEL= ^(0.72) {ñ} %D a3 c3 |-> sl_ a3 c3 -> sl^ .PLABEL= ^(0.72) {¯{co}ñ} %D b0 relplace 13 7 \pbsymbol{7} %D b1 relplace 13 7 \pbsymbol{7} %D b2 relplace 13 7 \pbsymbol{7} %D )) %D enddiagram %D $$\defÆ{\coprod} \diag{1053-strongsumI} $$ \newpage % -------------------- % «dtt-unpack-2» (to ".dtt-unpack-2") % (s "The ``unpack'' rule (2)" "dtt-unpack-2") \myslide {The ``unpack'' rule (2)} {dtt-unpack-2} In 10.1.2 Jacobs defines (for $P:×$): $\begin{array}{rcl} P & \eqdef & \unpackasin{P}{x,y}{x} \\ 'P & \eqdef & \unpackasin{P}{x,y}{y} \\ \end{array} $ i.e., $\begin{array}{rcl} P & := & x[x,y:=P] \\ 'P & := & y[x,y:=P] \\ \end{array} $ \bsk \newpage % -------------------- % «rules-dtt» (to ".rules-dtt") % (s "Rules for DTT" "rules-dtt") \myslide {Rules for DTT} {rules-dtt} %%* %% (eedn4a-bounded) {\ttchars \footnotesize \begin{verbatim} a|-b a|-B=B' Conversion: ------------- a|-b' a|-B Projection: ------ a,b|-b a,b,b',c|-D a,b,b',c|-d Contraction: ----------- ----------- a,b,c|-D a,b,c|-d a|-b a,b,c|-D a|-b a,b,c|-d Substitution: -------------- -------------- a,c|-D a,c|-d a|-B a|-C a|-B a|-c Weakening: ---------- ---------- a,b|-C a,b|-c a,b,c,d|-E a,b,c,d|-e Exchange: ---------- ---------- a,c,b,d|-E a,c,b,d|-e Type: Intro: Elim: a|-*' Singleton: --- --- ------- |-1 |-* a|-*'=* a,b|-C a,b|-c a|-b a|-b|->c DepProds: --------- -------- -------------- a|-åb:B.C a|-b|->c a|-c a,b|-C a|-B a,b|-C DepSums: --------- ------------ (see below) a|-Æb:B.C a,b,c|-(b,c) a|-B a|-B Equality: --------------- ---------- (see below) a,b,b'|-W[b=b'] a,b|-(b=b) Elimination rules: DepSums: Equality: a|-D a,b,c|-d a,b,b',c|-D a,b,c|-d Weak: -------------- --------------------- a,(b,c)|-d a,b,b',(b=b'),c|-d a,(b,c)|-D a,b,c|-d a,b,b',(b=b')|-C a,b|-c Strong: -------------------- ------------------------ a,(b,c)|-d a,b,b',(b=b')|-c a|-b,c a|-b,c a|-(b=b') a|-(b=b)' AltStrong: ------ ------ --------- --------------- a|-b a|-c a|-b=b' a|-(b=b)'=(b=b) \end{verbatim} } %* \end{document} (defun s (title tag) (insert (ee-template `(("title" ,title) ("tag" ,tag) ("line" ,(ee-no-trailing-nl (ee-no-properties (ee-delete-and-extract-line 1))))) "\ % «.{tag}» (to \"{tag}\") \\newpage % -------------------- % «{tag}» (to \".{tag}\") {line} \\myslide {{title}} {{tag}} "))) % «elisp» (to ".elisp") % (s "elisp" "elisp") % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: