Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2009-2-C4-theorems.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-2-C4-theorems.tex && latex 2009-2-C4-theorems.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-2-C4-theorems.tex && pdflatex 2009-2-C4-theorems.tex")) % (eev "cd ~/LATEX/ && Scp 2009-2-C4-theorems.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (defun d () (interactive) (find-dvipage "~/LATEX/2009-2-C4-theorems.dvi")) % (find-dvipage "~/LATEX/2009-2-C4-theorems.dvi") % (find-pspage "~/LATEX/2009-2-C4-theorems.pdf") % (find-pspage "~/LATEX/2009-2-C4-theorems.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009-2-C4-theorems.ps 2009-2-C4-theorems.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2009-2-C4-theorems.ps 2009-2-C4-theorems.dvi && ps2pdf 2009-2-C4-theorems.ps 2009-2-C4-theorems.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2009-2-C4-theorems.pdf" (ee-twupfile "LATEX/2009-2-C4-theorems.pdf") 'over) % (ee-cp "~/LATEX/2009-2-C4-theorems.pdf" (ee-twusfile "LATEX/2009-2-C4-theorems.pdf") 'over) \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2009-2-C4-theorems.dnt %* % (eedn4-51-bounded) %Index of the slides: %\msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \def\na{\nabla} Divergence theorem: % $$ \iint_S ¦F·\hat{¦n}\,dS = \iiint_V \na·¦F\,dV $$ Stokes' theorem: % $$ \oint_C ¦F·\hat{¦t}\,ds = \iint_S \hat{¦n}·\na×F\,dS $$ Identities involving the operator $\nabla$: % $$\begin{array}{l} \na(fg) = f\na g + g\na f \\ \na(¦F·¦G) = (¦G·\na)¦F + (¦F·\na)¦G + ¦F×(\naצG) + ¦G×(\naצF) \\ \na·(f¦F) = f\na· + \; ¦F·\na f \\ \na·(¦FצG) = ¦G·(\naצF) - ¦F·(\naצG) \\ \na·\naצF = 0 \\ \na×(f¦F)=f\naצF + (\na f)צF \\ \na×(¦FצG) = (¦G·\na)¦F - (¦F·\na)¦G + ¦F(\na·¦G) - ¦G(\na·¦F) \\ \na×(\naצF) = \na(\na·¦F) - \na^2¦F \\ \na×\na f = 0 \end{array} $$ %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: