Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008filterp-slides.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008filterp-slides.tex && latex 2008filterp-slides.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008filterp-slides.tex && pdflatex 2008filterp-slides.tex")) % (eev "cd ~/LATEX/ && Scp 2008filterp-slides.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008filterp-slides.dvi") % (find-pspage "~/LATEX/2008filterp-slides.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008filterp-slides.ps 2008filterp-slides.dvi") % (find-pspage "~/LATEX/2008filterp-slides.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2008filterp-slides.pdf" (ee-twupfile "LATEX/2008filterp-slides.pdf") 'over) % (ee-cp "~/LATEX/2008filterp-slides.pdf" (ee-twusfile "LATEX/2008filterp-slides.pdf") 'over) % «.nsa-main-idea» (to "nsa-main-idea") % «.nsa-2» (to "nsa-2") % «.filters-1» (to "filters-1") % «.proper-bsm-ultra» (to "proper-bsm-ultra") % «.some-sentences» (to "some-sentences") % «.cores-and-principal» (to "cores-and-principal") % «.ultras-are-evil» (to "ultras-are-evil") % «.diagram» (to "diagram") % «.big-domains» (to "big-domains") % «.filters-are-enough» (to "filters-are-enough") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008filterp-slides.dnt %* % (eedn4-51-bounded) Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Non-Standard Analysis} {2} \tocline {Non-Standard Analysis (2)} {3} \tocline {Filters} {4} \tocline {Proper filters, big/small/medium sets, and ultrafilters} {5} \tocline {Cores and principal ultrafilters} {6} \tocline {Interpreting some sentences} {7} \tocline {Ultrafilters are evil} {8} \tocline {Partial functions with big domains} {9} \tocline {Diagram} {10} \tocline {Filters are enough} {11} % -------------------- % defs \def\SetI{\Set^\I} \def\SetN{\Set^\N} \def\SetIF{\Set^\I/\F} \def\SetIU{\Set^\I/\U} \def\SetNN{\Set^\N/\calN} \def\SetNU{\Set^\N/\U} \def\simF{\sim_\F} \def\simN{\sim_\N} \def\simU{\sim_\U} \def\ph{\leavevmode\phantom} \def\Def:{{\bf Def:}} \def\ind{\ph{\Def:} } \def\Opens{\mathcal{O}} \def\calN{{\mathcal{N}}} \def\calM{{\mathcal{M}}} \def\calR{{\mathcal{R}}} \def\calV{{\mathcal{V}}} \def\calX{{\mathcal{X}}} \def\calY{{\mathcal{Y}}} \def\calZ{{\mathcal{Z}}} \def\Seti#1{\Set^{(-#1,#1)}} \def\Setf#1{\Set^{(-\frac{1}{#1},\frac{1}{#1})}} \def\simnat{\overset{î}{\sim}} \def\iff{\Leftrightarrow} \def\V{{\mathcal{V}}} \def\X{{\mathcal{X}}} \def\Y{{\mathcal{Y}}} \def\mathbblow{\mathbbold} \def\XX{(X,\X)} \def\YY{(Y,\Y)} \def\XXz{(X,\X_{x_0})} \def\YYz{(Y,\Y_{y_0})} \def\IF{(\I,\F)} \def\IU{(\I,\U)} \def\NN{(\N,\calN)} \def\RRz{(\R,\calR_0)} \newpage % -------------------- % «nsa-main-idea» (to ".nsa-main-idea") % (s "Non-Standard Analysis" "nsa-main-idea") \myslide {Non-Standard Analysis} {nsa-main-idea} The main idea: $\Set$ is the ``standard universe'', $\SetN$ is the ``universe of ($\N$-)sequences'', $\SetNN$ is the ``universe of $\N$-sequences modulo $\sim_\calN$'', $\SetNU$ is the ``universe of $\N$-sequences modulo $\sim_\U$'', where $\sim_\calN$ is the equivalence relation induced by the filter $\calN$, and $\sim_\U$ is the equivalence relation induced by the ultrafilter $\U$, where $\sim_\U$ has bigger classes than $\sim_\N$. %D diagram unnamed-arrows-N %D 2Dx 100 +30 +30 %D 2D 100 \Set ---> \Set^\N --> \SetNN %D 2D \ : %D 2D \ : %D 2D v v %D 2D +30 \SetNU %D 2D %D (( \Set \Set^\N \SetNN %D \SetNU %D @ 0 @ 1 -> @ 1 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 .> %D )) %D enddiagram $$\diag{unnamed-arrows-N}$$ $\Set \to \SetN$ takes 4 to $(4,4,4,4,\ldots)$, $\SetN \to \SetNN$ takes $(1,\frac12,\frac13,\frac14,\ldots)$ to $(1,\frac12,\frac13,\frac14,\ldots)/\calN$, and equivalence classes of sequences tending to zero will behave as infinitesimals. \msk $\SetNU$ is a ``non-standard universe''. $\Set^\N$ and $\SetNU$ are quite similar --- they both obey the same first-order formulas (!!!) (with bounded quantifiers and all constants standard) and we have ``transfer theorems'' that let us ``transfer truths'' from $\Set$ to $\SetNU$ and back. And $\SetNU$ has infinitesimals!!! \newpage % -------------------- % «nsa-2» (to ".nsa-2") % (s "Non-Standard Analysis (2)" "nsa-2") \myslide {Non-Standard Analysis (2)} {nsa-2} The general case: $\Set$ is the ``standard universe'', $\SetI$ is the ``universe of ($\I$-)sequences'', $\SetIF$ is the ``universe of $\I$-sequences modulo $\sim_\F$'', $\SetIU$ is the ``universe of $\I$-sequences modulo $\sim_\U$'', where $\sim_\F$ is the equivalence relation induced by the filter $\F$, and $\sim_\U$ is the equivalence relation induced by the ultrafilter $\U$, where $\sim_\U$ has bigger classes than $\sim_\F$. %D diagram unnamed-arrows %D 2Dx 100 +30 +30 %D 2D 100 \Set ---> \Set^\I --> \Set^\I/\F %D 2D \ : %D 2D \ : %D 2D v v %D 2D +30 \Set^\I/\U %D 2D %D (( \Set \Set^\I \Set^\I/\F %D \Set^\I/\U %D @ 0 @ 1 -> @ 1 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 .> %D )) %D enddiagram $$\diag{unnamed-arrows}$$ $\F$ is a filter on the index set $\I$, $\U$ is an ultrafilter on $\I$, refining $\F$ (i.e., $\F \subset \U$). % ``semi-standard universe'' \newpage % -------------------- % «filters-1» (to ".filters-1") % (s "Filters" "filters-1") \myslide {Filters} {filters-1} {\bf Definition:} $\F \subseteq \Pts(\I)$ is a filter on $\I$ iff: \ssk (i) $\I \in \F$, (ii) $\F$ is closed by binary intersections, (iii) $\F$ is ``closed by supersets''. \msk Our two archetypical filters: % $$\begin{array}{l} \calN \subset \Pts(\N) \\ \calN := \sst{I \subset \N}{\N \bsl I \text{ is finite}} \\ \calR_0 \subset \Pts(\R) \\ \calR_0 := \sst{I \subset \R}{I \text{ contains an open neighborhood of 0}} \\ \end{array} $$ $\calN$ is the ``filter of cofinites'' (on $\N$), $\calR_0$ is the ``filter of neighborhoods of 0'' (in $\R$). \msk Define the following relation on $\I$-sequences: $$a \simF b \quad \Bij \quad \sst{i}{a_i = b_i} \in \F$$ \msk Prop: $\simF$ is an equivalence relation $\funto$ $\F$ is a filter. \msk $\begin{array}{lcl} a \simF a & \funto & \F \ni \sst{i}{a_i = a_i} = \I, \\ a \simF b \simF c & \funto & \F \ni \sst{i}{a_i = c_i} \supseteq \sst{i}{a_i = b_i} Ì \sst{i}{b_i = c_i}, \\ \end{array} $ \msk Look at this example (with $\I := \R$): $f$ is 0 in $(-2,1)$, 1 elsewhere, $g$ is 0 everywhere, $h$ is 0 in $(-1,2)$, $-1$ elsewhere, $h'$ is 0 in $(-1,2)$, 1 in $(4,5)$, $-1$ elsewhere; \ssk $f$ coincides with $h$ exactly on $(-2,1)Ì(-1,2)$, $f$ coincides with $h'$ on a bigger set --- the above plus $(4,5)$. \msk Prop: $\simF$ is an equivalence relation $\funot$ $\F$ is a filter. \newpage % -------------------- % «proper-bsm-ultra» (to ".proper-bsm-ultra") % (s "Proper filters, big/small/medium sets, and ultrafilters" "proper-bsm-ultra") \myslide {Proper filters, big/small/medium sets, and ultrafilters} {proper-bsm-ultra} \Def: a filter $\F$ is {\sl proper} when $\emp \notin \F$. \ind $\F$ improper $\Bij$ $\emp \in \F$ $\Bij$ $\F = \Pts(\I)$ $\Bij$ \ind $\Bij$ all sequences are $\F$-equivalent. \ind $\calN$ is proper. \msk \Def: $I \subset \I$ is {\sl $\F$-big} when $I \in \F$. \ind $\N+4 = \{4,5,6,7,\ldots\}$ is cofinite, and so $\calN$-big. \Def: $I \subset \I$ is {\sl $\F$-small} when $I \in \F$. \ind $\{0,1,2,3\}$ is finite, and so $\calN$-small. \Def: $I \subset \I$ is {\sl $\F$-medium} when $I$ is neither $\F$-big, nor $\F$-small. \ind $2\N = \{0,2,4,6,...\}$ is $\calN$-medium. \msk A proper filter $\F$ divides $\Pts(\I)$ in $\F$-big, $\F$-medium and $\F$-small sets. \Def: an {\sl ultrafilter} is a filter $\F$ with no $\F$-medium sets. \ind We will use $\U$ to denote ultrafilters. \ind $\calN$ is not an ultrafilter. \msk Two proper filters over $\I := \{\aa,\bb,\cc\}$: The one at the right is an ultrafilter. % %D diagram 3cube %D 2Dx 100 +25 +25 +25 +25 +25 +25 +25 +25 %D 2D 100 111 111a 111b %D 2D / | \ / | \ / | \ %D 2D +20 011 101 110 011a 101a 110a 011b 101b 110b %D 2D | X X | | X X | | X X | %D 2D +20 001 010 100 001a 010a 100a 001b 010b 100b %D 2D \ | / \ | / \ | / %D 2D +20 000 000a 000b %D 2D %D (( 111 011 - 111 101 - 111 110 - %D 011 001 - 011 010 - 101 001 - 101 100 - 110 010 - 110 100 - %D 001 000 - 010 000 - 100 000 - %D )) %D (( 000a .tex= S 001a .tex= M 010a .tex= M 011a .tex= B %D 100a .tex= S 101a .tex= M 110a .tex= M 111a .tex= B %D 111a 011a - 111a 101a - 111a 110a - %D 011a 001a - 011a 010a - 101a 001a - 101a 100a - 110a 010a - 110a 100a - %D 001a 000a - 010a 000a - 100a 000a - %D )) %D (( 000b .tex= S 001b .tex= B 010b .tex= S 011b .tex= B %D 100b .tex= S 101b .tex= B 110b .tex= S 111b .tex= B %D 111b 011b - 111b 101b - 111b 110b - %D 011b 001b - 011b 010b - 101b 001b - 101b 100b - 110b 010b - 110b 100b - %D 001b 000b - 010b 000b - 100b 000b - %D )) %D enddiagram %D $$\diag{3cube}$$ For $\calA \subset \Pts(\I)$, \Def: $\upto \calA := \sst{A'}{A \subseteq A' \subseteq \I, \text{for some $A \in \calA$}}$ \ind $\upto \F = \F$. \Def: $\dnto \calA := \sst{A'}{A' \subseteq A, \text{for some $A \in \calA$}}$ \ind The set of $\F$-small sets is equal to its `$\dnto$'. \Def: $\interfin \calA := \sst{A_1Ì\ldotsÌA_n}{n\in\N, A_1,\ldots,A_n \in \calA}$ \ind where we define that $A_1Ì\ldotsÌA_n = \I$ when $n=0$. \msk {\bf Fact:} for any $\calA \subset \Pts(\I)$, \ph{\bf Fact:} $\interfin \upto \A = \upto \interfin \A$ is a filter. \bsk $\calN = \upto \interfin \{ \N, \N+1, \N+2, \N+3, \ldots \}$ $\calR_0 = \upto \interfin \{ (-1,1), \, (-\frac12,-\frac12), \, (-\frac13,-\frac13), \ldots \}$ \newpage % -------------------- % «cores-and-principal» (to ".cores-and-principal") % (s "Cores and principal ultrafilters" "cores-and-principal") \myslide {Cores and principal ultrafilters} {cores-and-principal} The {\sl core} of a filter $\F$ is $\bigcap\F$. $\calN$ has empty core. $\calR_0$ has core $= \{0\}$, but this can be ``fixed'' --- by removing $\{0\}$ from each $\calR_0$-big set we get a filter over $\R\bsl\{0\}$ --- the filter of ``punctured neighborhoods'' of $0 \in \R$, that has empty core. \msk (By the way: $\calN$ is a filter of punctured neighborhoods of $‚Ý\N^*$ in $\N^*\bsl\{‚\}$.) \msk Any ultrafilter refining $\calN$ has empty core. An ultrafilter with a non-empty core has a single point in its core. An ultrafilter with a non-empty core is called ``principal''. Principal ultrafilters are silly: if $\U = \upto\{a\}$ then the equivalence relation $\sim_\U$ pays attention only to the index $a$, and $\Set \cong \SetIU$. \msk $$\diag{unnamed-arrows-N}$$ \msk When $\U$ is non-principal every infinite set in $\Set$ gets new (``non-standard'') elements after the passage to $\SetIU$. \newpage % -------------------- % «some-sentences» (to ".some-sentences") % (s "Interpreting some sentences" "some-sentences") \myslide {Interpreting some sentences} {some-sentences} Take $Ï:=(1,2,3,4,\ldots)$ in $\SetNN$. $Ï$ is bigger than any standard natural: $Ï>2 \equiv (\False,\False,§,§,\ldots) \sim_\calN (§,§,§,§,\ldots) \equiv §$ \msk Take $:=(1,\frac12,\frac13,\frac14,\ldots)$ in $\SetNN$. $$ is smaller than any standard positive real: $<\frac12 \equiv (\False,\False,§,§,\ldots) \sim_\calN §$. \msk $f(a)$ is $(f_1(a_1), f_2(a_2), f_3(a_3), \ldots)$. \msk $ýa,bÝ\R. ab=ba$ \msk $ýxÝ(0,1).x^2Ý(0,x)$ \msk $ýa,bÝ\R.ab=0 ⊃ (a=0 ∨ b=0)$ \newpage % -------------------- % «ultras-are-evil» (to ".ultras-are-evil") % (s "Ultrafilters are evil" "ultras-are-evil") \myslide {Ultrafilters are evil} {ultras-are-evil} Take a denumerable family of sets of indices, $\calA = \{A_1, A_2, A_3, \ldots\}$, for example $\calA := \{\N, 2\N, 3\N, 4\N, \ldots\}$. Then $\upto \interfin \calA$ is not a non-principal ultrafilter. Let's see why. Take $\calA' := \{A_1, A_1ÌA_2, A_1ÌA_2ÌA_3, \ldots\}$; build $\calA''$ from that by removing the repetitions. In the non-trivial case, $\calA'' = \{A''_1, A''_2, A''_3, \ldots\}$ is infinite. Look at $(\I \bsl A''_1) þ (A''_2 \bsl A''_3) þ (A''_4 \bsl A''_5) þ \ldots$ and $(A''_1 \bsl A''_2) þ (A''_3 \bsl A''_4) þ (A''_5 \bsl A''_6) þ \ldots$ --- they are both medium sets. \msk Attempts to build non-principal explicitly are bound to fail. To build non-principal ultrafilters we need a weak form of AC. Halpern 1964: the ``boolean prime ideal theorem'' is independent from AC. \newpage % -------------------- % «big-domains» (to ".big-domains") % (s "Partial functions with big domains" "big-domains") \myslide {Partial functions with big domains} {big-domains} If $(X,\calX)$ and $(Y,\calY)$ are filtered spaces --- i.e., $\calX$ is a filter over $X$ and $\calY$ is a filter over $Y$ --- then a partial function $f:X \to Y$ is said to have ($\calX$-)big domain when its domain is $\calX$-big. \msk Shorter name: a ``big partial function'' is a partial function with a big domain. Even shorter: $\to$ ``big function''. \msk {\bf Filter-continuity} A partial function $f:X \to Y$ is {\sl (filter-)continuous} when the inverse image of every $\calY$-big set is $\calX$-big. (Being ``big'' is weaker than that: just $f^{-1}(Y) Ý \calX$.) \msk Two big functions $f,g$ are {\sl equivalent} when they coincide on a big set. \msk Big continuous functions compose. Moreover: if $f \sim_{\calX} f'$ and $g \sim_{\calY} g'$ are all big and continuous, then $g¢f \sim_{\calX} g'¢f'$ is big and continuous. %D diagram filtermapcomp %D 2Dx 100 +50 %D 2D 100 (X,\calX) %D 2D %D 2D +40 (Y,\calY) (Z,\calZ) %D 2D %D (( (X,\calX) (Y,\calY) (Z,\calZ) %D @ 0 @ 1 -> sl_ .plabel= l f %D @ 0 @ 1 -> sl^ .plabel= r f' %D @ 1 @ 2 -> sl^ .plabel= a g' %D @ 1 @ 2 -> sl_ .plabel= b g %D @ 0 @ 2 .> %D )) %D enddiagram %D $$\diag{filtermapcomp}$$ \newpage % -------------------- % «diagram» (to ".diagram") % (s "Diagram" "diagram") \myslide {Diagram} {diagram} \def\aw{\frac aÏ} %D diagram wo-t0 %D 2Dx 100 +50 +50 +30 +45 %D 2D 100 \o |---> g_3 %D 2D - || %D 2D +15 | || \aw |---> log(1+\aw) %D 2D v || |--> || || %D 2D +15 \o,\O |--> g_4 Ï || || %D 2D - || - |--> || || %D 2D +15 | || | {}\o |---> log(1+\o) %D 2D | || v - || %D 2D +15 | g_5 Ï,\o' | || %D 2D v |-> || |--> v || %D 2D +15 \o,\o' || {}\o,\o' |-> (1+\o')\o %D 2D |-> || %D 2D +15 g_6 %D 2D %D (( g_3 .tex= f(b+\o) %D g_4 .tex= f(b)+f'(b)\o+\O\o^2 %D g_5 .tex= f(b)+f'(b)\o+\o'\o %D g_6 .tex= f(b)+(f'(b)+\o')\o %D )) %D (( \o \o,\O \o,\o' %D @ 0 @ 1 |-> @ 1 @ 2 |-> %D @ 0 g_3 |-> @ 1 g_4 |-> @ 2 g_5 |-> @ 2 g_6 |-> %D g_3 g_4 = g_4 g_5 = g_5 g_6 = %D )) %D (( \aw log(1+\aw) # 0 1 %D Ï {}\o log(1+\o) # 2 3 4 %D Ï,\o' {}\o,\o' (1+\o')\o # 5 6 7 %D @ 2 @ 5 |-> %D @ 0 @ 3 = @ 3 @ 6 |-> %D @ 1 @ 4 = @ 4 @ 7 = %D @ 2 @ 0 |-> @ 0 @ 1 |-> %D @ 2 @ 3 |-> @ 3 @ 4 |-> %D @ 5 @ 6 |-> @ 6 @ 7 |-> %D )) %D enddiagram %D diagram wo-t1 %D 2Dx 100 +30 +45 %D 2D 100 %D 2D %D 2D +15 %D 2D %D 2D +15 %D 2D %D 2D +15 %D 2D %D 2D +15 %D 2D %D enddiagram %D diagram wo-t %D 2Dx 100 +45 +45 %D 2D 100 h_1 |---> h_5 %D 2D |---> || || %D 2D +15 Ï || || %D 2D - |---> || || %D 2D +15 | h_2 || %D 2D | || || %D 2D +15 | || || %D 2D v || || %D 2D +15 Ï,\o' |-> h_3 || %D 2D - || || %D 2D +15 | || || %D 2D | || || %D 2D +15 | -> h_4 |---> h_6 %D 2D | / || %D 2D +15 | / || %D 2D v \ || %D 2D +15 \o' |------------> h_7 %D 2D / || %D 2D +15 \ || %D 2D \ || %D 2D +15 \-> \o'' |--> h_8 %D 2D - || %D 2D +15 | || %D 2D v || %D 2D +15 \o''' |--> h_9 %D 2D %D (( h_1 .tex= \log(1+\aw)^Ï h_5 .tex= (1+\aw)^Ï %D h_2 .tex= Ï\log(1+\aw) %D h_3 .tex= Ï((1+\o')\aw) %D h_4 .tex= (1+\o')a h_6 .tex= e^{(1+\o')a} %D h_7 .tex= e^{a+\o'a} %D h_8 .tex= e^{a+\o''} %D h_9 .tex= e^a+\o''' %D )) %D (( Ï Ï,\o' \o' \o'' \o''' %D @ 0 @ 1 |-> @ 1 @ 2 |-> @ 2 @ 3 |-> @ 3 @ 4 |-> %D )) %D (( h_1 h_2 = h_2 h_3 = h_3 h_4 = %D h_5 h_6 = h_6 h_7 = h_7 h_8 = h_8 h_9 = %D h_1 h_5 |-> .plabel= a \exp %D h_4 h_6 |-> .plabel= a \exp %D )) %D (( Ï h_1 |-> Ï h_2 |-> %D Ï,\o' h_3 |-> %D \o' h_4 |-> \o' h_7 |-> %D \o'' h_8 |-> %D \o''' h_9 |-> %D )) %D (( %D %D )) %D enddiagram $$\diag{wo-t0}$$ \msk $$\diag{wo-t}$$ \newpage % -------------------- % «filters-are-enough» (to ".filters-are-enough") % (s "Filters are enough" "filters-are-enough") \myslide {Filters are enough} {filters-are-enough} % (find-LATEXfile "2008filterp.tex" "%D diagram wo") Main theorem Change of base % (find-LATEX "2008filterp.tex" "natural-infinitesimals") Filter-continuity is the same as continuity at the chosen point: $$(\R,\calR_0) \to (X,\calX_{x_0})$$ \msk Filter-continuity is the same as infinitesimality: $$(\I,\F) \to (\R,\calR_0)$$ \msk (general case: topological spaces) Definition: the {\sl natural infinitesimal} on a (standard) filtered space $(X,\X_{x_0})$, that we will denote by $x_1^î \simnat x_0$, is the identity function $x_1^î = \id: (X,\X_{x_0}) \to (X,\X_{x_0})$; seen as an infinitesimal, it lives in $\Set^X/\X_{x_0}$. As it corresponds to the identity map, any other infinitesimal $x_1 \sim x_0$ --- in the diagram below we take an $x_1$ living in $\Set^\I/\F$ --- factors through $x_1^î$ it in a unique way; this suggests that there is a kind of ``change of base'' operation between filter-powers. %D diagram nat-infinitesimal %D 2Dx 100 +35 %D 2D 100 (\I,\F) ..> (X,\X_{x_0}){} %D 2D \ | %D 2D v v %D 2D +20 (X,\X_{x_0}) %D 2D %D (( (\I,\F) (X,\X_{x_0}){} (X,\X_{x_0}) %D @ 0 @ 1 .> .plabel= a x_1 %D @ 0 @ 2 -> .plabel= l x_1 %D @ 1 @ 2 -> .plabel= r x_1^î=\id %D )) %D enddiagram %D $$\diag{nat-infinitesimal}$$ % Our notation for it will be: $x_1 \simnat x_0$. Now, for any $f: (X,\calX_{x_0}) \to (Y,\calY_{y_0})$ taking $x_0$ to $y_0$, this holds: % \smallskip \begin{quotation} {\bf Key theorem:} (i) $f$ is continuous at $x_0$ $\iff$ (ii) for $(\I,\F) := (X,\calX_{x_0}),$ $x^î_1 \simnat x_0$, we have $f(x^î_1) \sim f(x_0)$ $\iff$ (iii) for all $(\I,\F)$ and $x_1 \sim x_0$, we have $f(x_1) \sim f(x_0)$. % $\iff$ (iv) for all $(\I,\U)$ and $x_1 \sim x_0$, we have $f(x_1) \sim f(x_0)$. \end{quotation} %D diagram keyth-diags-1 %D 2Dx 100 +20 +35 +15 +20 +30 %D 2D 100 A0 a0 %D 2D | | %D 2D x1î | x1î | %D 2D v f v f %D 2D +25 A1 -> A2 a1 -> a2 %D 2D %D 2D +20 B0 b0 %D 2D \ \ %D 2D x1 \ x1 \ %D 2D v f v f %D 2D +25 B1 -> B2 b1 -> b2 %D 2D %D (( A0 .tex= (X,\X_{x_0}) A1 .tex= (X,\X_{x_0}) A2 .tex= (Y,\Y_{y_0}) %D B0 .tex= (\I,\F) B1 .tex= (X,\X_{x_0}) B2 .tex= (Y,\Y_{y_0}) %D a0 .tex= x a1 .tex= x a2 .tex= y %D b0 .tex= i b1 .tex= x b2 .tex= y %D A0 A1 -> .plabel= l x_1^î A0 A2 -> .plabel= a y_1 A1 A2 -> .plabel= r f %D B0 B1 -> .plabel= l x_1 B0 B2 -> .plabel= a y_1 B1 B2 -> .plabel= r f %D a0 a1 |-> .plabel= l x_1^î a0 a2 |-> .plabel= a y_1 a1 a2 |-> .plabel= r f %D b0 b1 |-> .plabel= l x_1 b0 b2 |-> .plabel= a y_1 b1 b2 |-> .plabel= r f %D )) %D enddiagram %D $$\diag{keyth-diags-1}$$ % \smallskip Proof: (i) $\funto$ (ii) and (i) $\funto$ (iii) are obvious from what we've seen before --- that the composite of continuous maps between filtered spaces is continuous. For $¬$(i) $\funto$ $¬$(ii), as $f$ is not continuous at $x_0$, we can choose a $Y' \in \Y_{y_0}$ such that $f^{-1}(Y') \notin \X_{x_0}$; but then $y_1^{-1}(Y') = x_1^{î^{-1}}(f^{-1}(Y')) \notin \X_{x_0}$, and $f(x_1^î) \not\sim f(x_0)$. For $¬$(i) $\funto$ $¬$(iii), take $(\I,\F) := (X,\X_{x_0})$, $x_1 := x_1^î$, and reuse the proof of $¬$(i) $\funto$ $¬$(ii). \msk In texts about Non-Standard Analysis the infinitesimal characterization of continuity is presented in another form: \begin{quotation} (i) $f$ is continuous at $x_0$ $\iff$ (iv) for all $(\I,\U)$ and $x_1 \sim x_0$, we have $f(x_1) \sim f(x_0)$. \end{quotation} Clearly, (iii)$\funto$(iv); but to show that (iv) implies the rest we need to be in a universe with enough ultrafilters. Each of the cells in the diagram in sec.\ 5 is an instance of the key theorem --- maybe slightly disguised. For example, to prove that $g(b + \o) = (g'(b) + \o') \o$ we may start with $\frac{g(b + \o)}{\o} - g'(b) = \o'$, for an infinitesimal $\o \neq 0$, i.e., $\lim_{\ee \to 0} \frac{g(b + \o)}{\o}$. What really matters, when we look at the diagrams, is that for any $(\I,\F)$ and for any infinitesimal $x_1: (\I,\F) \to (X,\X_{x_0})$ --- maybe obeying some condition, like $\o \neq 0$ --- there is a unique ``adequate'' infinitesimal $y_1: (\I,\F) \to (Y,\Y_{y_0})$; we want to ``represent'' the operation $x_1 \mapsto y_1$ as a function $f: (X,\X_{x_0}) \to (Y,\Y_{y_0})$, and we can do that trivially by setting $(\I,\F) := (X,\X_{x_0})$, $x_1 := x_1^î$; then we can take $f := y_1$, and the $f$ obtained in this way works in the general case. %D diagram obtaining-f %D 2Dx 100 +35 +40 +40 %D 2D 100 a0 b0 %D 2D %D 2D +30 a1 a2 b1 b2 %D 2D %D (( a0 .tex= \IF a1 .tex= \XXz a2 .tex= \YYz %D b0 .tex= \XXz b1 .tex= \XXz b2 .tex= \YYz %D a0 a1 -> .plabel= l x_1 %D a0 a2 -> .PLABEL= ^(0.61) y_1 %D a1 a2 .> .plabel= b f %D a0 a1 midpoint a0 a2 midpoint |-> sl_ %D b0 b1 -> .plabel= l x_1^î %D b0 b2 -> .plabel= r y_1 %D b1 b2 -> .plabel= b f:=y_1 %D )) %D enddiagram %D $$\diag{obtaining-f}$$ Applying this idea to the composite of all cells in the example in sec.\ 5, we get this: % %D diagram wo3 %D 2Dx 100 +25 +25 +35 +35 +40 %D 2D 100 {}i n n{} %D 2D - / - / - %D 2D | \ | \ | %D 2D v v v v | %D 2D +20 {}Ï |-> {}\o''' Ï |-----> \o''' | %D 2D - - - - | %D 2D | | | | | %D 2D v v v v v %D 2D +20 h_5 ==== h_9 h_5(Ï) == h_9(\o''') h_5(n) == h_9(n) %D 2D %D (( {}i {}Ï {}\o''' h_5 h_9 %D @ 0 @ 1 |-> @ 0 @ 2 |-> %D @ 1 @ 2 |-> @ 1 @ 3 |-> @ 2 @ 4 |-> @ 3 @ 4 = %D )) %D (( n Ï \o''' h_5(Ï) .tex= (1+\aw)^Ï h_9(\o''') .tex= e^a+\o''' %D @ 0 @ 1 |-> @ 0 @ 2 |-> %D @ 1 @ 2 |-> @ 1 @ 3 |-> @ 2 @ 4 |-> @ 3 @ 4 = %D )) %D (( n{} h_5(n) .tex= (1+\aw)^n h_9(n) .tex= e^a+\o'''(n) %D @ 0 @ 1 |-> @ 0 @ 2 |-> @ 1 @ 2 = %D )) %D enddiagram %D $$\diag{wo3}$$ % where $i \in \IF$, $n, Ï \in \NN$, and all the other ``points'' live in $\RRz$. Note that the `$\mto$' arrows in this diagram do not stand for functions in the usual sense, but for functions between filtered spaces (not necessarily total). Incidentally, all of them are continuous. %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: