Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2009abcats.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009abcats.tex && latex 2009abcats.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009abcats.tex && pdflatex 2009abcats.tex")) % (eev "cd ~/LATEX/ && Scp 2009abcats.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2009abcats.dvi") % (find-pspage "~/LATEX/2009abcats.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -P pk -o 2009abcats.ps 2009abcats.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009abcats.ps 2009abcats.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -P pk -D 300 -o 2009abcats.ps 2009abcats.dvi") % (find-pspage "~/LATEX/2009abcats.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2009abcats.pdf" (ee-twupfile "LATEX/2009abcats.pdf") 'over) % (ee-cp "~/LATEX/2009abcats.pdf" (ee-twusfile "LATEX/2009abcats.pdf") 'over) % «.0-and-1-as-kers-and-coks» (to "0-and-1-as-kers-and-coks") % «.ker-and-cok-as-inv» (to "ker-and-cok-as-inv") % «.intersecs-of-subs» (to "intersecs-of-subs") % «.equalizers» (to "equalizers") % «.images» (to "images") % «.cok-epi-eq-0» (to "cok-epi-eq-0") % «.unique-factorization» (to "unique-factorization") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2009abcats.dnt %* % (eedn4-51-bounded) \def\Kers{\operatorname{Kers}} \def\Coks{\operatorname{Coks}} \def\ker{\operatorname{ker}} \def\cok{\operatorname{cok}} \def\Ker{\operatorname{Ker}} \def\Cok{\operatorname{Cok}} \def\Im{\operatorname{Im}} \def\Coim{\operatorname{Coim}} \def\sm#1{\begin{smallmatrix}#1\end{smallmatrix}} \def\kerrule#1#2#3{\sm{#1 \\ #2 & #3}} \def\cokrule#1#2#3{\sm{#1 & #2 \\ & #3}} % (find-freydabcatspage (+ 26 -7) "Contents") Notes on chapter 2 of Freyd's ``Abelian Categories'' book (1964). \bsk Index of the slides: \msk % To update the list of slides uncomment this line: \makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \tocline {0 and 1 as kernels and cokernels} {2} \tocline {ker and cok are inverse functions} {3} \tocline {Intersection of subobjects} {4} \tocline {Difference kernels (a.k.a. equalizers)} {5} \tocline {Images} {6} \tocline {A map is epi iff its cok is 0} {7} \newpage % -------------------- % «0-and-1-as-kers-and-coks» (to ".0-and-1-as-kers-and-coks") % (s "0 and 1 as kernels and cokernels" "0-and-1-as-kers-and-coks") \myslide {0 and 1 as kernels and cokernels} {0-and-1-as-kers-and-coks} Lemma: for $m$ a monic and $e$ an epi, \ssk $\begin{array}{lcl} 0 Ý \Kers m, && 0 Ý \Coks e, \\ 0 Ý \Kers 1, && 0 Ý \Coks 1, \\ 1 Ý \Kers 0, && 1 Ý \Coks 0. \\ \end{array} $ \msk Proof: check: %D diagram monic-and-epi-lemmas %D 2Dx 100 +25 +25 +10 +25 +25 %D 2D 100 A0 B0 ->> B1 ->> B2 %D 2D | \ \ | %D 2D | \ \ | %D 2D v v v v %D 2D +25 A1 >-> A2 >-> A3 B3 %D 2D %D 2D +15 C0 D0 ->> D1 ->> D2 %D 2D | \ \ | %D 2D | \ \ | %D 2D v v v v %D 2D +25 C1 >-> C2 >-> C3 D3 %D 2D %D 2D +15 E0 F0 --> F1 ->> F2 %D 2D | \ \ | %D 2D | \ \ | %D 2D v v v v %D 2D +25 E1 >-> E2 --> E3 F3 %D 2D %D (( A0 .tex= X A1 .tex= 0 A2 .tex= A A3 .tex= B %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 2 >-> .plabel= b 0 %D @ 2 @ 3 >-> .plabel= b m %D )) %D (( C0 .tex= X C1 .tex= 0 C2 .tex= A C3 .tex= A %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 2 >-> .plabel= b 0 %D @ 2 @ 3 >-> .plabel= b 1 %D )) %D (( E0 .tex= X E1 .tex= A E2 .tex= A E3 .tex= 0 %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 2 >-> .plabel= b 1 %D @ 2 @ 3 -> .plabel= b 0 %D )) %D (( B0 .tex= A B1 .tex= B B2 .tex= 0 B3 .tex= Y %D @ 0 @ 1 ->> .plabel= a e %D @ 1 @ 2 ->> .plabel= a 0 %D @ 1 @ 3 -> @ 2 @ 3 -> %D )) %D (( D0 .tex= B D1 .tex= B D2 .tex= 0 D3 .tex= Y %D @ 0 @ 1 ->> .plabel= a 1 %D @ 1 @ 2 ->> .plabel= a 0 %D @ 1 @ 3 -> @ 2 @ 3 -> %D )) %D (( F0 .tex= 0 F1 .tex= B F2 .tex= B F3 .tex= Y %D @ 0 @ 1 -> .plabel= a 0 %D @ 1 @ 2 ->> .plabel= a 1 %D @ 1 @ 3 -> @ 2 @ 3 -> %D )) %D enddiagram %D $\diag{monic-and-epi-lemmas}$ \newpage % -------------------- % «ker-and-cok-as-inv» (to ".ker-and-cok-as-inv") % (s "ker and cok are inverse functions" "ker-and-cok-as-inv") \myslide {ker and cok are inverse functions} {ker-and-cok-as-inv} Theorem (Freyd's 2.11): if $a$ is a monic then $a \cong \ker \cok a$. Corollary: $\ker$ and $\cok$ are inverse functions. \ssk Proof: choose $b$ such that $a \in \Kers b$. Then: \msk %D diagram 211 %D 2Dx 100 +30 +30 %D 2D 100 A' C %D 2D v ^ | %D 2D \ ^ | %D 2D v / | %D 2D +30 A | %D 2D ^ \ | %D 2D / v | %D 2D ^ v v %D 2D +30 K B %D 2D %D (( A' A >-> .plabel= a a %D A C ->> .plabel= m \sm{c\,Ý\\\Coks"a} %D K A >-> .plabel= m \sm{k\,Ý\\\Kers"c} %D A B -> .plabel= a b %D C B -> .plabel= r c\bsl"b %D A' K >-> sl_ .plabel= l a/k %D A' K <-< sl^ .plabel= r k/a %D )) %D enddiagram %D $\diag{211}$ \msk The logical layer is: %: %: cÝ\Coks"a aÝ\Kers"b %: ---------- ---------- %: kÝ\Kers"c ac=0 ab=0 cÝ\Coks"a %: -----------------\kerrule"akc --------------------\cokrule"acb %: Î(a/k) Î(c\bsl"b) %: %: ^211a ^211b %: %: kÝ\Kers"c %: ---------- %: kc=0 %: --------------------------- %: aÝ\Kers"b kb=kc(c\bsl"b)=0(c\bsl"b)=0 %: ----------------------------------------\kerrule"kab %: Î(k/a) %: %: ^211c %: $$\ded{211a} \qquad \ded{211b}$$ $$\ded{211c}$$ % $ac=0 \funto Î(a/k)$ % $ab=0 \funto Î(c \bsl b)$ % $kc = 0 \funto kb = kc(c \bsl b) = 0 (c \bsl b) = 0 \funto Î(k/a)$ \bsk Theorem (Freyd's 2.12): if $a$ is monic and epi then $a$ is an iso. Proof: choose $b$ such that $a \in \Kers b$. Then: \msk %D diagram 212 %D 2Dx 100 +30 +30 %D 2D 100 A' C %D 2D v ^ | %D 2D \ ^ | %D 2D v / | %D 2D +30 A | %D 2D ^ \ | %D 2D / v | %D 2D ^ v v %D 2D +30 K B %D 2D %D (( C .tex= 0 %D K .tex= A %D A' A >-> sl^ .plabel= a a %D A' A ->> sl_ %D A C ->> .plabel= m \sm{0\,Ý\\\Coks"a} %D K A >-> .plabel= m \sm{1\,Ý\\\Kers"0} %D A B ->> .plabel= a b %D C B -> .plabel= r 0 %D A' K >-> sl_ .plabel= l a/1 %D A' K <-< sl^ .plabel= r 1/a %D )) %D enddiagram %D $\diag{212}$ \newpage % -------------------- % «intersecs-of-subs» (to ".intersecs-of-subs") % (s "Intersection of subobjects" "intersecs-of-subs") \myslide {Intersection of subobjects} {intersecs-of-subs} % (find-freydabcatspage (+ 26 37) "Theorem 2.13") % (find-freydabcatspage (+ 26 38) "We shall prove a stronger property.") Theorem (Freyd's 2.13): every pair of subobjects has a pullback. Corollary: every pair of subobjects has an intersection. Proof: %D diagram 213 %D 2Dx 100 +50 +40 +40 %D 2D 100 X %D 2D \ %D 2D \ %D 2D v %D 2D +25 A12 >--> A_2 %D 2D v v %D 2D | | %D 2D v v %D 2D +40 A_1 >---> A ----> C %D 2D %D (( A12 .tex= A_{12} %D A_1 A >-> .plabel= b a_1 %D A_2 A >-> .plabel= l a_2 %D A C ->> .plabel= b \sm{c\,Ý\\\Coks"a_1} %D A_2 C -> .plabel= a a_2c %D A12 A_2 >-> .plabel= b \sm{p_2\,Ý\\\Kers"a_2c} %D A12 A_1 >-> .plabel= m \sm{p_1\,:=\\(p_2a_2)/a_1} %D X A_1 -> .plabel= l x_1 %D X A_2 -> .plabel= a x_2 %D X A12 -> .PLABEL= _(0.72) \sm{x\,:=\\x_2/p_2} %D )) %D enddiagram %D $$\diag{213}$$ The logical layer is: %: p_2Ý\Kers"a_2c cÝ\Coks"a_1 %: --------------- ------------ %: p_2a_2c=0 a_1Ý\Kers"c %: -------------------------\kerrule{p_2a_2}{a_1}c %: Î(p_2a_2/a_1) %: %: ^213a %: $$\ded{213a}$$ %: %: cÝ\Coks"a_1 %: ----------- %: x_2a_2=x_1a_1 a_1c=0 %: --------------- --------- %: x_2a_2c=x_1a_1c x_1a_1c=0 %: --------------------------- %: x_2a_2c=0 p_2Ý\Kers"a_2c %: --------------------------------------\kerrule{x_2}{p_2}{a_2c} %: Î(x_2/p_2) %: %: ^213b %: %: $$\ded{213b}$$ %: %: p_1a_1=p_2a_2 xp_2=x_2 %: --------------- -------------- %: xp_1a_1=xp_2a_2 xp_2a_2=x_2a_2 %: ----------------------- %: xp_1a_1=x_2a_2 x_2a_2=x_1a_1 %: ---------------------------------- %: xp_1a_1=x_1a_1 a_1\text{"monic} %: -------------------------------------------- %: xp_1=x_1 %: %: ^213c %: $$\ded{213c}$$ To see that $x$ is unique use that $p_1$ and $p_2$ are monic. The subobject $A_{12} \monicto A$ is the intersection of $A_1 \monicto A$ and $A_2 \monicto A$. Notation: $A_1 Ì A_2 := A_{12}$. \newpage % -------------------- % «equalizers» (to ".equalizers") % (s "Difference kernels (a.k.a. equalizers)" "equalizers") \myslide {Difference kernels (a.k.a. equalizers)} {equalizers} (Freyd's 2.14) % (find-es "xypic" "two-and-three") We can construct the equalizer $\Ker(x-y) \diagxyto/ >->/^p A \two/->`->/^x_y B$ using a product and a pullback of (split) monics: %D diagram 2.14 %D 2Dx 100 +40 +30 %D 2D 100 \Ker(x-y) >-> A{} %D 2D v v %D 2D | | %D 2D v v %D 2D +30 {}A >------> A×B ---> B %D 2D | %D 2D | %D 2D v %D 2D +30 A %D (( \Ker(x-y) A{} %D {}A A×B B %D A %D @ 0 @ 1 >-> .plabel= a p_2 %D @ 0 @ 2 >-> .plabel= l p_1 @ 1 @ 3 >-> .plabel= r \ang{1,y} %D @ 2 @ 3 >-> .plabel= a \ang{1,x} @ 3 @ 4 -> .plabel= a \pi_2 %D @ 3 @ 5 -> .plabel= r \pi_1 %D @ 0 relplace 8 7 \pbsymbol{7} %D )) %D enddiagram %D $$\diag{2.14}$$ Note that $\ang{1,x}\pi_1 = 1$ \qquad $\ang{1,x}\pi_2 = x$ $\ang{1,y}\pi_1 = 1$ \qquad $\ang{1,y}\pi_2 = y$ so: %: %: p_1\ang{1,x}=p_2\ang{1,y} p_1\ang{1,x}=p_2\ang{1,y} %: ----------------------------------- ----------------------------------- %: p_1\ang{1,x}\pi_1=p_2\ang{1,y}\pi_1 p_1\ang{1,x}\pi_2=p_2\ang{1,y}\pi_2 %: ----------------------------------- ----------------------------------- %: p_1=p_2 p_1x=p_2y %: %: ^2.14a ^2.14b %: $$\ded{2.14a} \qquad \ded{2.14b}$$ (How do I show that $\Ker(x-y) \to A$ is monic?) \msk Now we can construct arbitrary pullbacks (Freyd's 2.15): %D diagram 2.15 %D 2Dx 100 +50 +20 +20 %D 2D 100 A %D 2D %D 2D +20 K >---> A×B C %D 2D %D 2D +20 B %D 2D %D (( K .tex= \begin{matrix}A×_{C}B:=\\\Ker(\pi_1f-\pi_2g)\end{matrix} %D K A×B >-> %D A×B A -> .plabel= a \pi_1 A C -> .plabel= r f %D A×B B -> .plabel= b \pi_2 B C -> .plabel= r g %D )) %D enddiagram %D $$\diag{2.15}$$ % (find-freydabcatspage (+ 26 21) "Difference kernels and cokernels") \newpage % -------------------- % «images» (to ".images") % (s "Images" "images") \myslide {Images} {images} Lemma: in the diagram below $ac = 0$ iff $a$ factors through $s$. %D diagram 2.16a %D 2Dx 100 +30 +30 %D 2D 100 A %D 2D %D 2D +30 S >-> B ->> C %D 2D %D (( A S .> .plabel= l a/s %D A B -> .plabel= r a %D S B >-> .plabel= b \sm{s\;Ý\\\Kers"c} %D B C ->> .plabel= b \sm{c\;Ý\\\Coks"s} %D )) %D enddiagram %D $$\diag{2.16a}$$ Theorem (Freyd's 2.16): define the {\sl image of $A \ton{a} B$}, $\Im(a) \monicto B$, as the kernel of the cokernel of $a$; then $\Im(a)$ is the ``smallest subobject of $B$ through which $a$ factors'', i.e., every factorization of $a$ through a subobject, $A \to S \monicto B$, can be further factored as $A \to \Im(a) \monicto S \monicto B$. Here is the construction: %D diagram 2.16b %D 2Dx 100 +40 +40 +40 %D 2D 100 A ---------> B %D 2D %D 2D +25 \Im(a) \Cok(a) %D 2D %D 2D +35 S \Cok(m') %D 2D %D (( A B -> .plabel= a a %D # B \Cok(a) ->> .plabel= b \sm{c\;Ý\\\Coks"a} %D A \Im(a) -> .plabel= a e=a/m %D \Im(a) B >-> .plabel= a m %D B \Cok(a) ->> .plabel= a c %D A S -> .plabel= b e' %D S B >-> .plabel= b m' %D B \Cok(m') ->> .plabel= b c' %D # A S -> S B .plabel= b s >-> B \Cok(s) ->> %D \Im(a) S >-> .plabel= m m/m' %D \Cok(a) \Cok(m') ->> .plabel= r c\bsl"c' %D )) %D enddiagram %D $$\diag{2.16b}$$ and here is its logical layer: %: %: c'Ý\Coks"m' mÝ\Kers"c %: ----------- ----------- %: m'c'=0 mc=0 %: -------- -------- %: e'm'c'=0 mc(c\bsl"c')=0 %: -------- -------- %: ac'=0 cÝ\Coks"a mc'=0 m'Ý\Kers"c' %: ------------------\cokrule"ac{c'} ---------------------\kerrule"m{m'}{c'} %: Î(c\bsl"c') Î(m/m') %: %: ^2.16c ^2.16d %: $$\ded{2.16c} \qquad \ded{2.16d}$$ \newpage % -------------------- % «cok-epi-eq-0» (to ".cok-epi-eq-0") % (s "A map is epi iff its cok is 0" "cok-epi-eq-0") \myslide {A map is epi iff its cok is 0} {cok-epi-eq-0} We know from our first basic lemmas that if $a$ is epi then $0 \in \Coks(a)$: %D diagram 2.17a %D 2Dx 100 +20 +20 %D 2D 100 A ->> B ->> 0 %D 2D %D 2D +20 Y %D 2D %D (( A B ->> .plabel= a a B 0 ->> .plabel= a 0 %D B Y -> 0 Y -> %D )) %D enddiagram %D $$\diag{2.17a}$$ Now we can prove a converse for this --- namely, that if $0 \in \Coks a$ then $a$ is epi (Freyd's 2.17). This needs a big construction, with a big logical layer: %:*>->*\monicto * %:*->>*\epito * %D diagram 2.17b %D 2Dx 100 +30 +30 +30 %D 2D 100 C %D 2D %D 2D +40 A ---------> B \Cok(a) %D 2D %D 2D +15 \Im(a) %D 2D %D 2D +25 \Ker(x-y) %D 2D %D (( A C -> %D B C -> sl^ .plabel= a x %D B C -> sl_ .plabel= b y %D A B -> .plabel= a a %D B \Cok(a) ->> %D A \Im(a) -> \Im(a) B >-> %D A \Ker(x-y) -> \Ker(x-y) B >-> %D \Im(a) \Ker(x-y) >-> %D )) %D enddiagram %: %: (B->>\Cok(a))=0 %: --------------- %: (\Im(a)>->B)=1 %: ----------------- %: (\Ker(x-y)>->B)=1 %: ----------------- %: x=y %: ----------------- %: (A->B)\text{"epi} %: %: ^2.17c %: $$\cdiag{2.17b} \qquad \cded{2.17c}$$ \newpage % -------------------- % «unique-factorization» (to ".unique-factorization") % (s "Unique factorization" "unique-factorization") \myslide {Unique factorization} {unique-factorization} Theorem (Freyd's 2.19): $\Im(a) \cong \Coim(a)$, and any epi-monic factorization of $A \ton{a} B$ is isomorphic to $\Im(a)$. %D diagram 2.19a %D 2Dx 100 +30 +30 %D 2D 100 \Coim(a) %D 2D %D 2D +20 A B %D 2D %D 2D +20 \Im(a) %D 2D %D (( A \Coim(a) ->> \Coim(a) B >-> %D A \Im(a) ->> \Im(a) B >-> %D \Coim(a) \Im(a) ->> sl_ %D \Coim(a) \Im(a) >-> sl^ %D )) %D enddiagram %D $$\diag{2.19a}$$ %D diagram 2.19b %D 2Dx 100 +30 +30 %D 2D 100 \Coim(a) %D 2D %D 2D +20 A X B %D 2D %D 2D +20 \Im(a) %D 2D %D (( A \Coim(a) ->> \Coim(a) B >-> %D A \Im(a) ->> \Im(a) B >-> %D A X ->> X B >-> %D \Coim(a) X ->> %D X \Im(a) >-> %D )) %D enddiagram %D $$\diag{2.19b}$$ % (find-freydabcatspage (+ 26 44) "Unique factorization") %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: