Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2009jun05.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009jun05.tex && latex 2009jun05.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009jun05.tex && pdflatex 2009jun05.tex")) % (eev "cd ~/LATEX/ && Scp 2009jun05.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (defun d () (interactive) (find-dvipage "~/LATEX/2009jun05.dvi")) % (find-dvipage "~/LATEX/2009jun05.dvi") % (find-pspage "~/LATEX/2009jun05.pdf") % (find-pspage "~/LATEX/2009jun05.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009jun05.ps 2009jun05.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2009jun05.ps 2009jun05.dvi && ps2pdf 2009jun05.ps 2009jun05.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2009jun05.pdf" (ee-twupfile "LATEX/2009jun05.pdf") 'over) % (ee-cp "~/LATEX/2009jun05.pdf" (ee-twusfile "LATEX/2009jun05.pdf") 'over) \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2009jun05.dnt %* % (eedn4-51-bounded) %Index of the slides: %\msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") \def\ddx{\frac{d}{dx}} \def\dydx{\frac{dy}{dx}} \def\ddth{\frac{d}{d\theta}} \def\sen{\operatorname{sen}} \def\sec{\operatorname{sec}} \def\ln{\operatorname{ln}} Notas sobre equações diferenciais de 1ª ordem EDOs da forma $y'=\aa y$: %: %: y'=\aa"y %: -------- %: y'/y=\aa %: ------------ %: (\ln"y)'=\aa y=\expÅ\aa %: ------------ -------------------- %: \ln"y=Å\aa y'=(\expÅ\aa)(Å\aa)' %: ---------- -------------------- %: y=\expÅ\aa y'=y\aa %: %: ^foo1 ^foo2 %: $$\ded{foo1} \qquad \ded{foo2}$$ \msk EDOs da forma $y'+\aa y=\bb$: %: %: f=\expÅ\aa %: ------------- ---------- %: (fy)'=fy'+f'y f'=f\aa y'+\aa"y=\bb %: ------------------------ --------------- %: (fy)'=fy'+f\aa"y fy'+f\aa"y=f\bb %: ---------------------------------------- %: (fy)'=f\bb %: ---------- %: fy=Åf\bb %: ---------- %: y=(Åf\bb)/f %: %: ^foo3 %: $$\ded{foo3}$$ \msk EDOs da forma $y'=f(x)/g(y)$: Se $u=u(x)$, $v=v(y)$ e $dy/dx = u_x/v_y$ então: $v_y\,dy = u_x\,dx$ $dv = v_y\,dy = u_x\,dx = du$ $\frac{dv}{du}=1$ As soluções são da forma $v-u = \text{constante}$, isto é, as curvas de nível de $v(y)-u(x)$. \msk EDOs separáveis da forma $A(x,y)+B(x,y)y'=0$, onde $A_y=B_x$: Se $\psi=\psi(x,y)$ então as soluções de $\psi_x+\psi_y y'=0$ são as curvas de nível de $\psi$. Se $A=A(x,y)$, $B=B(x,y)$ e $A_y=B_x$ então as soluções de $A+By'=0$ são as curvas de nível de $\psi$, onde: % $$\begin{array}{rcl} \psi(x_1,y_1) &=& Å_{x_0}^{x_1} A(x,y_0)\,dx + Å_{y_0}^{y_1} B(x_1,y)\,dy \\ &=& Å_{y_0}^{y_1} B(x_0,y)\,dy + Å_{x_0}^{x_1} A(x,y_1)\,dy \\ \end{array} $$ %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: