Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008natded.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008natded.tex && latex 2008natded.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008natded.tex && pdflatex 2008natded.tex")) % (eev "cd ~/LATEX/ && Scp 2008natded.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008natded.dvi") % (find-pspage "~/LATEX/2008natded.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008natded.ps 2008natded.dvi") % (find-pspage "~/LATEX/2008natded.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % «.prawitz-original» (to "prawitz-original") % «.prawitz-proper-sub» (to "prawitz-proper-sub") % «.quantifier-judgments» (to "quantifier-judgments") % «.quantifier-diagrams» (to "quantifier-diagrams") % «.names-for-adjunctions» (to "names-for-adjunctions") % «.fol-quantifier-rules» (to "fol-quantifier-rules") % «.dotted» (to "dotted") % «.ex-intro» (to "ex-intro") % «.ex-elim» (to "ex-elim") % «.prawitz» (to "prawitz") % «.prawitz-2» (to "prawitz-2") % «.ex-elim-bad» (to "ex-elim-bad") % «.notes-dtt» (to "notes-dtt") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008natded.dnt %* % (eedn4-51-bounded) %:*&*\&* Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {Prawitz's example: original version} {2} \tocline {Prawitz's example: proper subtrees} {3} \tocline {Quantifiers: judgment rules} {4} \tocline {Quantifiers: diagrammatic rules} {5} \tocline {Dotted diagrams} {6} \tocline {Names for some adjunctions} {7} \tocline {Rules for the quantifiers} {8} \tocline {Introduction of the existential} {9} \tocline {Elimination of the existential} {10} \tocline {A derivation from Prawitz} {11} \tocline {A derivation from Prawitz (2)} {12} \tocline {Wild notes about exist-elim} {13} \tocline {Notes about DTT} {14} \newpage % -------------------- % «prawitz-original» (to ".prawitz-original") % (s "Prawitz's example: original version" "prawitz-original") \myslide {Prawitz's example: original version} {prawitz-original} In [Prawitz], this example of a translation (from natural language) is used to introduce Natural Deduction: \bsk An informal derivation of $ýx.Îy.(Pxy\&Qxy)$ from the two assumptions (1) $ýx.ýy.Pxy$ (2) $ýx.ýy.(Pxy⊃Qxy)$ may run somewhat as follows: From (1), we obtain: (3) $Îy.Pay$ Let us therefore assume (4) $Pab$. From (2), we have: (5) $Pab⊃Qab$ and from (4) and (5) (6) $Qab$. Hence, from (4) and (6), we obtain (7) $Pab\&Qab$ and from (7) we get (8) $Îy.(Pay\&Qay)$ Now, (8) is obtained from assumption (4), but the argument is independent of the particular value of the parameter $b$ that satisfies (4). In view of (3), we therefore have: (9) (8) is independent of the assumption (4). Because of (9), (8) depends only on (1) and (2) and thus holds on these assumptions for any arbitrary value of $a$. Hence, the desired result: (10) $ýx.Îy.(Pxy\&Qxy)$. \msk The corresponding natural deduction is given below; the numerals refer to steps in the informal argument above (rather than to the way the assumptions are discharged). %: \R2{ýxýy(Pxy⊃Qxy)} %: ------------------ %: ýy(Pay⊃Qay) %: ----------- %: \L4{Pab} \R5{Pab⊃Qab} %: ------------------------- %: \L4{Pab} \R6{Qab} %: ---------------------- %: \L1{ýxÎyPxy} \R7{Pab&Qab} %: ------------ ---------------- %: \L3{ÎyPay} \R8{Îy(Pay&Qay)} %: -------------------------------- %: \R9{Îy(Pay&Qay)} %: --------------------- %: \R{10}{ýxÎy(Pxy&Qyx)} %: %: ^prawitz-p19-LR %: $$\def\N#1{\text{\tiny (#1)}} \def\R#1#2{#2\hbox to 0pt{\;\;{\tiny (#1)}\hss}} \def\L#1#2{\hbox to 0pt{\hss{\tiny (#1)}\;\;}#2} \ded{prawitz-p19-LR} $$ \newpage % -------------------- % «prawitz-proper-sub» (to ".prawitz-proper-sub") % (s "Prawitz's example: proper subtrees" "prawitz-proper-sub") \myslide {Prawitz's example: proper subtrees} {prawitz-proper-sub} We will use the same letters for free and bound variables, and we'll often abbreviate `$Pab$' and `$Qab$' as just `$P$' and `$Q$'. In our notation, with all discharges indicated, that tree becomes: %: [a]^2 ýa.ýb.P⊃Q %: ----------------(ý¯E) %: [b]^1 ýb.P⊃Q %: --------------(ý¯E) %: [P]^1 P⊃Q %: ------------- %: [P]^1 Q %: ------------ %: [a]^2 ýa.Îb.P P&Q %: --------------(ý¯E) ------(ίI) %: Îb.P Îb.P&Q %: -----------------------(ίE);1 %: Îb.P&Q %: ---------(ý¯I);2 %: ýa.Îb.P&Q %: %: ^prawitz-blaa-1 %: $$\ded{prawitz-blaa-1}$$ Definition: a subtree of an ND derivation is {\und{improper}} when it contains a bar that discharges hypotheses (say, ``$(ίE);1$'' above) but it doesn't contain all of the leaves associated to that discharge (in that case, $[P]^1$, $[P]^1$, and $[b]^1$). % A subtree of a ND tree is {\sl improper} if % it includes a bar with a discharge marker - say, ``4'' -, % but it doesn't include some of the leaves marked ``4'' % in the original tree. \msk It is easy to attribute a meaning (a ``semantics'') for proper subtrees in which all the hypotheses and the conclusion have the same free variables. For example, this subtree, %: %: Îb.Pab ýb.Pab⊃Qab %: ================== %: Îb.Pab&Qab %: %: ^prx-1 %: $$\ded{prx-1}$$ corresponds to this inclusion between subsets of $A$: $$\sst{b}{\text{$Îb.Pab$ \;\;and\;\; $ýb.Pab⊃Qab$}}$$ $$\subseteq \sst{b}{\text{$Îb.Pab\&Pqb$}}$$ But how do we attribute a semantics for proper subtrees where the sets of free variables of the hypotheses and the conclusion are not all equal? Even worse: how can we interpret hypotheses like `$b$' (or `$f(a)$'), that are {\sl terms} (values for variables), instead of ``truths''? This seems to make no sense in ``subset semantics''... \bsk To understand this we need to introduce other translations. \newpage % -------------------- % «quantifier-judgments» (to ".quantifier-judgments") % (s "Quantifiers: judgment rules" "quantifier-judgments") \myslide {Quantifiers: judgment rules} {quantifier-judgments} In [Jacobs], sec.\ 4.1, the rules for the quantifiers for first-order logic are stated in terms of ``judgments'', as below: (his notation is very different, though -) %: %: [b]^2 Pa %: ::::: %: a,b;Pa|-Qab Qab %: ------------(ý¯I) ------(ý¯I);2 %: a;Pa|-ýb.Qab ýb.Qab %: %: ^41.-FaI ^41.-FaI-nd %: %: Pa %: : %: a|-b a;Pa|-ýb.Qab b ýb.Qab %: -----------------(ý¯E) ----------(ý¯E) %: a;Pa|-Qab Qab %: %: ^41.-FaE ^41.-FaE-nd %: %: b Pa %: :::: %: a|-b a;Pa|-Qab Qab %: ----------------(ίI) ------(ίI) %: a;Pa|-Îb.Qab Îb.Qab %: %: ^41.-ExI ^41.-ExI-nd %: %: Pa [b]^1 [Qab]^1 Ra %: : ::::::::::::::: %: a;Pa|-Îb.Qab a,b;Qab,Ra|-Sa Îb.Qab Sa %: ----------------------------(ίE) ------------------(ίE);1 %: a;Pa,Ra|-Sa Sa %: %: ^41.-ExE ^41.-ExE-nd %: $$\begin{array}{ccc} \ded{41.-FaI} && \ded{41.-FaE} \\ \\ \ded{41.-ExI} && \ded{41.-ExE} \\ \\ \end{array} $$ Each judgment of the form `$a;Pa \vdash Qa$' can be understood as an inclusion $\sst{a}{Pa} \subseteq \sst{a}{Qa}$. Judgments of the form $a \vdash b$ are functions $A \to B$ (or sections of a dependent projections, as we will see later). \msk In $(ý¯E)$ and $(ίI)$ there seems to be a missing `$b$' in one of the hypotheses/conclusions; that $b$ is taken to be the image of $a$ by $a \vdash b$. \msk Here's how to translate the ``judgment rules'' to Natural Deduction... $$\begin{array}{c} \ded{41.-FaI-nd} \qquad \ded{41.-FaE-nd} \\ \\ \\ \ded{41.-ExI-nd} \qquad \ded{41.-ExE-nd} \\ \\ \end{array} $$ in the ND form the free variables of each subtree are not shown - they must be inferred. \newpage % -------------------- % «quantifier-diagrams» (to ".quantifier-diagrams") % (s "Quantifiers: diagrammatic rules" "quantifier-diagrams") \myslide {Quantifiers: diagrammatic rules} {quantifier-diagrams} Now let's draw these rules in a diagrammatic form: $$\begin{array}{rcl} \begin{array}{c} \ded{41.-FaI} \\ \\ \ded{41.-FaE} \\ \\ \ded{41.-ExI} \\ \\ \ded{41.-ExE} \\ \\ \end{array} & & \begin{array}{c} \ded{41.-FaI-nd} \qquad \ded{41.-FaE-nd} \\ \\ \\ \ded{41.-ExI-nd} \qquad \ded{41.-ExE-nd} \\ \\ \end{array} \end{array} $$ %D diagram quant-rules-dotted %D 2Dx 100 +25 +20 +25 +20 +25 +20 +10 +15 +10 %D 2D 100 <--- aiP aeP <--- eiP eeP %D 2D +15 <--- aib ýE v <--- eib %D 2D +15 aiQ ---> aiFbQ aeQ <--- aeFbQ eiQ ---> eiEbQ eeQ <--- eeEbQ %D 2D +15 ýI_1 <--- aeb ÎI \ eeb eeR %D 2D +15 --> eeS %D 2D %D 2D +10 aiab |-> aia aeab |-> aea eiab |-> eia eeab |-> eea %D 2D %D (( aiP .tex= P %D aib .tex= [b]^1 %D aiQ .tex= Q %D aiFbQ .tex= ýb.Q %D aiab .tex= a,b %D aia .tex= a %D aiP aiQ .> %D aib aiQ .> %D aiQ aiFbQ .> .plabel= b ý¯I_1 %D aiab aia |-> %D )) %D (( aeP .tex= P %D aeQ .tex= Q %D aeFbQ .tex= ýb.Q %D aeb .tex= b %D aeab .tex= a,b %D aea .tex= a %D aeP aeFbQ .> %D aeFbQ aeQ .> .plabel= a ý¯E %D aeb aeQ .> %D aeab aea |-> %D )) %D (( eiP .tex= P %D eib .tex= b %D eiQ .tex= Q %D eiEbQ .tex= Îb.Q %D eiab .tex= a,b %D eia .tex= a %D eiP eiQ .> eib eiQ .> eiQ eiEbQ .> .plabel= b ίI %D eiab eia |-> %D )) %D (( eeP .tex= P %D eeEbQ .tex= Îb.Q %D eeQ .tex= Q %D eeR .tex= R %D eeS .tex= S %D eeb .tex= b %D eeab .tex= a,b eea .tex= a %D eeP eeEbQ .> eeEbQ eeQ .> .plabel= a ίE eeQ eeS .> eeR eeS .> %D eeEbQ eeb .> .plabel= l ίE eeb eeS .> %D eeab eea |-> %D )) %D enddiagram %D $$\diag{quant-rules-dotted}$$ Each proposition will be draw over (the list of) is free variables. We draw `$b$' over `$a$' for reasons that will be become clear later (briefly: in the system with dependent types the type for $b$ will be $B_a$, which depends on $a$). \msk \widemtos Let's translate the example from [Prawitz] to diagrammatic form. We get a DAG over $a,b \mto b \mto *$, and we can translate the notion of ``proper subtree'' into a corresponding notion for DAGs. \msk A sub-DAG is ``proper'' when it is made of a subset of the vertices and arrows of the original DAG (ignore the base $a,b \mto b \mto *$ - think of it as being just the shadow of what's above it) such that: \msk $*$ If an arrow $(\aa \to \bb) Ý D'$ then the vertices $\aa$ and $\bb$ belong to $D'$; $*$ $D'$ has exactly one final node (its conclusion); $*$ If $(\aa \mto \cc)$ and $(\bb \mto \cc)$ belong to $D$, and if $(\aa \mto \cc) Ý D'$, then $(\bb \mto \cc) Ý D'$; $*$ If $D'$ contains a discharging arrow then it contains all the associated discharged nodes. \newpage % -------------------- % «dotted» (to ".dotted") % (s "Dotted diagrams" "dotted") \myslide {Dotted diagrams} {dotted} %: [a]^2 ýa.ýb.P⊃Q %: ----------------(ý¯E) %: [b]^1 ýb.P⊃Q %: --------------(ý¯E) %: [P]^1 P⊃Q A %: ------------- -[¯v]^3 %: [P]^1 Q a %: ------------ - %: [a]^2 ýa.Îb.P P&Q A B %: --------------(ý¯E) ------(ίI) -[¯v]^3 -[¯v]^1 %: Îb.P Îb.P&Q a b %: -----------------------(ίE);1 ---------- %: Îb.P&Q ¯W[P] %: ---------(ý¯I);2 -----[¯v]^2 %: ýa.Îb.P&Q P %: %: ^prawitz-bla-1 ^prawitz-bla-P %: $\ded{prawitz-bla-1} \kern-1em \ded{prawitz-bla-P}$ %D diagram prawitz-bla-diag1 %D 2Dx 100 +40 +40 +50 %D 2D 115 {b} {a} %D 2D 100 P⊃Q <-- ýb.P⊃Q <--- ýa,ýb.P⊃Q %D 2D / %D 2D +20 / b [a]^2 %D 2D v %D 2D +20 Q <-- P <---- Îb.P <----- ýa.Îb.P %D 2D \ | %D 2D \ | %D 2D v v %D 2D +40 P&Q --> Îb.P&Q ---> ýa.Îb.P&Q %D 2D %D 2D %D 2D +20 a,b |----> a |--------> * %D 2D %D (( P⊃Q ýb.P⊃Q ýa,ýb.P⊃Q # 0 1 2 %D Q P Îb.P ýa.Îb.P # 3 4 5 6 %D P&Q Îb.P&Q ýa.Îb.P&Q # 7 8 9 %D @ 0 @ 1 <. .plabel= a ý¯E %D @ 1 @ 2 <. .plabel= a ý¯E %D @ 0 @ 3 .> %D @ 3 @ 4 <. @ 4 @ 5 <. .plabel= b ίE %D @ 5 @ 6 <. .plabel= b ý¯E %D @ 3 @ 7 .> @ 4 @ 7 .> %D @ 7 @ 8 .> .plabel= a ίI %D @ 8 @ 9 .> .plabel= a ý¯I_2 %D )) %D (( P⊃Q b <. Îb.P b .> .plabel= l ίE ýb.P⊃Q [a]^2 <. Îb.P [a]^2 <. %D (( a,b a |-> a * |-> %D )) %D enddiagram %D $$\diag{prawitz-bla-diag1}$$ \newpage % -------------------- % «names-for-adjunctions» (to ".names-for-adjunctions") % (s "Names for some adjunctions" "names-for-adjunctions") \myslide {Names for some adjunctions} {names-for-adjunctions} %D diagram names-for-adjunctions %D 2Dx 100 +30 +30 +30 %D 2D 100 eq0 =====> eq1 aw0 =====> aw1 %D 2D - - - - %D 2D | <--> | | <--> | %D 2D v v v v %D 2D +30 eq2 <===== eq3 aw2 <===== aw3 %D 2D - - %D 2D | <--> | %D 2D v v %D 2D +30 aw4 =====> aw5 %D 2D %D 2D +20 eq4 |----> eq5 aw6 |----> aw7 %D %D (( eq0 .tex= P eq1 .tex= (b{=}b')&P %D eq2 .tex= Q eq3 .tex= Q %D @ 0 @ 1 => %D @ 0 @ 2 |-> @ 1 @ 3 |-> %D @ 2 @ 3 <= %D @ 0 @ 3 harrownodes nil 20 nil |-> sl^ .plabel= a =^\fl %D @ 0 @ 3 harrownodes nil 20 nil <-| sl_ .plabel= b =^\sh %D )) %D (( eq4 .tex= a,b eq5 .tex= a,b,b' %D @ 0 @ 1 |-> %D )) %D (( aw0 .tex= P aw1 .tex= Îb.P %D aw2 .tex= Q aw3 .tex= Q %D aw4 .tex= R aw5 .tex= ýb.R %D @ 0 @ 1 => %D @ 2 @ 3 <= %D @ 4 @ 5 => %D @ 0 @ 2 |-> @ 1 @ 3 |-> %D @ 2 @ 4 |-> @ 3 @ 5 |-> %D @ 0 @ 3 harrownodes nil 20 nil |-> sl^ .plabel= a Î^\fl %D @ 0 @ 3 harrownodes nil 20 nil <-| sl_ .plabel= b Î^\sh %D @ 2 @ 5 harrownodes nil 20 nil <-| sl^ .plabel= a ý^\fl %D @ 2 @ 5 harrownodes nil 20 nil |-> sl_ .plabel= b ý^\sh %D )) %D (( aw6 .tex= a,b aw7 .tex= a %D @ 0 @ 1 |-> %D )) %D enddiagram $$\diag{names-for-adjunctions}$$ \bsk %D diagram names-for-adjunctions-2 %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 a,b <== a (a;a) <=== a{} P&Q <=== P %D 2D - - - - - - %D 2D | <-> | | <-> | | <-> | %D 2D v v v v v v %D 2D +30 c ==> b|->c (b;c) ===> b,c R ===> Q⊃R %D 2D %D (( a,b a c b|->c %D @ 0 @ 1 <= %D @ 0 @ 2 |-> @ 1 @ 3 |-> %D @ 2 @ 3 => %D @ 0 @ 3 harrownodes nil 20 nil <-| sl^ .plabel= a |->^\fl %D @ 0 @ 3 harrownodes nil 20 nil |-> sl_ .plabel= b |->^\sh %D )) %D (( (a;a) a{} (b;c) b,c %D @ 0 @ 1 <= %D @ 0 @ 2 |-> @ 1 @ 3 |-> %D @ 2 @ 3 => %D @ 0 @ 3 harrownodes nil 20 nil <-| sl^ .plabel= a ×^\fl %D @ 0 @ 3 harrownodes nil 20 nil |-> sl_ .plabel= b ×^\sh %D )) %D (( P&Q P R Q⊃R %D @ 0 @ 1 <= %D @ 0 @ 2 |-> @ 1 @ 3 |-> %D @ 2 @ 3 => %D @ 0 @ 3 harrownodes nil 20 nil <-| sl^ .plabel= a ⊃^\fl %D @ 0 @ 3 harrownodes nil 20 nil |-> sl_ .plabel= b ⊃^\sh %D )) %D enddiagram %D $$\diag{names-for-adjunctions-2}$$ \newpage % -------------------- % «fol-quantifier-rules» (to ".fol-quantifier-rules") % (s "Rules for the quantifiers" "fol-quantifier-rules") \myslide {Rules for the quantifiers} {fol-quantifier-rules} %: a,b;P|-Q %: ---------(ý¯I) %: a;P|-ýb.Q %: %: ^41-FaI %: %: a;P|-ýb.Q %: ---------(ý^\fl) %: a|-b a;P|-ýb.Q a|-b a,b;P|-Q %: ---------------(ý¯E) := --------------¯s %: a;P|-Q a;P|-Q %: %: ^41-FaE ^41-FaE2 %: %: ------------ %: a;Îb.Q|-Îb.Q %: ------------(Î^\sh) %: a|-b a,b;Q|-Îb.Q %: ------------------¯s %: a|-b a;P|-Q a;P|-Q a;Q|-Îb.Q %: ----------------(ίI) := ---------------------¢ %: a;P|-Îb.Q a;P|-Îb.Q %: %: ^41-ExI ^41-ExI2 %: %: a,b;Q,R|-S %: ----------(⊃^\sh) %: a,b;Q|-R⊃S %: -----------(Î^\sh) %: a;P|-Îb.Q a;Îb.Q|-R⊃S %: ----------------------¯s %: a;P|-Îb.Q a,b;Q,R|-S a;P|-R⊃S %: ---------------------(ίE) := --------(⊃^\fl) %: a;P,R|-S a;P,R|-S %: %: ^41-ExE ^41-ExE2 %: $$\begin{array}{rcl} \ded{41-FaI} & := & (ý^\sh) \\ \\ \ded{41-FaE} & := & \ded{41-FaE2} \\ \\ \ded{41-ExI} & := & \ded{41-ExI2} \\ \\ \ded{41-ExE} & := & \ded{41-ExE2} \\ \\ \end{array} $$ \newpage % -------------------- % «ex-intro» (to ".ex-intro") % (s "Introduction of the existential" "ex-intro") \myslide {Introduction of the existential} {ex-intro} %D diagram 41-exi-cat %D 2Dx 100 +30 +30 %D 2D 100 P %D 2D - %D 2D | %D 2D v %D 2D +30 {Q} <==== Q ==> {Îb.Q} %D 2D - - - %D 2D | <-| | <-| | %D 2D v v v %D 2D +30 {}Îb.Q <= Îb.Q <== Îb.Q{} %D 2D %D 2D +20 {}a |--> a,b |--> a{} %D 2D %D (( P # 0 %D {Q} Q {Îb.Q} # 1 2 3 %D {}Îb.Q Îb.Q Îb.Q{} # 4 5 6 %D {}a a,b a{} # 7 8 9 %D @ 0 @ 1 |-> .plabel= r a;Pa|-Qab %D @ 0 @ 4 |-> .slide= -8pt .plabel= l a;Pa|-Îb.Qab %D @ 1 @ 2 <= @ 2 @ 3 => %D @ 1 @ 4 |-> @ 2 @ 5 |-> @ 3 @ 6 |-> %D @ 4 @ 5 <= @ 5 @ 6 <= %D @ 1 @ 5 harrownodes nil 20 nil <-| %D @ 2 @ 6 harrownodes nil 20 nil <-| .plabel= a Î^\sh %D @ 7 @ 8 |-> .plabel= a a|-b @ 8 @ 9 |-> %D )) %D enddiagram %D $$\diag{41-exi-cat}$$ %: %: a;Pa %: : %: a|-b a;Pa|-Qab a;Qab %: ----------------(ίI) -------- %: a;Pa|-Îb.Qab a;Îb.Qab %: %: ^41-ExI-sc ^41-ExI-nd %: $$\ded{41-ExI-sc} \qquad \ded{41-ExI-nd}$$ \newpage % -------------------- % «ex-elim» (to ".ex-elim") % (s "Elimination of the existential" "ex-elim") \myslide {Elimination of the existential} {ex-elim} %D diagram 41-ExE-cat %D 2Dx 100 +30 +30 +30 %D 2D 100 P ====> P&R %D 2D - - %D 2D a;Pa|-Îb.Qab | | %D 2D v | %D 2D +30 Q&R <== Q ==> Îb.Q |-> | a;Pa,Ra|-Sa %D 2D a,b; - - - | %D 2D Qab,Ra | |-> | |-> | | %D 2D |-Sa v v v v %D 2D +30 {}S => R⊃S <= R⊃S{} <=== S %D 2D %D 2D +20 {}a,b == a,b |--> a ====== a{} %D 2D %D (( P P&R # 0 1 %D Q&R Q Îb.Q # 2 3 4 %D {}S R⊃S R⊃S{} S # 5 6 7 8 %D @ 0 @ 1 => %D @ 0 @ 4 |-> .plabel= l a;Pa|-Îb.Qab %D @ 1 @ 8 |-> .plabel= r a;Pa,Ra|-Sa %D @ 2 @ 3 <= @ 3 @ 4 => %D @ 2 @ 5 |-> .plabel= l a,b;Qab,Ra|-Sa %D @ 3 @ 6 |-> @ 4 @ 7 |-> %D @ 5 @ 6 => @ 6 @ 7 <= @ 7 @ 8 <= %D @ 2 @ 6 harrownodes nil 20 nil |-> .plabel= a ⊃^\sh %D @ 3 @ 7 harrownodes nil 20 nil |-> .plabel= a Î^\fl %D @ 0 @ 8 harrownodes 9 18 nil |-> .plabel= a ⊃^\fl %D )) %D (( {}a,b a,b a a{} %D @ 0 @ 1 = @ 1 @ 2 |-> @ 2 @ 3 = %D )) %D enddiagram \bsk %: a;Ra %: ------ %: a;Pa [a,b;Qab]^1 a,b;Ra %: : ::::: %: a;Îb.Qab a,b;Sa %: ---------------------------(ίE);1 %: a;Sa %: %: ^41-ExE-nd %: %: a;Pa|-Îb.Qab a,b;Qab,Ra|-Sa %: ---------------------(ίE) %: a;Pa,Ra|-Sa %: %: ^41-ExE-sc %: In Natural Deduction: $$\ded{41-ExE-nd}$$ In Sequent Calculus: $$\ded{41-ExE-sc}$$ Categorically: $$\diag{41-ExE-cat}$$ \newpage % -------------------- % «prawitz» (to ".prawitz") % (s "A derivation from Prawitz" "prawitz") \myslide {A derivation from Prawitz} {prawitz} Prawitz, p.19: %: ýxýy(Pxy⊃Pyx) %: ------------- %: ýy(Pay⊃Pya) %: ----------- %: Pab Pab⊃Pba %: --------------- %: Pab Pba %: ------------ %: ýxÎyPxy Pab&Pba %: ------- ----------- %: ÎyPay Îy(Pab&Pba) %: ---------------------- %: Îy(Pay&Pya) %: ------------- %: ýxÎy(Pxy&Pyx) %: %: ^prawitz-p19 %: $$\ded{prawitz-p19}$$ %: [a]^3 ýxýy(Pxy⊃Pyx) %: --------------------(ý¯E) %: [b]^1 ýy(Pay⊃Pya) %: -------------------(ý¯E) %: [Pab]^2 Pab⊃Pba %: ------------------- %: [Pab]^2 Pba %: ---------------- %: [a]^3 ýxÎyPxy Pab&Pba %: ----------------(ý¯E) -----------(ίI);1 %: ÎyPay Îy(Pay&Pya) %: ------------------------------(ίE);2 %: Îy(Pay&Pya) %: -------------(ý¯I);3 %: ýxÎy(Pxy&Pyx) %: %: ^prawitz-p19-dnc %: $$\ded{prawitz-p19-dnc}$$ %: ýxýy(Pxy⊃Pyx) %: -----------------(ý¯E) %: a;ýy(Pay⊃Pya) %: ---------------(ý¯E) %: [a,b;Pab]^2 a,b;Pab⊃Pba %: ------------------------- %: [a,b;Pab]^2 a,b;Pba %: ----------------------------- %: ýxÎyPxy a,b;Pab&Pba %: -------(ý¯E) -------------(ίI);1 %: a;ÎyPay a;Îy(Pay&Pya) %: ------------------------------(ίE);2 %: a;Îy(Pay&Pya) %: -------------(ý¯I);3 %: ýxÎy(Pxy&Pyx) %: %: ^prawitz-p19-dnc2 %: $$\ded{prawitz-p19-dnc2}$$ \newpage % -------------------- % «prawitz-2» (to ".prawitz-2") % (s "A derivation from Prawitz (2)" "prawitz-2") \myslide {A derivation from Prawitz (2)} {prawitz-2} %: ýa.ýb.P⊃Q %: -----------------(ý¯E) %: a;ýb.P⊃Q %: ---------------(ý¯E) %: [a,b;P]^2 a,b;P⊃Q %: ------------------------- %: [a,b;P]^2 a,b;Q %: ----------------------------- %: ýa.Îb.P a,b;P&Q %: -------(ý¯E) -------------(ίI);1 %: a;Îb.P a;Îb.P&Q %: ------------------------------(ίE);2 %: a;Îb.P&Q %: -------------(ý¯I);3 %: ýa.Îb.P&Q %: %: ^prawitz-p19-dnc3 %: $$\ded{prawitz-p19-dnc3}$$ %: [a]^3 a|->(b|->(p|->q)) %: -----------------(ý¯E) %: [a;b]^1 a;b|->(p|->q) %: ---------------------(ý¯E) %: [a,b;p]^2 a,b;p|->q %: ----------------------(⊃¯E) %: [a,b;p]^2 a,b;q %: -------------------------(&¯I) %: a|->b,q a,b;p,q %: -------(ý¯E) --------(ίI);1 %: a;b,q a;b,p,q %: -------------------------(ίE);2 %: a;b,p,q %: ---------(ý¯I);3 %: a|->b,p,q %: %: ^prawitz-p19-dnc3b %: $$\ded{prawitz-p19-dnc3b}$$ %: ýa.ýb.P⊃Q %: ---------(ý¯E) %: ýa.Îb.P [a,b;P]^2 a;ýb.P⊃Q %: -------(ý¯E) :::::::::::::::::::::: %: a;Îb.P a;Îb.P&Q %: ------------------------------(ίE);2 %: a;Îb.P&Q %: -------------(ý¯I);3 %: ýa.Îb.P&Q %: %: ^prawitz-p19-dnc4 %: $$\ded{prawitz-p19-dnc4}$$ \newpage % -------------------- % «ex-elim-bad» (to ".ex-elim-bad") % (s "Wild notes about exist-elim" "ex-elim-bad") \myslide {Wild notes about exist-elim} {ex-elim-bad} What do I know about the $(ίE^\vee)$ rule from ND? %D diagram ExE-foo %D 2Dx 100 +35 +35 +40 %D 2D 100 a0 <== a1 ==> a2 ==> a3 %D 2D - - - - %D 2D | |-> | |-> | |-> | %D 2D v v v v %D 2D +25 b0 ==> b1 <== b2 <== b3 %D 2D %D 2D +20 c0 === c1 |-> c2 === c3 %D 2D %D (( a0 .tex= P&Q a1 .tex= P a2 .tex= Îb.P a3 .tex= (Îb.P)&Q %D b0 .tex= R b1 .tex= Q⊃R b2 .tex= Q⊃R b3 .tex= R %D c0 .tex= a,b c1 .tex= a,b c2 .tex= a c3 .tex= a %D a0 a1 <= sl_ a0 a1 |-> sl^ .plabel= a %D a1 a2 => sl_ a1 a2 |-> sl^ .plabel= a {ñ} %D a2 a3 => sl_ a2 a3 <-| sl^ .plabel= a %D b0 b1 => b1 b2 <= b2 b3 <= %D a0 b0 |-> a1 b1 |-> a2 b2 |-> a3 b3 |-> %D a0 b1 harrownodes nil 20 nil |-> %D a1 b2 harrownodes nil 20 nil |-> %D a2 b3 harrownodes nil 20 nil |-> %D c0 c1 = c1 c2 |-> c2 c3 = %D )) %D enddiagram %D $$\diag{ExE-foo}$$ \widemtos We do have a map $P\&Q \mto (Îb.P)\&Q$: %D diagram foo-Frob %D 2Dx 100 +50 +30 +15 %D 2D 100 a0 ============> a2 %D 2D ^ ----> ^ %D 2D | / | %D 2D - - Frob - %D 2D +25 b0 ==> b1 <----| b2 %D 2D - - |--> - %D 2D | \ | %D 2D v ----> v %D 2D +25 c0 <============ c2 %D 2D %D 2D +15 a,b |------> a %D 2D %D (( a0 .tex= P a2 .tex= Îb.P %D b0 .tex= P&Q b1 .tex= Îb.(P&Q) b2 .tex= (Îb.P)&Q %D c0 .tex= Q c2 .tex= Q %D a0 a2 => sl_ a0 a2 |-> sl^ .plabel= a {\coñ} %D a0 b1 harrownodes 15 20 nil |-> %D a0 b0 <-| a2 b1 <-| a2 b2 <-| %D b0 b1 => sl_ %D b0 b1 |-> sl^ .plabel= a {\coñ} %D b1 b2 |-> sl^ .plabel= a {î} %D b1 b2 <-| sl_ .plabel= b ¯{Frob} %D b0 c0 |-> b1 c2 |-> b2 c2 |-> %D c0 b1 harrownodes 15 20 nil |-> %D c0 c2 <= sl_ c0 c2 |-> sl^ .plabel= a {ñ} %D a,b a |-> %D )) %D enddiagram $$\cdiag{foo-Frob} \qquad \cdiag{ExE-foo2}$$ I don't know how to universalize the $R$, though... Ah, make the adjunction arrows bidirectional, and start with a pair of objects... $((a,b;P);(a;Q))$ ...and then? %D diagram ExE-foo2 %D 2Dx 100 +45 %D 2D 100 a0 |-> a1 %D 2D - - %D 2D | |-> | %D 2D v v %D 2D +25 b0 <== b1 %D 2D %D 2D +20 c0 |-> c1 %D 2D %D (( a0 .tex= P&Q a1 .tex= (Îb.P)&Q %D b0 .tex= R b1 .tex= R %D c0 .tex= a,b c1 .tex= a %D a0 a1 |-> .plabel= a {\coñ;î} %D b0 b1 <= sl_ b0 b1 |-> sl^ .plabel= a {ñ} %D a0 b0 |-> a1 b1 |-> %D a0 b1 harrownodes nil 20 nil |-> %D c0 c1 |-> %D )) %D enddiagram %D % $$\diag{ExE-foo2}$$ \newpage % -------------------- % «notes-dtt» (to ".notes-dtt") % (s "Notes about DTT" "notes-dtt") \myslide {Notes about DTT} {notes-dtt} Dependent types (or: ``dependent spaces''): $a,b,c \vdash D$ \msk Spaces of witnesses: $a,b,c \vdash ¯W[P(a,b,c)]$ \msk Sections: $a \vdash b$ \msk Substitutions: %: %: a|-b a,b,c|-D %: -------------- %: a,c|-D %: %: ^2008may12-subst %: $\ded{2008may12-subst}$ \bsk Arbitrary base maps The category of display maps Witnesses of equality Vertical maps \bsk Ideas about display maps: One-step projections Generalized projections The category with just the projections is a poset Sections (monics, inverse to projections) Diagonal maps \bsk We know how to attribute a semantics to proper trees in propositional ND, but what about ND for (intuitionistic, typed) first-order logic? Then each hypothesis, and the conclusion, may have a different set of free variables - and, worse, of the two hypotheses for the $(ý¯E)$ rule, %: b(a) ýb.P(a,b) %: ----------------(ý¯E) %: P(a,b(a)) %: %: ^hyps-for-fae %: $$\ded{hyps-for-fae}$$ one is a value for a variable (as a term), the other is is a proposition... \bsk Conjecture: my categorical inter-fiber semantics for ND can be extented to a semantics for DTT. Conjecture: in my semantics for inter-fiber ND trees, each ND tree corresponds to a structure that can convert sections (one for each hypothesis, and compatible somehow) into a section corresponding to the final conclusion. %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: