Warning: this is an htmlized version!
The original is across this link,
and the conversion rules are here.
% (find-angg "LATEX/2009-2-C4-theorems.tex")
% (find-dn4ex "edrx08.sty")
% (find-angg ".emacs.templates" "s2008a")
% (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-2-C4-theorems.tex && latex    2009-2-C4-theorems.tex"))
% (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-2-C4-theorems.tex && pdflatex 2009-2-C4-theorems.tex"))
% (eev "cd ~/LATEX/ && Scp 2009-2-C4-theorems.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/")
% (defun d () (interactive) (find-dvipage "~/LATEX/2009-2-C4-theorems.dvi"))
% (find-dvipage "~/LATEX/2009-2-C4-theorems.dvi")
% (find-pspage  "~/LATEX/2009-2-C4-theorems.pdf")
% (find-pspage  "~/LATEX/2009-2-C4-theorems.ps")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009-2-C4-theorems.ps 2009-2-C4-theorems.dvi")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2009-2-C4-theorems.ps 2009-2-C4-theorems.dvi && ps2pdf 2009-2-C4-theorems.ps 2009-2-C4-theorems.pdf")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi")
% (find-pspage  "~/LATEX/tmp.ps")
% (ee-cp "~/LATEX/2009-2-C4-theorems.pdf" (ee-twupfile "LATEX/2009-2-C4-theorems.pdf") 'over)
% (ee-cp "~/LATEX/2009-2-C4-theorems.pdf" (ee-twusfile "LATEX/2009-2-C4-theorems.pdf") 'over)

\documentclass[oneside]{book}
\usepackage[latin1]{inputenc}
\usepackage{edrx08}       % (find-dn4ex "edrx08.sty")
%L process "edrx08.sty"  -- (find-dn4ex "edrx08.sty")
\input edrxheadfoot.tex   % (find-dn4ex "edrxheadfoot.tex")
\begin{document}

\input 2009-2-C4-theorems.dnt

%*
% (eedn4-51-bounded)

%Index of the slides:
%\msk
% To update the list of slides uncomment this line:
%\makelos{tmp.los}
% then rerun LaTeX on this file, and insert the contents of "tmp.los"
% below, by hand (i.e., with "insert-file"):
% (find-fline "tmp.los")
% (insert-file "tmp.los")

\def\na{\nabla}



Divergence theorem:
%
$$ \iint_S F\hat{n}\,dS = \iiint_V \naF\,dV $$

Stokes' theorem:
%
$$ \oint_C F\hat{t}\,ds = \iint_S \hat{n}\na×F\,dS $$

Identities involving the operator $\nabla$:
%
$$\begin{array}{l}
  \na(fg) = f\na g + g\na f \\
  \na(FG) = (G\na)F + (F\na)G + F×(\na×G) + G×(\na×F) \\
  \na(fF) = f\na + \; F\na f \\
  \na(F×G) = G(\na×F) - F(\na×G) \\
  \na\na×F = 0 \\
  \na×(fF)=f\na×F + (\na f)×F \\
  \na×(F×G) = (G\na)F - (F\na)G + F(\naG) - G(\naF) \\
  \na×(\na×F) = \na(\naF) - \na^2F \\
  \na×\na f = 0
  \end{array}
$$



%*

\end{document}

% Local Variables:
% coding:           raw-text-unix
% ee-anchor-format: "«%s»"
% End: