Warning: this is an htmlized version!
The original is across this link,
and the conversion rules are here.
% (find-angg "LATEX/2008gf.tex")
% http://catsinthejungle.wordpress.com/
% http://angg.twu.net/LATEX/2008gf.pdf
% http://angg.twu.net/LATEX/2008gf.tex.html
% (find-dn4ex "edrx08.sty")
% (find-angg ".emacs.templates" "s2008a")
% (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008gf.tex && latex    2008gf.tex"))
% (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008gf.tex && pdflatex 2008gf.tex"))
% (eev "cd ~/LATEX/ && Scp 2008gf.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/")
% (find-dvipage "~/LATEX/2008gf.dvi")
% (find-pspage  "~/LATEX/2008gf.pdf")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008gf.ps 2008gf.dvi")
% (find-pspage  "~/LATEX/2008gf.ps")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi")
% (find-pspage  "~/LATEX/tmp.ps")
% (ee-cp "~/LATEX/2008gf.pdf" (ee-twupfile "LATEX/2008gf.pdf") 'over)
% (ee-cp "~/LATEX/2008gf.pdf" (ee-twusfile "LATEX/2008gf.pdf") 'over)

\usepackage{edrx08}       % (find-dn4ex "edrx08.sty")
%L process "edrx08.sty"  -- (find-dn4ex "edrx08.sty")
\input edrxheadfoot.tex   % (find-dn4ex "edrxheadfoot.tex")

\input 2008gf.dnt

% (eedn4-51-bounded)

Notes on GF's blog etc etc.


Index of the slides:
% To update the list of slides uncomment this line:
% then rerun LaTeX on this file, and insert the contents of "tmp.los"
% below, by hand (i.e., with "insert-file"):
% (find-fline "tmp.los")
% (insert-file "tmp.los")

% «.grtop-1»	(to "grtop-1")

% --------------------
% «grtop-1»  (to ".grtop-1")
% (s "Notes on ``Grothendieck Topologies - Part I (Pretopologies)''" "grtop-1")
\myslide {Notes on ``Grothendieck Topologies - Part I (Pretopologies)''} {grtop-1}

% http://catsinthejungle.wordpress.com/2008/11/10/grothendieck-topologies-part-i-pretopologies/




(i) The family $\{U\}$ covers $U$.

(ii) If the family $\calU = (U_\aa)_{\aaİA}$ covers $U$ and $V \subseteq U$,

then the family $(VÌU_\aa)_{\aaİA}$ covers $V$.

(iii) If the family $\calU = (U_\aa)_{\aaİA}$ covers $U$

and for each $U_\aa İ \calU$

the family $\calV_\aa = (V_{\aa\bb})_{\bbİB_\aa}$ covers $U_\aa$

then the family $(V_{\aa\bb})_{\aaİA, \bbİB_\aa}$ covers $U$.


(i) The family $\{I_U:U \to U\}$ $P$-covers $U$.

(ii) If the family $\calU = (U_\aa \to U)_{\aaİA}$ $P$-covers $U$ and $f:V \to U$,

then the family $(V ×_U U_\aa \to V)_{\aaİA}$ $P$-covers $V$.

(iii) If the family $\calU = (U_\aa \to U)_{\aaİA}$ $P$-covers $U$

and for each $(U_\aa \to U) İ \calU$

the family $\calV_\aa = (V_{\aa\bb} \to U_\aa)_{\bbİB_\aa}$ $P$-covers $U_\aa$

then the family $(V_{\aa\bb} \to U_\aa \to U)_{\aaİA, \bbİB_\aa}$ $P$-covers $U$.



% Local Variables:
% coding:           raw-text-unix
% ee-anchor-format: "«%s»"
% End: