Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008topos-str.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008topos-str.tex && latex 2008topos-str.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008topos-str.tex && pdflatex 2008topos-str.tex")) % (eev "cd ~/LATEX/ && Scp 2008topos-str.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2008topos-str.dvi") % (find-pspage "~/LATEX/2008topos-str.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008topos-str.ps 2008topos-str.dvi") % (find-pspage "~/LATEX/2008topos-str.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % «.biccc-and classifier» (to "biccc-and classifier") % «.pre-hyperdoctrine» (to "pre-hyperdoctrine") % «.topos-ccompc» (to "topos-ccompc") % «.nnos-basic-constructions» (to "nnos-basic-constructions") % «.nnos-p-prime» (to "nnos-p-prime") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2008topos-str.dnt %* % (eedn4-51-bounded) Index of the slides: \msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {The BiCCC structure and the classifier axiom} {2} \tocline {The pre-hyperdoctrine structure} {3} \tocline {Two CCompC structures in a topos} {4} \tocline {Basic constructions with NNOs} {5} \tocline {NNOs: the morphism $\kappa $} {6} %:*&*\&* \newpage % -------------------- % «biccc-and classifier» (to ".biccc-and classifier") % (s "The BiCCC structure and the classifier axiom" "biccc-and classifier") \myslide {The BiCCC structure and the classifier axiom} {biccc-and classifier} %D diagram CCC %D 2Dx 100 +25 +25 +15 +20 +25 %D 2D 100 --| p0 |- t0 a0 <==== a1 %D 2D / - \ - - - %D 2D / | \ | | <--> | %D 2D v v v v v v %D 2D +25 p1 <--| p2 |--> p3 t1 a2 ====> a3 %D 2D %D 2D +15 c0 |--> c1 <--| c2 i0 %D 2D / - \ - %D 2D \ | / | %D 2D \ v / v %D 2D +25 --> c3 <- i1 %D 2D %D (( p0 .tex= a %D p1 .tex= b p2 .tex= b,c p3 .tex= c %D @ 0 @ 1 |-> @ 0 @ 2 |-> @ 0 @ 3 |-> %D @ 1 @ 2 <-| @ 2 @ 3 |-> %D )) %D (( c0 .tex= a c1 .tex= a÷b c2 .tex= b %D c3 .tex= c %D @ 0 @ 1 |-> @ 1 @ 2 <-| %D @ 0 @ 3 |-> @ 1 @ 3 |-> @ 2 @ 3 |-> %D )) %D (( t0 .tex= a t1 .tex= * %D @ 0 @ 1 |-> %D )) %D (( i0 .tex= ® i1 .tex= a %D @ 0 @ 1 |-> %D )) %D (( a0 .tex= a,b a1 .tex= a %D a2 .tex= c a3 .tex= b|->c %D @ 0 @ 1 <= @ 0 @ 2 |-> @ 1 @ 3 |-> @ 2 @ 3 => %D @ 0 @ 3 harrownodes nil 20 nil <-> %D )) %D enddiagram %D diagram HA %D 2Dx 100 +25 +25 +15 +20 +25 %D 2D 100 --| p0 |- t0 a0 <==== a1 %D 2D / - \ - - - %D 2D / | \ | | <--> | %D 2D v v v v v v %D 2D +25 p1 <--| p2 |--> p3 t1 a2 ====> a3 %D 2D %D 2D +15 c0 |--> c1 <--| c2 i0 %D 2D / - \ - %D 2D \ | / | %D 2D \ v / v %D 2D +25 --> c3 <- i1 %D 2D %D (( p0 .tex= P %D p1 .tex= Q p2 .tex= Q&R p3 .tex= R %D @ 0 @ 1 |-> @ 0 @ 2 |-> @ 0 @ 3 |-> %D @ 1 @ 2 <-| @ 2 @ 3 |-> %D )) %D (( c0 .tex= P c1 .tex= P∨Q c2 .tex= Q %D c3 .tex= R %D @ 0 @ 1 |-> @ 1 @ 2 <-| %D @ 0 @ 3 |-> @ 1 @ 3 |-> @ 2 @ 3 |-> %D )) %D (( t0 .tex= P t1 .tex= {§} %D @ 0 @ 1 |-> %D )) %D (( i0 .tex= ® i1 .tex= P %D @ 0 @ 1 |-> %D )) %D (( a0 .tex= P&Q a1 .tex= P %D a2 .tex= R a3 .tex= Q⊃R %D @ 0 @ 1 <= @ 0 @ 2 |-> @ 1 @ 3 |-> @ 2 @ 3 => %D @ 0 @ 3 harrownodes nil 20 nil <-> %D )) %D enddiagram %D diagram Topos %D 2Dx 100 +25 +20 +25 %D 2D 100 pb0 |---> pb1 cl0 |---> cl1 %D 2D - __| - v __| v %D 2D | | | --\ | %D 2D v v v v v %D 2D +25 pb2 |---> pb3 cl2 |---> cl3 %D 2D %D (( pb0 .tex= (a,b)|_c pb1 .tex= b %D pb2 .tex= a pb3 .tex= c %D @ 0 @ 1 |-> @ 0 @ 2 |-> @ 1 @ 3 |-> @ 2 @ 3 |-> %D # @ 0 _| %D @ 0 relplace 8 8 \pbsymbol{7} %D )) %D (( cl0 .tex= a|_P cl1 .tex= * %D cl2 .tex= a cl3 .tex= Ï %D @ 0 @ 1 |-> @ 0 @ 2 >-> @ 1 @ 3 >-> .plabel= r § @ 2 @ 3 |-> .plabel= a P %D # @ 0 _| %D @ 0 relplace 8 8 \pbsymbol{7} %D )) %D enddiagram CCC: $\diag{CCC}$ \medskip HA: $\diag{HA}$ \medskip Topos: \smallskip $\diag{Topos}$ \newpage % -------------------- % «pre-hyperdoctrine» (to ".pre-hyperdoctrine") % (s "The pre-hyperdoctrine structure" "pre-hyperdoctrine") \myslide {The pre-hyperdoctrine structure} {pre-hyperdoctrine} %D diagram Hyperdoctrine %D 2Dx 100 +30 +30 +45 +35 +40 %D 2D 100 eq0 =====> eq1 aw0 =====> aw1 %D 2D - - - - %D 2D | <--> | | <--> | %D 2D |---> v v v v %D 2D +30 s0 <==== s1 eq2 <===== eq3 aw2 <===== aw3 %D 2D - - %D 2D | <--> | %D 2D v v %D 2D +30 aw4 =====> aw5 %D 2D %D 2D +20 s2 |---> s3 eq4 |----> eq5 aw6 |----> aw7 %D %D (( s0 .tex= \s[a|P] s1 .tex= \s[b|P] %D @ 0 @ 1 <= sl_ @ 0 @ 1 |-> sl^ .plabel= a {ñ} %D )) %D (( s2 .tex= a s3 .tex= b %D @ 0 @ 1 |-> %D )) %D (( eq0 .tex= \s[a,b|P] eq1 .tex= \s[a,b,b'|b{=}b'&P] %D eq2 .tex= \s[a,b|{Q[b,b]}] eq3 .tex= \s[a,b,b'|{Q[b,b']}] %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 2 @ 3 <= sl_ @ 2 @ 3 |-> sl^ .plabel= a {ñ} %D @ 0 @ 2 |-> @ 1 @ 3 |-> @ 0 @ 3 harrownodes nil 20 nil <-> %D )) %D (( eq4 .tex= a,b eq5 .tex= a,b,b' %D @ 0 @ 1 |-> %D )) %D (( aw0 .tex= \s[a,b|P] aw1 .tex= \s[a|Îb.P] %D aw2 .tex= \s[a,b|Q] aw3 .tex= \s[a|Q] %D aw4 .tex= \s[a,b|R] aw5 .tex= \s[a|ýb.R] %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 2 @ 3 <= sl_ @ 2 @ 3 |-> sl^ .plabel= a {ñ} %D @ 4 @ 5 => %D @ 0 @ 2 |-> @ 1 @ 3 |-> @ 0 @ 3 harrownodes nil 20 nil <-> %D @ 2 @ 4 |-> @ 3 @ 5 |-> @ 2 @ 5 harrownodes nil 20 nil <-> %D )) %D (( aw6 .tex= a,b aw7 .tex= a %D @ 0 @ 1 |-> %D )) %D enddiagram %D diagram LCCC %D 2Dx 100 +30 +30 +45 +35 +40 %D 2D 100 eq0 =====> eq1 aw0 =====> aw1 %D 2D - - - - %D 2D | <--> | | <--> | %D 2D |---> v v v v %D 2D +30 s0 <==== s1 eq2 <===== eq3 aw2 <===== aw3 %D 2D - - %D 2D | <--> | %D 2D v v %D 2D +30 aw4 =====> aw5 %D 2D %D 2D +20 s2 |---> s3 eq4 |----> eq5 aw6 |----> aw7 %D %D (( s0 .tex= \s[a|c] s1 .tex= \s[b|c] %D @ 0 @ 1 <= sl_ @ 0 @ 1 |-> sl^ .plabel= a {ñ} %D )) %D (( s2 .tex= a s3 .tex= b %D @ 0 @ 1 |-> %D )) %D (( eq0 .tex= \s[a,b|c] eq1 .tex= \s[a,b,b'|(b{=}b'),c] %D eq2 .tex= \s[a,b|d] eq3 .tex= \s[a,b,b'|d] %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 2 @ 3 <= sl_ @ 2 @ 3 |-> sl^ .plabel= a {ñ} %D @ 0 @ 2 |-> @ 1 @ 3 |-> @ 0 @ 3 harrownodes nil 20 nil <-> %D )) %D (( eq4 .tex= a,b eq5 .tex= a,b,b' %D @ 0 @ 1 |-> %D )) %D (( aw0 .tex= \s[a,b|c] aw1 .tex= \s[a|b,c] %D aw2 .tex= \s[a,b|d] aw3 .tex= \s[a|d] %D aw4 .tex= \s[a,b|e] aw5 .tex= \s[a|{b|->e}] %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 2 @ 3 <= sl_ @ 2 @ 3 |-> sl^ .plabel= a {ñ} %D @ 4 @ 5 => %D @ 0 @ 2 |-> @ 1 @ 3 |-> @ 0 @ 3 harrownodes nil 20 nil <-> %D @ 2 @ 4 |-> @ 3 @ 5 |-> @ 2 @ 5 harrownodes nil 20 nil <-> %D )) %D (( aw6 .tex= a,b aw7 .tex= a %D @ 0 @ 1 |-> %D )) %D enddiagram Hyperdoctrine: \smallskip $\diag{Hyperdoctrine}$ \medskip LCCC: \smallskip $\diag{LCCC}$ \newpage % -------------------- % «topos-ccompc» (to ".topos-ccompc") % (s "Two CCompC structures in a topos" "topos-ccompc") \myslide {Two CCompC structures in a topos} {topos-ccompc} The two CCompC structures in a topos: %D diagram CCompHyp %D 2Dx 100 +30 +30 %D 2D 100 a0 |---> a1 |---> a2 %D 2D || ^ /\ ^ || %D 2D || | || | || %D 2D \/ v || v \/ %D 2D +30 a3 |---> a4 |---> a5 %D 2D %D (( a0 .tex= \s[a|P] a1 .tex= \s[b|§] a2 .tex= \s[c|Q] %D a3 .tex= a a4 .tex= b a5 .tex= c|_Q %D @ 0 @ 1 |-> @ 1 @ 2 |-> %D @ 0 @ 3 => @ 1 @ 4 <= @ 2 @ 5 => %D @ 0 @ 4 varrownodes nil 20 nil <-> %D @ 1 @ 5 varrownodes nil 20 nil <-> %D @ 3 @ 4 |-> @ 4 @ 5 |-> %D )) %D enddiagram %D diagram CCompLCCC %D 2Dx 100 +30 +30 %D 2D 100 a0 |---> a1 |---> a2 %D 2D || ^ /\ ^ || %D 2D || | || | || %D 2D \/ v || v \/ %D 2D +30 a3 |---> a4 |---> a5 %D 2D %D (( a0 .tex= \s[a|b] a1 .tex= \s[c|*] a2 .tex= \s[d|e] %D a3 .tex= a a4 .tex= c a5 .tex= d,e %D @ 0 @ 1 |-> @ 1 @ 2 |-> %D @ 0 @ 3 => @ 1 @ 4 <= @ 2 @ 5 => %D @ 0 @ 4 varrownodes nil 20 nil <-> %D @ 1 @ 5 varrownodes nil 20 nil <-> %D @ 3 @ 4 |-> @ 4 @ 5 |-> %D )) %D enddiagram %D $$\diag{CCompHyp} \qquad \diag{CCompLCCC}$$ \medskip Cartesian morphisms project into pullbacks: %D diagram display1 %D 2Dx 100 +30 +30 +30 +30 +30 +30 +45 +45 %D 2D 100 a0 / q0 / e0 / %D 2D // || /\ \ // || \\ \ // || \\ \ %D 2D // || \\ v // || \\ v // || \\ v %D 2D \/ \/ \\ \/ \/ \/ \/ \/ \/ %D 2D +30 a2 |--> a3 a1 q2 |--> q3 q1 e2 |--> e3 e1 %D 2D / / // || / / // || / / // || %D 2D \ // || \ // || \ // || %D 2D v \/ v \/ v \/ v \/ v \/ v \/ %D 2D +30 a4 |--> a5 q4 |--> q5 e4 |--> e5 %D 2D %D (( a0 .tex= \s[a|P] a1 .tex= \s[b|P] %D a2 .tex= a|_P a3 .tex= a %D a4 .tex= b|_P a5 .tex= b %D @ 0 @ 1 <= sl_ @ 0 @ 1 |-> sl^ .plabel= a {ñ} %D @ 0 @ 2 => @ 0 @ 3 => @ 1 @ 4 => @ 1 @ 5 => %D @ 2 @ 3 |-> @ 2 @ 4 |-> @ 3 @ 5 |-> @ 4 @ 5 |-> %D @ 2 relplace 16 6 \pbsymbol{7} %D )) %D enddiagram %D diagram displayLCCC1 %D 2Dx 100 +30 +30 +30 +30 +30 +30 +45 +45 %D 2D 100 a0 / q0 / e0 / %D 2D // || /\ \ // || \\ \ // || \\ \ %D 2D // || \\ v // || \\ v // || \\ v %D 2D \/ \/ \\ \/ \/ \/ \/ \/ \/ %D 2D +30 a2 |--> a3 a1 q2 |--> q3 q1 e2 |--> e3 e1 %D 2D / / // || / / // || / / // || %D 2D \ // || \ // || \ // || %D 2D v \/ v \/ v \/ v \/ v \/ v \/ %D 2D +30 a4 |--> a5 q4 |--> q5 e4 |--> e5 %D 2D %D (( a0 .tex= \s[a|c] a1 .tex= \s[b|c] %D a2 .tex= a,c a3 .tex= a %D a4 .tex= b,c a5 .tex= b %D @ 0 @ 1 <= sl_ @ 0 @ 1 |-> sl^ .plabel= a {ñ} %D @ 0 @ 2 => @ 0 @ 3 => @ 1 @ 4 => @ 1 @ 5 => %D @ 2 @ 3 |-> @ 2 @ 4 |-> @ 3 @ 5 |-> @ 4 @ 5 |-> %D @ 2 relplace 16 6 \pbsymbol{7} %D )) %D enddiagram $$\diag{display1} \qquad \diag{displayLCCC1}$$ \medskip %D diagram display2 %D 2Dx 100 +30 +30 +30 +30 +30 +30 +45 +45 %D 2D 100 a0 / q0 / e0 / %D 2D // || /\ \ // || \\ \ // || \\ \ %D 2D // || \\ v // || \\ v // || \\ v %D 2D \/ \/ \\ \/ \/ \/ \/ \/ \/ %D 2D +30 a2 |--> a3 a1 q2 |--> q3 q1 e2 |--> e3 e1 %D 2D / / // || / / // || / / // || %D 2D \ // || \ // || \ // || %D 2D v \/ v \/ v \/ v \/ v \/ v \/ %D 2D +30 a4 |--> a5 q4 |--> q5 e4 |--> e5 %D 2D %D (( q0 .tex= \s[a,b|P] q1 .tex= \s[a|Îb.P] %D q2 .tex= a,b|_P q3 .tex= a,b %D q4 .tex= a|_{Îb.P} q5 .tex= a %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 0 @ 2 => @ 0 @ 3 => @ 1 @ 4 => @ 1 @ 5 => %D @ 2 @ 3 |-> @ 2 @ 4 |->> @ 3 @ 5 |-> @ 4 @ 5 |-> %D )) %D (( e0 .tex= \s[a,b|P] e1 .tex= \s[a|b{=}b'&P] %D e2 .tex= a,b|_P e3 .tex= a,b %D e4 .tex= a,b,b'|_{b{=}b'&P} e5 .tex= a,b,b' %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 0 @ 2 => @ 0 @ 3 => @ 1 @ 4 => @ 1 @ 5 => %D @ 2 @ 3 |-> @ 2 @ 4 <-> @ 3 @ 5 `-> @ 4 @ 5 |-> %D )) %D enddiagram %D diagram displayLCCC2 %D 2Dx 100 +30 +30 +30 +30 +30 +30 +45 +45 %D 2D 100 a0 / q0 / e0 / %D 2D // || /\ \ // || \\ \ // || \\ \ %D 2D // || \\ v // || \\ v // || \\ v %D 2D \/ \/ \\ \/ \/ \/ \/ \/ \/ %D 2D +30 a2 |--> a3 a1 q2 |--> q3 q1 e2 |--> e3 e1 %D 2D / / // || / / // || / / // || %D 2D \ // || \ // || \ // || %D 2D v \/ v \/ v \/ v \/ v \/ v \/ %D 2D +30 a4 |--> a5 q4 |--> q5 e4 |--> e5 %D 2D %D (( q0 .tex= \s[a,b|c] q1 .tex= \s[a|b,c] %D q2 .tex= (a,b),c q3 .tex= a,b %D q4 .tex= a,(b,c) q5 .tex= a %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 0 @ 2 => @ 0 @ 3 => @ 1 @ 4 => @ 1 @ 5 => %D @ 2 @ 3 |-> @ 2 @ 4 <-> @ 3 @ 5 |-> @ 4 @ 5 |-> %D )) %D (( e0 .tex= \s[a,b|c] e1 .tex= \s[a|(b{=}b'),c] %D e2 .tex= a,b,c e3 .tex= a,b %D e4 .tex= a,b,b',(b{=}b'),c e5 .tex= a,b,b' %D @ 0 @ 1 => sl_ @ 0 @ 1 |-> sl^ .plabel= a \co{ñ} %D @ 0 @ 2 => @ 0 @ 3 => @ 1 @ 4 => @ 1 @ 5 => %D @ 2 @ 3 |-> @ 2 @ 4 <-> @ 3 @ 5 `-> @ 4 @ 5 |-> %D )) %D enddiagram %D Cocartesian morphisms induce isos and epis: $$\diag{display2}$$ $$\diag{displayLCCC2}$$ \newpage % -------------------- % «nnos-basic-constructions» (to ".nnos-basic-constructions") % (s "Basic constructions with NNOs" "nnos-basic-constructions") \myslide {Basic constructions with NNOs} {nnos-basic-constructions} % (find-eoutput '(insert 8760)) %:*-.*{\overset{.}{-}}* \widemtos %D diagram NNO+ %D 2Dx 100 +40 +45 +45 +45 %D 2D 100 * |--> 0 |--> 1 |--> 2 m %D 2D / - - - - %D 2D \ | | | | %D 2D v v v v v %D 2D +30 a0 |-> a1 |-> a2 am %D 2D %D (( a0 .tex= (n|->n) a1 .tex= (n|->n{+}1) a2 .tex= (n|->n{+}2) %D am .tex= n|->n{+}m %D * 0 |-> 0 1 |-> 1 2 |-> %D * a0 |-> a0 a1 |-> a1 a2 |-> %D 0 a0 |-> 1 a1 |-> 2 a2 |-> m am |-> %D )) %D enddiagram %D $$\diag{NNO+}$$ %D diagram NNO* %D 2Dx 100 +40 +45 +45 +45 %D 2D 100 * |--> 0 |--> 1 |--> 2 m %D 2D / - - - - %D 2D \ | | | | %D 2D v v v v v %D 2D +30 a0 |-> a1 |-> a2 am %D 2D %D (( a0 .tex= (n|->0) a1 .tex= (n|->n) a2 .tex= (n|->2n) %D am .tex= n|->mn %D * 0 |-> 0 1 |-> 1 2 |-> %D * a0 |-> a0 a1 |-> a1 a2 |-> %D 0 a0 |-> 1 a1 |-> 2 a2 |-> m am |-> %D )) %D enddiagram %D $$\diag{NNO*}$$ %D diagram NNOexp %D 2Dx 100 +40 +45 +45 +45 %D 2D 100 * |--> 0 |--> 1 |--> 2 m %D 2D / - - - - %D 2D \ | | | | %D 2D v v v v v %D 2D +30 a0 |-> a1 |-> a2 am %D 2D %D (( a0 .tex= (n|->1) a1 .tex= (n|->n) a2 .tex= (n|->n^2) %D am .tex= n|->n^m %D * 0 |-> 0 1 |-> 1 2 |-> %D * a0 |-> a0 a1 |-> a1 a2 |-> %D 0 a0 |-> 1 a1 |-> 2 a2 |-> m am |-> %D )) %D enddiagram %D $$\diag{NNOexp}$$ %D diagram NNO- %D 2Dx 100 +40 +45 +45 +45 %D 2D 100 * |--> 0 |--> 1 |--> 2 m %D 2D / - - - - %D 2D \ | | | | %D 2D v v v v v %D 2D +30 a0 |-> a1 |-> a2 am %D 2D %D (( a0 .tex= (n|->n) a1 .tex= (n|->n-.1) a2 .tex= (n|->n-.2) %D am .tex= n|->n-.m %D * 0 |-> 0 1 |-> 1 2 |-> %D * a0 |-> a0 a1 |-> a1 a2 |-> %D 0 a0 |-> 1 a1 |-> 2 a2 |-> m am |-> %D )) %D enddiagram %D $$\diag{NNO-}$$ \newpage % -------------------- % «nnos-p-prime» (to ".nnos-p-prime") % (s "NNOs: the morphism $p'$" "nnos-p-prime") \myslide {NNOs: the morphism $p'$} {nnos-p-prime} \def\kk{\kappa} %:*+*{+}* Fact: in a topos with NNO the map $[0,s]: 1{+}N \to N$ is an iso. \msk First we need to define the arrow $s': 1{+}N \to 1{+}N$, using a factorization through a coproduct. Note that $s'$ takes the `$*$' in `$*÷n$' to 0, not to $*'$. $s' := [0;\kk',s;\kk']$. %D diagram NNO-sprime %D 2Dx 100 +20 +20 +20 +20 %D 2D 100 a0 ---> a2 <--- a4 %D 2D \ | / %D 2D v | v %D 2D +20 b1 | b3 %D 2D \ | / %D 2D vv v %D 2D +20 c2 %D 2D %D (( a0 .tex= 1 a2 .tex= 1+N a4 .tex= N %D b1 .tex= N b3 .tex= N %D c2 .tex= 1+N %D a0 a2 -> .plabel= a \kk a2 a4 <- .plabel= a \kk' %D a0 b1 -> .plabel= l 0 b1 c2 -> .plabel= l \kk' %D a2 c2 -> .plabel= m s' %D a4 b3 -> .plabel= r s %D b3 c2 -> .plabel= r \kk' %D )) %D enddiagram %D %D diagram NNO-sprime-dnc %D 2Dx 100 +20 +20 +20 +20 %D 2D 100 a0 ---> a2 <--- a4 %D 2D \ | / %D 2D v | v %D 2D +20 b1 | b3 %D 2D \ | / %D 2D vv v %D 2D +20 c2 %D 2D %D (( a0 .tex= * a2 .tex= *÷n a4 .tex= n %D b1 .tex= 0 b3 .tex= n+1 %D c2 .tex= *'÷n+1 %D a0 a2 -> a2 a4 <- %D a0 b1 -> b1 c2 -> a2 c2 -> a4 b3 -> b3 c2 -> %D )) %D enddiagram \msk $\diag{NNO-sprime} \qquad \diag{NNO-sprime-dnc}$ \bsk Now we can define $p': N \to 1+N$ by factoring $(\kk, s')$ through the NNO. It is possible to show that $p'$ and $[0,s]$ are inverses. %D diagram NNO+1 %D 2Dx 100 +30 +30 +30 +30 %D 2D 100 a0 ---> a1 ----> a2 ---> a3 a4 %D 2D | \ | | | | %D 2D | \ | | | | %D 2D | \ v v v v %D 2D +20 \ -> b1 ----> b2 ---> b3 b4 %D 2D \ | | | | %D 2D \ | | | | %D 2D \ v v v v %D 2D +20 -> c1 ----> c2 ---> c3 c4 %D 2D %D (( a0 .tex= 1 a1 .tex= N a2 .tex= N a3 .tex= N a4 .tex= N %D b1 .tex= 1+N b2 .tex= 1+N b3 .tex= 1+N b4 .tex= 1+N %D c1 .tex= N c2 .tex= N c3 .tex= N c4 .tex= N %D a0 a1 -> .plabel= a 0 %D a1 a2 -> .plabel= a s a2 a3 -> .plabel= a s %D b1 b2 -> .plabel= a s' b2 b3 -> .plabel= a s' %D c1 c2 -> .plabel= a s c2 c3 -> .plabel= a s %D a0 b1 -> .plabel= m \kk %D a1 b1 -> .plabel= r p' %D a2 b2 -> .plabel= r p' %D a3 b3 -> .plabel= r p' %D a4 b4 -> .plabel= r p' %D a0 c1 -> .plabel= l 0 %D b1 c1 -> .plabel= r [0,s] %D b2 c2 -> .plabel= r [0,s] %D b3 c3 -> .plabel= r [0,s] %D b4 c4 -> .plabel= r [0,s] %D )) %D enddiagram %D $$\diag{NNO+1}$$ %D diagram NNO+1-dnc %D 2Dx 100 +30 +30 +30 +30 %D 2D 100 a0 ---> a1 ----> a2 ---> a3 a4 %D 2D | \ | | | | %D 2D | \ | | | | %D 2D | \ v v v v %D 2D +20 \ -> b1 ----> b2 ---> b3 b4 %D 2D \ | | | | %D 2D \ | | | | %D 2D \ v v v v %D 2D +20 -> c1 ----> c2 ---> c3 c4 %D 2D %D (( a0 .tex= * a1 .tex= 0 a2 .tex= 1 a3 .tex= 2 a4 .tex= n %D b1 .tex= *÷0' b2 .tex= *'÷1' b3 .tex= *''÷2' b4 .tex= *÷n{-}1 %D c1 .tex= 0 c2 .tex= 1 c3 .tex= 2 c4 .tex= n %D a0 a1 -> a1 a2 -> a2 a3 -> %D b1 b2 -> b2 b3 -> %D c1 c2 -> c2 c3 -> %D a0 b1 -> a1 b1 -> a2 b2 -> a3 b3 -> a4 b4 -> %D a0 c1 -> b1 c1 -> b2 c2 -> b3 c3 -> b4 c4 -> %D )) %D enddiagram %D $$\diag{NNO+1-dnc}$$ \msk \def\dotminus{\overset{.}{-}} %:*-.*{\dotminus}* Define $n \mto n {\dotminus} 1$ as $p';[0,\id]$, The arrow $m \mto (n \dotminus m)$ of the previous page % (find-dn4ex "edrx08.sty") % (find-dn4 "experimental.lua") %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: