Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008dclosed.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008dclosed.tex && latex 2008dclosed.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008dclosed.tex && pdflatex 2008dclosed.tex")) % (eev "cd ~/LATEX/ && Scp 2008dclosed.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008dclosed.dvi") % (find-pspage "~/LATEX/2008dclosed.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008dclosed.ps 2008dclosed.dvi") % (find-pspage "~/LATEX/2008dclosed.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2008dclosed.pdf" (ee-twupfile "LATEX/2008dclosed.pdf") 'over) % (ee-cp "~/LATEX/2008dclosed.pdf" (ee-twusfile "LATEX/2008dclosed.pdf") 'over) % «.why-slides» (to "why-slides") % «.mod-induces-dclosed» (to "mod-induces-dclosed") % «.mod-induces-dclosed-2» (to "mod-induces-dclosed-2") % «.dncing-dense-closed» (to "dncing-dense-closed") % «.dncing-dense-closed-2» (to "dncing-dense-closed-2") % «.etc» (to "etc") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008dclosed.dnt %* % (eedn4-51-bounded) Notes about factorization systems - esp.\ the dense/closed factorizations for monics. \bsk Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Why slides} {2} \tocline {A modality induces a dense/close factorization} {3} \tocline {A modality induces a dense/close factorization (2)} {4} \tocline {Downcasing dense and closed maps} {5} \tocline {Downcasing dense and closed maps (2)} {6} \tocline {etc} {7} %:*>->*\monicto * %:*<-<*\monicot * %L forths[">.>"] = function () pusharrow(" >.>") end %L forths["<.<"] = function () pusharrow(" <.<") end %L forths["`.>"] = function () pusharrow("^{ (}.>") end %L forths["|-"] = function () pusharrow("|-") end %L forths["-|"] = function () pusharrow("-|") end \def\j{¦j} \def\sm#1{\begin{smallmatrix}#1\end{smallmatrix}} \newpage % -------------------- % «why-slides» (to ".why-slides") % (s "Why slides" "why-slides") \myslide {Why slides} {why-slides} % (find-es "tex" "smash") \def\mysmash#1{{\setbox0\hbox{#1}% \wd0=0pt\ht0=0pt\dp0=0pt% \box0}} \def\tl#1{\begin{tabular}{l}#1\end{tabular}} %D diagram ?? %D 2Dx 100 +60 %D 2D 100 \boxrps \boxcts %D 2D %D 2D +40 \boxssl \boxlpp %D 2D %D 2D +40 \boxips \boxstu %D 2D %D (( \boxrps \boxcts %D \boxssl \boxlpp %D \boxips \boxstu %D @ 0 @ 1 -> %D @ 0 @ 3 -> @ 2 @ 1 -> %D @ 2 @ 3 -> %D @ 2 @ 5 -> @ 4 @ 3 -> %D @ 4 @ 5 -> %D )) %D enddiagram %D $$ \def\boxcts{\tl{Category \\ Theorists}} \def\boxlpp{\tl{local alge\mysmash{braic} \\ geometers / \\ logicians / \\ CS people}} \def\boxstu{\tl{students}} \def\boxrps{\tl{``real'' \\ papers}} \def\boxssl{\tl{seminars, \\ slides}} \def\boxips{\tl{introductory \\ papers}} \diag{??} $$ moral proofs, intuition, archetypal examples new language, with translation (not as formal as C/H) private devices lifting and generalization Several kinds of brownie points (cite Simmons) Translation of notations in several articles A new language, vs.\ a new truth. Draw the mnemonics for Sometimes I think that this may look like an autistic exercise - too much energy spent on just rephrasing two well-known papers into a new notation. {\sl How does one work the standard, ``algebraic'' notation?} I've spent Even after working with it for years, the standard, ``algebraic'' notation, However, the downcased notation reflects exactly how I think about certain problems, and I still find - even after many years - the usual (I'll call it ``standard'') algebraic notation hard to follow. This is probably because I don't know the tricks. What are the mnemonics/skeletons? Social effects: few people around me know category theory some people to whom I've shown this have found it very nice (maybe they were just being polite?) there's a gap between not knowing and knowing CT \bsk Truth vs. translation Making things obvious, tautological; zooming into proofs I will try to describe it in linguistical terms. Native speaker \msk A new language, vs.\ a new truth. Only one real ``theorem'' --- about filter-powers. It needs sheaves. The big metatheorems ahead involve parametricity (and polymorphism and hyperdoctrines). Another possibility: Property-Like Structures. \msk I do not want the brownie points now [Simmons]. Sheaves: I learned a lot from Simmons course notes. Actually there are several ways to get brownie points - seminars, talks in conferences, introductory papers, I'm looking for coauthors (and energy) Translate the notation in several important books \msk Barr: *-Autonomous Cats Bierman/dePaiva: S4 Cheng: Mathematics, Morally Corfield: [Towards a Philosophy of Real Mathematics] Freyd: Algebraic categories Jacobs: Tijolão Jacobs: Comprehension Cats Joyal/Street: On the Geometry of Tensor Calculus Kelly/Lack: On Property-Like Structures Kock: A simple axiomatics for differentiation Lawvere (easy book): external/internal view MacLane: CWM Pitts: Polymorphism is Set-Theoretic, constructively Reyes/Zolfaghari: Topos-theoretic approaches to modality Reynolds: Polymorphism is notCategorical Semantics for Higher Order Polymorphic Lambda Calculus Set-Theoretic Seely: Hyperdoctrines Seely: Categorical Semantics for Higher Order Polymorphic Lambda Calculus Seely: Differential Cats Wadler: The Girard/Reynods iso Wadler: Theorems for Free \newpage % -------------------- % «mod-induces-dclosed» (to ".mod-induces-dclosed") % (s "A modality induces a dense/close factorization" "mod-induces-dclosed") \myslide {A modality induces a dense/close factorization} {mod-induces-dclosed} Any map $j:Ø \to Ø$ induces ``the right half'' of a factorization for the monics of a topos, in a way that is stable by pullbacks: any diagram $A \to B \monicot P$ induces the bigger diagram below, %D diagram mod-ind-fact %D 2Dx 100 +20 +20 +20 +40 +20 +20 %D 2D 100 AP BP 1 %D 2D %D 2D +30 AP* BP* 1* %D 2D %D 2D +30 A B Ø Ø* %D 2D %D (( AP .tex= A×_BP BP .tex= P %D AP* .tex= A×_BP^* BP* .tex= P^* 1* .tex= 1 %D Ø* .tex= Ø %D BP* .tex= \j_BP %D AP* .tex= \sm{\j_A(A×_BP)\,\cong\\A×_B(\j_BP)} %D )) %D (( AP BP -> BP 1 -> %D AP AP* >.> AP* A >-> AP A >-> %D BP BP* >.> BP* B >-> BP B >-> %D AP* BP* -> BP* 1* -> %D A B -> .plabel= b f B Ø -> .plabel= b p Ø Ø* -> .plabel= b j %D 1 Ø -> 1* Ø* -> %D AP _| BP _| %D AP* relplace 15 6 \pbsymbol{7} %D BP* relplace 11 5 \pbsymbol{7} %D )) %D enddiagram %D $$\diag{mod-ind-fact}$$ where the `$\j_BP$'s are constructed as this: %: P>->B %: ------ %: p:B->Ø j:Ø->Ø %: -------------- %: (p;j):B->Ø %: ---------- %: \j_BP>->B %: %: ^jBP-construction %: $$\ded{jBP-construction}$$ $\j_A(A×_BP) \monicto A$ is classified by $(f;p);j$ and $A×_B(\j_BP) \monicto A$ is classified by $f;(p;j)$, so they are isomorphic. \msk If $j$ is ``inflationary'' then the dotted monics above exist. This becomes easier to understand if we use a more logical language: % %D diagram P-to-jBP %D 2Dx 100 +35 +30 +45 %D 2D 100 A0 A1 a0 a1 %D 2D %D 2D +30 A2 A3 a2 a3 %D 2D %D (( A0 .tex= \j_BP×_BP A1 .tex= P %D A2 .tex= \j_BP A3 .tex= B %D A0 A1 <-> %D A0 A2 >-> A1 A2 >.> A1 A3 >-> %D A2 A3 >-> %D )) %D (( a0 .tex= \sst{b}{P^*{∧}P} a1 .tex= \sst{b}{P} %D a2 .tex= \sst{b}{P^*} a3 .tex= B %D a0 a1 <-> %D a0 a2 >-> a1 a2 >.> a1 a3 >-> %D a2 a3 >-> %D )) %D enddiagram %: %: P|-P^* %: ========== %: P∧P|-P^*∧P %: ========== %: P|-P^*∧P %: %: ^P-to-jBP %: $$\cdiag{P-to-jBP} \qquad \cded{P-to-jBP}$$ \msk By one of the standard lemmas on glueing pullbacks, the square with the dotted monics in the top diagram is a pullback. \newpage % -------------------- % «mod-induces-dclosed-2» (to ".mod-induces-dclosed-2") % (s "A modality induces a dense/close factorization (2)" "mod-induces-dclosed-2") \myslide {A modality induces a dense/close factorization (2)} {mod-induces-dclosed-2} Any inflationary map $j:Ø \to Ø$ induces a ``factorization'' for the monics of a topos, in a way that is stable by pullbacks... any diagram $A \to B \monicot P$ induces the diagram below, %D diagram mod-ind-fact-2 %D 2Dx 100 +20 +20 +20 +40 +20 +20 %D 2D 100 AP BP 1 %D 2D %D 2D +30 AP* BP* 1* %D 2D %D 2D +30 A B Ø Ø* %D 2D %D (( AP .tex= A×_BP BP .tex= P %D AP* .tex= A×_BP^* BP* .tex= P^* 1* .tex= 1 %D Ø* .tex= Ø %D BP* .tex= \j_BP %D AP* .tex= \sm{\j_A(A×_BP)\,\cong\\A×_B(\j_BP)} %D )) %D (( AP BP -> BP 1 -> %D AP AP* >-> AP* A >-> %D BP BP* >-> BP* B >-> %D AP* BP* -> BP* 1* -> %D A B -> .plabel= b f B Ø -> .plabel= b p Ø Ø* -> .plabel= b j %D 1 Ø -> .plabel= m \hbox{\phantom{p}} 1* Ø* -> %D AP _| BP _| %D AP* relplace 14 7 \pbsymbol{7} %D BP* relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D $$\diag{mod-ind-fact-2}$$ In the more logical notation, this becomes: %D diagram mod-ind-fact-3 %D 2Dx 100 +20 +50 +40 +20 +20 %D 2D 100 AP BP 1 %D 2D %D 2D +30 AP* BP* 1* %D 2D %D 2D +30 A B Ø Ø* %D 2D %D (( AP .tex= \sst{a}{P(fa)} BP .tex= \sst{b}{P(b)} %D 1* .tex= 1 %D Ø* .tex= Ø %D BP* .tex= \sst{a}{P^*(b)} %D AP* .tex= \sm{\sst{a}{(P¢f)^*(a)}\\\cong\,\sst{a}{P^*(fa)}} %D )) %D (( AP BP -> BP 1 -> %D AP AP* >-> AP* A >-> %D BP BP* >-> BP* B >-> %D AP* BP* -> BP* 1* -> %D A B -> .plabel= b f B Ø -> .plabel= b p Ø Ø* -> .plabel= b j %D 1 Ø -> .plabel= m \hbox{\phantom{p}} 1* Ø* -> %D AP relplace 8 8 \pbsymbol{7} %D BP relplace 8 8 \pbsymbol{7} %D AP* relplace 14 10 \pbsymbol{7} %D BP* relplace 9 8 \pbsymbol{7} %D )) %D enddiagram %D $$\diag{mod-ind-fact-3}$$ We will usually omit the parameter - as in `$P(fa)$' $\mto$ `$P$' - and the `1's and `$Ø$'s when we downcase this. The case where $A \to B$ is a monic ($\equiv \; b|_Q \mto b$) is especially interesting - then the left column is formed by adding `$∧Q$'s. %D diagram mod-ind-fact-4 %D 2Dx 100 +35 +40 +35 %D 2D 100 a0 a1 b0 b1 %D 2D %D 2D +30 a2 a3 b2 b3 %D 2D %D 2D +30 a4 a5 b4 b5 %D 2D %D (( a0 .tex= a|_P a1 .tex= b|_P %D a2 .tex= a|_{P^*} a3 .tex= b|_{P^*} %D a4 .tex= a a5 .tex= b %D a0 a1 `-> %D a0 a2 `-> a1 a3 `-> %D a2 a3 `-> %D a2 a4 `-> a3 a5 `-> %D a4 a5 `-> %D a0 _| a2 _| %D )) %D (( b0 .tex= b|_{P∧Q} b1 .tex= b|_P %D b2 .tex= b|_{P^*{∧}Q} b3 .tex= b|_{P^*} %D b4 .tex= b|_{Q} b5 .tex= b %D b0 b1 `-> %D b0 b2 `-> b1 b3 `-> %D b2 b3 `-> %D b2 b4 `-> b3 b5 `-> %D b4 b5 `-> %D b0 _| b2 _| %D )) %D enddiagram %D $$\diag{mod-ind-fact-4}$$ {\bf Crucial fact:} every dense map is of the form $b|_{P∧Q} \ito b|_{P^*{∧}Q}$, and every closed map is of the form $b|_{P^*{∧}Q} \ito b|_Q$! \newpage % -------------------- % «dncing-dense-closed» (to ".dncing-dense-closed") % (s "Downcasing dense and closed maps" "dncing-dense-closed") \myslide {Downcasing dense and closed maps} {dncing-dense-closed} % (find-LATEX "2008hyp.tex" "adj-functors-as-seq-rules") %D diagram foo %D 2Dx 100 +60 %D 2D 100 P∧Q R %D 2D - |b> - %D 2D | | %D 2D v <#| v %D 2D +30 P^*∧Q S %D 2D - <b| - %D 2D | | %D 2D v |#> v %D 2D +30 Q T %D 2D %D (( P∧Q R P^*∧Q S Q T %D @ 0 @ 2 |- %D @ 1 @ 3 |- %D @ 2 @ 4 |- %D @ 3 @ 5 |- %D @ 0 @ 3 harrownodes nil 20 nil -> sl^ .plabel= a R:=P∧Q,\;S:=P^*∧Q %D @ 0 @ 3 harrownodes nil 20 nil <- sl_ .plabel= b P':=R,\;Q':=S %D @ 2 @ 5 harrownodes nil 20 nil -> sl^ .plabel= a S:=P^*∧Q,\;T:=Q %D @ 2 @ 5 harrownodes nil 20 nil <- sl_ .plabel= b P':=S,\;Q':=T %D )) %D enddiagram $$\diag{foo}$$ \widemtos The composites $(P∧Q \vdash P^*∧Q) \mto (R \vdash S) \mto (P'∧Q' \vdash P'^*∧Q')$ and $(P^*∧Q \vdash Q) \mto (S \vdash T) \mto (P'^*∧Q' \vdash Q')$ are identity maps: \ssk in the first one, $(P'∧Q' \vdash P'^*∧Q') =$ $(R∧S \vdash R^*∧S) =$ $((P∧Q)∧(P^*∧Q) \vdash (P∧Q)^*∧(P^*∧Q)) =$ $(P∧Q \vdash P^*∧Q)$; \ssk in the second one, $(P'^*∧Q' \vdash Q') =$ $(S^*∧T \vdash T) =$ $((P^*∧Q)^*∧Q \vdash Q) =$ $(P^*∧Q \vdash Q)$. \newpage % -------------------- % «dncing-dense-closed-2» (to ".dncing-dense-closed-2") % (s "Downcasing dense and closed maps (2)" "dncing-dense-closed-2") \myslide {Downcasing dense and closed maps (2)} {dncing-dense-closed-2} %D diagram foo2 %D 2Dx 100 +60 %D 2D 100 P∧Q R %D 2D - |b> - %D 2D | | %D 2D v <#| v %D 2D +30 P^*∧Q S %D 2D - <b| - %D 2D | | %D 2D v |#> v %D 2D +30 Q T %D 2D %D (( P∧Q R P^*∧Q S Q T %D @ 0 @ 2 |- %D @ 1 @ 3 |- %D @ 2 @ 4 |- %D @ 3 @ 5 |- %D @ 0 @ 3 harrownodes nil 20 nil -> sl^ .plabel= a R':=P∧Q,\;S':=P^*∧Q %D @ 0 @ 3 harrownodes nil 20 nil <- sl_ .plabel= b P:=R,\;Q:=S %D @ 2 @ 5 harrownodes nil 20 nil -> sl^ .plabel= a S':=P^*∧Q,\;T':=Q %D @ 2 @ 5 harrownodes nil 20 nil <- sl_ .plabel= b P:=S,\;Q:=T %D )) %D enddiagram $$\diag{foo2}$$ The other two composites, $(R \vdash S) \mto (P∧Q \vdash P^*∧Q) \mto (R' \vdash S')$ and $(S \vdash T) \mto (P^*∧Q \vdash Q) \mto (S' \vdash T')$, should be identities iff $R \vdash S$ is dense and $S \vdash T$ is closed... \ssk Let's check. In the first one, $(R' \vdash S') =$ $(P∧Q \vdash P^*∧Q) =$ $(R∧S \vdash R^*∧S) =$ $(R \vdash R^*∧S)$, \ssk and in the second one, $(S' \vdash T') =$ $(P^*∧Q \vdash Q) =$ $(S^*∧T \vdash T)$; \ssk so what we need to prove is: $R \vdash S$ is dense iff $S = R^*∧S$, $S \vdash T$ is closed iff $S = S^*∧T$. As $R^*∧S \vdash S$ and $S^*∧T \vdash T$, we just need to prove $R \vdash S$ is dense iff $S \vdash R^*$, $S \vdash T$ is closed iff $S \vdash S^*∧T$. \newpage % -------------------- % «etc» (to ".etc") % (s "etc" "etc") \myslide {etc} {etc} %:*P**P^** %:*Q**Q^** \def\arr#1#2{\begin{array}{#1}#2\end{array}} %L -- (find-dn4file "dednat4.lua") %L forths[".dp="] = function () %L ds[1].placement = getword() %L ds[1].label = "(d)" %L end %L forths[".cp="] = function () %L ds[1].placement = getword() %L ds[1].label = "(c)" %L end %D diagram perm1 %D 2Dx 100 +35 +35 +40 +50 +45 %D 2D 100 a|_{P} a|_{P*} a A×_BC A×_Bj_BC A %D 2D %D 2D +30 b|_{P} b|_{P*} b C j_BC B %D 2D %D (( a|_{P} a|_{P*} a %D b|_{P} b|_{P*} b %D @ 0 @ 1 `-> .dp= a @ 1 @ 2 `-> .cp= a %D @ 3 @ 4 `-> .dp= a @ 4 @ 5 `-> .cp= a %D @ 0 @ 3 |-> @ 1 @ 4 |-> @ 2 @ 5 |-> %D @ 0 _| @ 1 _| %D )) %D (( A×_BC A×_Bj_BC A %D C j_BC B %D A×_Bj_BC .tex= \arr{c}{j_A{A×_BC}\\{\cong}A×_Bj_BC} %D @ 0 @ 1 >-> .dp= a @ 1 @ 2 >-> .cp= a %D @ 3 @ 4 >-> .dp= a @ 4 @ 5 >-> .cp= a %D @ 0 @ 3 -> @ 1 @ 4 -> @ 2 @ 5 -> %D @ 0 _| @ 1 _| %D )) %D enddiagram %D $$\diag{perm1}$$ %D diagram permanence2 %D 2Dx 100 +40 +35 +35 +45 +35 %D 2D 100 a|_{P∧Q} a|_{P*∧Q} a|_{Q} A×_BC j_C(A×_BC) C %D 2D %D 2D +30 a|_{P∧Q*} a|_{P*∧Q*} a|_{Q*} j_B(A×_BC) M j_AC %D 2D %D 2D +30 a|_{P} a|_{P*} a B j_AB A %D 2D %D (( a|_{P∧Q} a|_{P*∧Q} a|_{Q} %D a|_{P∧Q*} a|_{P*∧Q*} a|_{Q*} %D a|_{P} a|_{P*} a %D @ 0 @ 1 `-> .dp= a @ 1 @ 2 `-> .cp= a %D @ 0 @ 3 `-> .dp= l @ 1 @ 4 `-> .dp= l @ 2 @ 5 `-> .dp= l %D @ 3 @ 4 `-> .dp= a @ 4 @ 5 `-> .cp= a %D @ 3 @ 6 `-> .cp= l @ 4 @ 7 `-> .cp= l @ 5 @ 8 `-> .cp= l %D @ 6 @ 7 `-> .dp= a @ 7 @ 8 `-> .cp= a %D @ 0 _| @ 1 _| @ 3 _| @ 4 _| %D )) %D (( A×_BC j_C(A×_BC) C %D j_B(A×_BC) M j_AC %D B j_AB A %D @ 0 @ 1 >-> .dp= a @ 1 @ 2 >-> .cp= a %D @ 0 @ 3 >-> .dp= l @ 1 @ 4 >-> .dp= l @ 2 @ 5 >-> .dp= l %D @ 3 @ 4 >-> .dp= a @ 4 @ 5 >-> .cp= a %D @ 3 @ 6 >-> .cp= l @ 4 @ 7 >-> .cp= l @ 5 @ 8 >-> .cp= l %D @ 6 @ 7 >-> .dp= a @ 7 @ 8 >-> .cp= a %D @ 0 _| @ 1 _| @ 3 _| @ 4 _| %D )) %D enddiagram %D $$\diag{permanence2}$$ %D diagram permanence3 %D 2Dx 100 +35 +35 +35 +35 +35 %D 2D 100 a|_{P∧Q} C %D 2D %D 2D +30 a|_{P∧Q*} a|_{P*∧Q*} j_BC j_AC %D 2D %D 2D +30 a|_{P} a|_{P*} a B j_AB A %D 2D %D (( a|_{P∧Q} %D a|_{P∧Q*} a|_{P*∧Q*} %D a|_{P} a|_{P*} a %D @ 0 @ 1 `-> .dp= l @ 0 @ 2 `-> .dp= r %D @ 1 @ 2 `-> .dp= b %D @ 1 @ 3 `-> .cp= l @ 2 @ 4 `-> .cp= l @ 2 @ 5 `-> .cp= r %D @ 3 @ 4 `-> .dp= b @ 4 @ 5 `-> .cp= b %D )) %D (( C %D j_BC j_AC %D B j_AB A %D @ 0 @ 1 >-> .dp= l @ 0 @ 2 >-> .dp= r %D @ 1 @ 2 >-> .dp= b %D @ 1 @ 3 >-> .cp= l @ 2 @ 4 >-> .cp= l @ 2 @ 5 >-> .cp= r %D @ 3 @ 4 >-> .dp= b @ 4 @ 5 >-> .cp= b %D )) %D enddiagram %D $$\diag{permanence3}$$ %D diagram permanence4 %D 2Dx 100 +35 +35 +25 +0 +35 +35 +25 %D 2D 100 a|_{P} a|_{R} B D %D 2D %D 2D +30 a|_{Q} a|_{Q∨R} C C∨D %D 2D %D 2D +25 a|_{P*} a j_AB A %D 2D %D (( a|_{P} a|_{R} %D a|_{Q} a|_{Q∨R} %D a|_{P*} a %D @ 0 @ 1 `-> .dp= a %D @ 0 @ 2 `-> .dp= l @ 1 @ 3 `-> .dp= l @ 1 @ 4 `-> .dp= r %D @ 2 @ 3 `-> .dp= a %D @ 2 @ 4 `-> .dp= b @ 3 @ 4 `-> .dp= m @ 4 @ 5 `-> .cp= a %D )) %D (( B D %D C C∨D %D j_AB A %D @ 0 @ 1 >-> .dp= a %D @ 0 @ 2 >-> .dp= l @ 1 @ 3 >-> .dp= l @ 1 @ 4 >-> .dp= r %D @ 2 @ 3 >-> .dp= a %D @ 2 @ 4 >-> .dp= b @ 3 @ 4 >-> .dp= m @ 4 @ 5 >-> .cp= a %D )) %D enddiagram %D $$\diag{permanence4}$$ \def\calU{{\mathcal{U}}} \def\calV{{\mathcal{V}}} \def\calW{{\mathcal{W}}} An open set $U$ is above and to the right of a point $\cc$ when $\cc Ý U$. An open set $U$ is straight above a point $\aa$ when $\aa$ generates $U$. A cover $\calU$ is above and to right of $W$ when $\bigcup \calU = W$. A cover $\calU$ is straight above $U$ when $\bigcup \calU = U$. % $\sst{a}{P(a)}$ %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: