Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008modallogic.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008modallogic.tex && latex 2008modallogic.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008modallogic.tex && pdflatex 2008modallogic.tex")) % (eev "cd ~/LATEX/ && Scp 2008modallogic.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008modallogic.dvi") % (find-pspage "~/LATEX/2008modallogic.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008modallogic.ps 2008modallogic.dvi") % (find-pspage "~/LATEX/2008modallogic.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2008modallogic.pdf" (ee-twupfile "LATEX/2008modallogic.pdf") 'over) % (ee-cp "~/LATEX/2008modallogic.pdf" (ee-twusfile "LATEX/2008modallogic.pdf") 'over) % «.and-and-box» (to "and-and-box") % «.cat-struct-1» (to "cat-struct-1") % «.cat-struct-2» (to "cat-struct-2") % «.nd-to-cat» (to "nd-to-cat") % «.reyes-zolfaghari» (to "reyes-zolfaghari") % «.beta-reductions» (to "beta-reductions") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008modallogic.dnt %* % (eedn4-51-bounded) Just some trivial notes on Valéria de Paiva and Gavin Bierman's ``On an Intuitionistic Modal Logic'' (2000). \url{http://www.cs.bham.ac.uk/~vdp/publications/studia.ps.gz} % (find-vdpimlpage 1) % (find-vdpimltext) \msk Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {``Box'' commutes with ``and''} {2} \tocline {Categorical structure (1)} {3} \tocline {Categorical structure (2)} {4} \tocline {The natural deduction rules, categorically} {5} \tocline {Notes on Reyes \& Zolfaghari's paper} {6} \tocline {Beta-reduction rules} {7} % -------------------- % Charset and defs % (ma) % (eev-math-glyph-names "Delta" 916 "eta" 951 "mu" 956 "nu" 957 "poss" 9671) % Orig: (eev-math-glyphs-set 'eev-glyph-face-math "nabla " "na" "Ώ") % (eev-math-glyphs-set 'eev-glyph-face-greek "theta nu" "te nu" " Û") % Local: (eev-math-glyphs-set 'eev-glyph-face-math "Delta poss" "DD po" "Ώ ") % (eev-math-glyphs-set 'eev-glyph-face-greek "eta mu" "et mu" " Û") % (find-vdpimlpage 1) % (find-vdpimlpage 22) % (find-vdpimltext) \catcode` =13 \def {\lozenge} \defΏ{\Delta} \def{\eta} \defÛ{\mu} \def\myttchars{% \ttchars% \def {\ttchar{$\lozenge$}}% \defΏ{\ttchar{$\Delta$}}% \def{\ttchar{$\eta$}}% \defÛ{\ttchar{$\mu$}}% } \def\str{{―{str}}} \def\D{{\mathbb{D}}} \newpage % -------------------- % «and-and-box» (to ".and-and-box") % (s "``Box'' commutes with ``and''" "and-and-box") \myslide {``Box'' commutes with ``and''} {and-and-box} $ñ(A×B)⊃(ñA×ñB)$ and $(ñA×ñB)⊃ñ(A×B)$: %: [ñ(A×B)]^1 [ñ(A×B)]^1 %: ---------- ---------- %: A×B A×B [ñA]^1 [ñB]^1 %: --- --- ------ ------ %: ñ(A×B) A ñ(A×B) B ñA×ñB ñA×ñB A B %: ----------1 ----------1 ----- ----- ---------- %: ñA ñB ñA ñB A×B %: -------------------- ----------------------1 %: ñA×ñB ñ(A×B) %: %: ^is4-m1 ^is4-m2 %: $$\ded{is4-m1}$$ $$\ded{is4-m2}$$ but the two maps between $ñ(A×B) \leftrightarrows (ñA×ñB)$ need not be inverses. \newpage % -------------------- % «cat-struct-1» (to ".cat-struct-1") % (s "Categorical structure (1)" "cat-struct-1") \myslide {Categorical structure (1)} {cat-struct-1} Monoidal functor: %D diagram monoidal-functor %D 2Dx 100 +15 +40 +15 +40 +15 +40 +15 %D 2D 100 ñA×ñ1 --> ñ(A×1) ñ1×ñA --> ñ(1×A) %D 2D ^ \ ^ \ %D 2D / v / v %D 2D +20 ñA×1 -----------------> ñA 1×ñA -----------------> ñA{} %L xs={} %D 2Dx 100 +70 +55 +50 %D 2D +20 ñA×(ñB×ñC) --> (ñA×ñB)×ñC ñA×ñB --> ñ(A×B) %D 2D | | | | %D 2D v v v v %D 2D +20 ñA×ñ(B×C) ñ(A×B)×ñC ñB×ñA --> ñ(B×A) %D 2D | | %D 2D v v %D 2D +20 ñ(A×(B×C)) -> ñ((A×B)×C) %D 2D %D (( ñA×1 ñA×ñ1 ñ(A×1) ñA %D @ 0 @ 1 -> .plabel= l \id×m_1 %D @ 1 @ 2 -> .plabel= a m %D @ 2 @ 3 -> .plabel= r ñ %D @ 0 @ 3 -> .plabel= b %D )) %D (( 1×ñA ñ1×ñA ñ(1×A) ñA{} %D @ 0 @ 1 -> .plabel= l m_1×\id %D @ 1 @ 2 -> .plabel= a m %D @ 2 @ 3 -> .plabel= r ñ' %D @ 0 @ 3 -> .plabel= b ' %D )) %D (( ñA×(ñB×ñC) (ñA×ñB)×ñC %D ñA×ñ(B×C) ñ(A×B)×ñC %D ñ(A×(B×C)) ñ((A×B)×C) %D @ 0 @ 1 -> .plabel= a \aa %D @ 0 @ 2 -> .plabel= l \id×m %D @ 1 @ 3 -> .plabel= r m×\id %D @ 2 @ 4 -> .plabel= l m %D @ 3 @ 5 -> .plabel= r m %D @ 4 @ 5 -> .plabel= b ñ\aa %D )) %D (( ñA×ñB ñ(A×B) %D ñB×ñA ñ(B×A) %D @ 0 @ 1 -> .plabel= a m %D @ 0 @ 2 -> .plabel= l \cc %D @ 1 @ 3 -> .plabel= r ñ\cc %D @ 2 @ 3 -> .plabel= b m %D )) %D enddiagram %D $$\diag{monoidal-functor}$$ \bsk Comonad: %D diagram comonad %D 2Dx 100 +30 +30 +35 +40 %D 2D 100 a0 %D 2D | ---> %D 2D +15 | a1 ñA ---> ññA ===> ñññA %D 2D v <=== %D 2D +15 a2 %D 2D %D (( a0 .tex= ñA a1 .tex= ññA a2 .tex= ñA %D a0 a1 -> .plabel= a \dd %D a2 a1 <- sl^ .plabel= a \ee %D a2 a1 <- sl_ .plabel= b ñ\ee %D a0 a2 -> .plabel= l \id %D )) %D (( ñA ññA ñññA %D @ 0 @ 1 -> .plabel= a \dd %D @ 1 @ 2 -> sl^ .plabel= a \dd %D @ 1 @ 2 -> sl_ .plabel= b ñ\dd %D )) %D enddiagram %D $$\diag{comonad}$$ \msk Monoidal comonad: %D diagram monoidal-comonad %D 2Dx 100 +50 +40 +40 %D 2D 100 ñA×ñB ----> ñ(A×B) {}ñA×ñB --> ñ(A×B){} %D 2D | | \ | %D 2D v | \ v %D 2D +20 ññA×ññB | ----> A×B %D 2D | | %D 2D v v %D 2D +20 ñ(ñA×ñB) -> ññ(A×B) %D 2D %L xs={} %D 2Dx 100 +30 +30 +35 +40 %D 2D +20 a0 %D 2D | ---> %D 2D +15 | a1 1 ----> ñ1 ----> ññ1 %D 2D v <--- %D 2D +15 a2 %D 2D %D (( ñA×ñB ñ(A×B) %D ññA×ññB %D ñ(ñA×ñB) ññ(A×B) %D @ 0 @ 1 -> .plabel= a m %D @ 0 @ 2 -> .plabel= l \dd×\dd %D @ 1 @ 4 -> .plabel= r \dd %D @ 2 @ 3 -> .plabel= l m %D @ 3 @ 4 -> .plabel= b ñm %D )) %D (( {}ñA×ñB ñ(A×B){} A×B %D @ 0 @ 1 -> .plabel= a m %D @ 0 @ 2 -> .plabel= l \ee×\ee %D @ 1 @ 2 -> .plabel= r \ee %D )) %D (( a0 .tex= 1 a1 .tex= ñ1 a2 .tex= 1 %D a0 a1 -> .plabel= a m %D a2 a1 <- .plabel= b \ee %D a0 a2 -> .plabel= l \id %D )) %D (( 1 ñ1 ññ1 %D @ 0 @ 1 -> .plabel= a m %D @ 1 @ 2 -> sl^ .plabel= a m %D @ 1 @ 2 -> sl_ .plabel= b ñm %D )) %D enddiagram %D $$\diag{monoidal-comonad}$$ \newpage % -------------------- % «cat-struct-2» (to ".cat-struct-2") % (s "Categorical structure (2)" "cat-struct-2") \myslide {Categorical structure (2)} {cat-struct-2} Monad: %D diagram monad %D 2Dx 100 +30 +30 +35 +40 %D 2D 100 a0 %D 2D | ===> %D 2D +15 | a1 A <--- A <=== A %D 2D v <--- %D 2D +15 a2 %D 2D %D (( a0 .tex= A a1 .tex= A a2 .tex= A %D a0 a2 -> .plabel= a \id %D a0 a1 -> sl^ .plabel= a %D a0 a1 -> sl_ .plabel= b %D a1 a2 -> .plabel= b Û %D )) %D (( A A A %D @ 0 @ 1 <- .plabel= a Û %D @ 1 @ 2 <- sl^ .plabel= a Û %D @ 1 @ 2 <- sl_ .plabel= b Û %D )) %D enddiagram %D $$\diag{monad}$$ \msk Strength: %D diagram strength-pi %D 2Dx 100 +50 %D 2D 100 ñ1× A ---> 1× A %D 2D | | %D 2D v | %D 2D +20 (ñ1×A) | %D 2D | | %D 2D v v %D 2D +20 (1×A) ---> A %D 2D %D (( ñ1× A 1× A -> .plabel= a ×\id %D ñ1× A (ñ1×A) -> .plabel= l \str %D 1× A A -> .plabel= r _2 %D (ñ1×A) (1×A) -> .plabel= l (×\id) %D ñ1× A 1× A -> .plabel= a ×\id %D (1×A) A -> .plabel= l (_2) %D %D )) %D enddiagram %D diagram strength-alpha %D 2Dx 100 +80 %D 2D 100 ñA×(ñB× C) ----> (ñA×ñB)× C %D 2D | | %D 2D v | %D 2D +20 ñA× (ñB×C) | %D 2D | v %D 2D +10 | ñ(A×B)× C %D 2D v | %D 2D +10 (ñA×(ñB×C)) | %D 2D | | %D 2D v v %D 2D +20 ((ñA×ñB)×C) ----> (ñ(A×B)×C) %D 2D %D 2D +20 %D 2D %D (( ñA×(ñB× C) (ñA×ñB)× C -> .plabel= a \aa %D (ñA×ñB)× C ñ(A×B)× C -> .plabel= r m×\id %D ñ(A×B)× C (ñ(A×B)×C) -> .plabel= r \str %D ñA×(ñB× C) ñA× (ñB×C) -> .plabel= l \id×\str %D ñA× (ñB×C) (ñA×(ñB×C)) -> .plabel= l \str %D (ñA×(ñB×C)) ((ñA×ñB)×C) -> .plabel= l \aa %D ((ñA×ñB)×C) (ñ(A×B)×C) -> .plabel= b (m×\id) %D )) %D enddiagram %D diagram strength-triang %D 2Dx 100 +40 %D 2D 100 ñA×B %D 2D | ---> %D 2D +20 | ñA× B %D 2D v <-- %D 2D +20 (ñA×B) %D 2D %D (( ñA×B (ñA×B) -> .plabel= l \eta %D ñA×B ñA× B -> .plabel= a \id×\eta %D ñA× B (ñA×B) -> .plabel= b \str %D )) %D enddiagram %D diagram strength-mu %D 2Dx 100 +60 %D 2D 100 ñA× B ----> ñA× B %D 2D | | %D 2D v | %D 2D +20 (ñA× B) | %D 2D | | %D 2D v v %D 2D +20 (ñA×B) --> (ñA×B) %D 2D %D (( ñA× B (ñA× B) -> .plabel= l \str %D (ñA× B) (ñA×B) -> .plabel= l \str %D (ñA×B) (ñA×B) -> .plabel= b \mu %D ñA× B ñA× B -> .plabel= a \id×\mu %D ñA× B (ñA×B) -> .plabel= r \str %D %D )) %D enddiagram $$\diag{strength-pi} \qquad \diag{strength-mu}$$ $$\diag{strength-alpha} \quad \diag{strength-triang} $$ \newpage % -------------------- % «nd-to-cat» (to ".nd-to-cat") % (s "The natural deduction rules, categorically" "nd-to-cat") \myslide {The natural deduction rules, categorically} {nd-to-cat} %D diagram nec-intro %D 2Dx 100 +50 %D 2D 100 \Gamma %D 2D | %D 2D v %D 2D +20 ñA_1×ñA_2 ñ(ñA_1×ñA_2) %D 2D | ^ | %D 2D v / v %D 2D +20 ññA_1×ññA_2 ñ(B) %D 2D %D (( \Gamma ñA_1×ñA_2 -> %D ñA_1×ñA_2 ññA_1×ññA_2 -> .plabel= l \dd×\dd %D ññA_1×ññA_2 ñ(ñA_1×ñA_2) -> .plabel= m m %D ñ(ñA_1×ñA_2) ñ(B) -> %D )) %D enddiagram %D diagram nec-elim %D 2Dx 100 %D 2D 100 ñA %D 2D %D 2D +20 A %D 2D %D (( ñA A -> .plabel= l \ee %D )) %D enddiagram %D diagram poss-intro %D 2Dx 100 %D 2D 100 A %D 2D %D 2D +20 A %D 2D %D (( A A -> .plabel= l \eta %D )) %D enddiagram %D diagram poss-elim %D 2Dx 100 +20 +20 %D 2D 100 \Gamma (ñA×B) %D 2D | ^ | %D 2D | / | %D 2D v / v %D 2D +20 ñA× B ( C) %D 2D <- %D 2D +20 C %D 2D %D (( \Gamma ñA× B -> .plabel= l {} %D ñA× B (ñA×B) -> .plabel= m \str %D (ñA×B) ( C) -> .plabel= r {} %D ( C) C -> .plabel= m \mu %D )) %D enddiagram $$\diag{nec-intro} \qquad \diag{nec-elim} $$ $$\diag{poss-intro} \qquad \diag{poss-elim} $$ \newpage % -------------------- % «reyes-zolfaghari» (to ".reyes-zolfaghari") % (s "Notes on Reyes & Zolfaghari's paper" "reyes-zolfaghari") \myslide {Notes on Reyes \& Zolfaghari's paper} {reyes-zolfaghari} Let $W$ be a set of worlds, and let $\D$ be a DAG on $W$. $\D$ induces a reflexive and transitive relation $R \subset W×W$ --- $(\aa \to \bb) \in \D$ iff $\aa R \bb$ --- ``$\aa$ sees $\bb$''. $\ang{W,R}$ is an S4-ish modal frame. We can regard $W$ and $\D$ as topological spaces: $W$ is discrete, $\D$ has the topology in which the open sets are the ones whose characteristic functions are non-decreasing. The ``identity'' function $W \to \D$ is continuous. Consider these toposes: $\Set^W$ and $\Set^\D$. The truth-values of $\Set^W$ are the things that I call the ``modal truth-values'' on $\D$: they correspond to arbitrary functions $W \to \{0,1\}$. The truth-values of $\Set^D$ are the things that I call the ``intuitionistic truth-values'' of $\D$: they correspond to non-decreasing functions $W \to \{0,1\}$. There is a geometric morphism $\Set^W \to \Set^\D$. `$ñ$' and `$ $' are endofunctors that act on the space of truth-values of $\Set^W$. The intuitionistic truth-values are the ones that are stable by the action of $ñ$. \bsk Hypothesis: %D diagram bul-and-box %D 2Dx 100 +30 +30 +30 %D 2D 100 a |---> b %D 2D ---> %D 2D +30 c <---| d \Set^W <--< \Set^\D %D 2D ---> %D 2D +30 e |---> f %D 2D %D (( a .tex= \dagReh0100 b .tex= \dagReh0101 %D c .tex= \dagReh0101 d .tex= \dagReh0101 %D e .tex= \dagReh1101 f .tex= \dagReh0101 %D a b |-> .plabel= a \bul %D a c -> b d -> %D a d harrownodes nil 20 nil <-> %D c d <-| %D c e -> d f -> %D c f harrownodes nil 20 nil <-> %D e f |-> .plabel= b ñ %D )) %D (( \Set^W \Set^\D %D @ 0 @ 1 -> sl^^ .plabel= a \bul %D @ 0 @ 1 <-< %D @ 0 @ 1 -> sl__ .plabel= b ñ %D )) %D enddiagram %D $$\diag{bul-and-box}$$ \newpage % -------------------- % «beta-reductions» (to ".beta-reductions") % (s "Beta-reduction rules" "beta-reductions") \myslide {Beta-reduction rules} {beta-reductions} \def\fst{{Π{fst}}} \def\snd{{Π{snd}}} \def\inl{{Π{inl}}} \def\inr{{Π{inr}}} \def\caseofinlinr#1#2#3#4#5{ \textsf{case $#1$ of $\inl(#2) \to #3 \;||\; \inr(#4) \to #5$}} \def\boxwithfor#1#2#3{\textsf{box $#1$ with $#2$ for $#3$}} \def\unbox #1{\textsf{unbox $#1$}} \def\unboxp#1{\textsf{unbox($#1$)}} \def£{\vec} \def\I{\mathcal{I}} \def\E{\mathcal{E}} \def\betaquad{\quad \rightsquigarrow_\beta \quad} %: [x:A]^1 \GG %: ::::::::: %: M:B %: -------------{⊃\I};1 %: N:A (πx:A.M):A->B N:A \GG %: ------------------{⊃\E} ::::: %: (πx:A.M)N:B -> M[x:=N]:B %: %: ^betared-imp-1 ^betared-imp-2 %: %: M:A N:B %: -------------{∧\I} %: \ang{M,N}:A×B %: -----------------{∧\E}_1 %: \fst\ang{M,N}:A×B -> M:A %: %: ^betared-and1-1 ^betared-and1-2 %: %: M:A [x:A]^1 \GG [y:B]^1 \DD %: -----------∨\I ::::: ::::: %: \inl(M):A+B N:C P:C M:A \GG %: ----------------------------------------∨\E :::: %: \caseofinlinr{\inl(M)}{x}{N}{y}{P} N[x:=M]:C %: %: ^betared-or-1 ^betared-or-2 %: %: \GG [£x:ñ£A]^1 %: : : %: £M:ñA N:B \GG %: -------------------------ñ\I;1 ::: %: \boxwithfor{N}{£M}{£x}:ñB £M:ñ£A %: ---------------------------ñ\E ::: %: \unboxp{\boxwithfor{N}{£M}{£x}:ñB} N[£x:=£M]:B %: %: ^betared-box-1 ^betared-box-2 %: %: \DD %: ::: %: \GG N:B [£x:ñ£A\;y:B]^1 \GG \DD %: ::: ----- \I ::: ::: ::: %: £M:ñA N: B P: C £M:ñA N:B %: --------------------------- \E;1 :::: %: P[£x:=£M, y:= N]: C P[£x:=£M,y:=N]: C %: %: ^betared-poss-1 ^betared-poss-2 %: $$\ded{betared-imp-1} \qquad \ded{betared-imp-2}$$ $$\ded{betared-and1-1} \betaquad \ded{betared-and1-2}$$ $$\ded{betared-or-1} \betaquad \ded{betared-or-2}$$ $$\ded{betared-box-1} \betaquad \ded{betared-box-2}$$ $$\ded{betared-poss-1} \betaquad \ded{betared-poss-2}$$ %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: