Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2009may08-C2.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009may08-C2.tex && latex 2009may08-C2.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009may08-C2.tex && pdflatex 2009may08-C2.tex")) % (eev "cd ~/LATEX/ && Scp 2009may08-C2.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2009may08-C2.dvi") % (find-pspage "~/LATEX/2009may08-C2.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009may08-C2.ps 2009may08-C2.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -o 2009may08-C2.ps 2009may08-C2.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2009may08-C2.ps 2009may08-C2.dvi && ps2pdf 2009may08-C2.ps 2009may08-C2.pdf") % (find-pspage "~/LATEX/2009may08-C2.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2009may08-C2.pdf" (ee-twupfile "LATEX/2009may08-C2.pdf") 'over) % (ee-cp "~/LATEX/2009may08-C2.pdf" (ee-twusfile "LATEX/2009may08-C2.pdf") 'over) \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2009may08-C2.dnt %* % (eedn4-51-bounded) %Index of the slides: %\msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") Cálculo II PURO-UFF Notas sobre duas técnicas de integração: substituição trigonométrica e frações parciais Prof: Eduardo Ochs 8/maio/2009 \bsk % (find-kopkadaly4page (+ 12 635) "Index" "picture") % (find-kopkadaly4page (+ 12 288) "picture") % (find-kopkadaly4text "13.1.4 Picture element commands") % (find-kopkadaly4page (+ 12 301) "13.1.6 Shifting a picture environment") % (find-kopkadaly4text "13.1.6 Shifting a picture environment") % (find-kopkadaly4text "\nStraight lines\n") \def\sen{\operatorname{sen}} \def\sec{\operatorname{sec}} \def\bhbox{} Abreviações: quando $$ é uma variável, $s = \sen $ $c = \cos $ $t = \tan = \frac{\sen }{\cos } = \frac{s}{c}$ $z = \sec = \frac{1}{\cos } = \frac{1}{c}$ \msk Identidades: $t^2 = \frac{s^2}{c^2} = \frac{1 - c^2}{c^2}$ $t^2c^2 = 1 - c^2$ $t^2c^2 + c^2 = 1$ $(1 + t^2)c^2 = 1$ $1 + t^2 = \frac{1}{c^2} = z^2$ $z^2 = 1 + t^2$ $z = \sqrt{1 + t^2}$ $t^2 = z^2 - 1$ $t = \sqrt{z^2 - 1}$ \msk Derivadas e diferenciais: $\frac{ds}{d} = \frac{d\sen}{d} = \cos = c$ $\frac{dt}{d} = \frac{d}{d} \frac{s}{c} = \frac{s'c - sc'}{c^2} = \frac{c^2 + s^2}{c^2} = \frac{1}{c^2} = z^2 = 1 + t^2 $ $\frac{dz}{d} = \frac{d}{d}c^{-1} = -c^{-2}c' = -c^{-2}(-s) = \frac{1}{c} \frac{s}{c} = zt$ $ds = c \, d = \sqrt{1 - s^2}d$ $dt = z^2 d = (1 + t^2) d$ $dz = zt\, d$ \newpage Caso 1: \bhbox{% \setlength{\unitlength}{1cm}% \begin{picture}(5,3)(0,-1) \thicklines \put(0.8,0.1){$\theta$} \put(0,0){\line(2,1){4}} \put(0,0){\line(1,0){4}} \put(4,0){\line(0,1){2}} \put(1.9,1.4){1} \put(4,0.9){$\begin{array}{c} \sen \\ = s \end{array}$} \put(1.4,-.6){$\begin{array}{c} \cos = c = \\ \sqrt{1-s^2} \end{array}$} \end{picture}% } Caso 2: \bhbox{% \setlength{\unitlength}{1cm}% \begin{picture}(5.7,3.1)(0,-0.6) \thicklines \put(0.8,0.1){$\theta$} \put(0,0){\line(2,1){4}} \put(0,0){\line(1,0){4}} \put(4,0){\line(0,1){2}} \put(1.1,1.7){$\begin{array}{l} \frac{1}{\cos } = \\ \sec = z = \\ \sqrt{1 + t^2} \end{array}$} \put(4,0.9){$\begin{array}{l} \frac{\sen }{\cos } = \\ \, \tan = t \end{array}$} \put(1.4,-.4){$\begin{array}{c} \frac{\cos }{\cos } = 1 \end{array}$} \end{picture}% } \msk Caso 3: \bhbox{% \setlength{\unitlength}{1cm}% \begin{picture}(5.9,2.8)(0,-0.6) \thicklines \put(0.8,0.1){$\theta$} \put(0,0){\line(2,1){4}} \put(0,0){\line(1,0){4}} \put(4,0){\line(0,1){2}} \put(0.9,1.6){$\begin{array}{r} \frac{1}{\cos } = \\ \sec = z \end{array}$} \put(4,0.9){$\begin{array}{l} \frac{\sen }{\cos } = \\ \, \tan = t \\ \, = \sqrt{z^2 - 1} \end{array}$} \put(1.4,-.4){$\begin{array}{c} \frac{\cos }{\cos } = 1 \end{array}$} \end{picture}% } \newpage Exemplos (adaptados do Munem, pp.492--493): \begin{eqnarray*} \int \frac{s^2}{(1-s^2)^{3/2}} \, ds & = & \int \frac{s^2}{(1-s^2)^{3/2}} (1-s^2)^{1/2} \, d \\ & = & \int \frac{s^2}{1-s^2} \, d \\ & = & \int \frac{(\sen )^2}{(\cos )^2} \, d \\ & = & \int (\tan )^2 \, d \\ \end{eqnarray*} \begin{eqnarray*} \int \frac{1}{t^2 \sqrt{1 + t^2}} \, dt & = & \int \frac{1}{t^2 \sqrt{1 + t^2}} (1 + t^2) \, d \\ & = & \int \frac{\sqrt{1 + t^2}}{t^2} \, d \\ & = & \int \frac{(1/c)}{(s^2/c^2)} \, d = \int \frac{1}{c} \frac{c^2}{s^2} \, d = \int \frac{c}{s^2} \, d \\ \end{eqnarray*} \begin{eqnarray*} \int \frac{1}{z^3 \sqrt{z^2 - 1}} \, dz & = & \int \frac{1}{z^3 \sqrt{z^2 - 1}} zt \, d \\ & = & \int \frac{zt}{z^3 t} \, d \\ & = & \int \frac{1}{z2} \, d \\ & = & \int c^2 \, d \\ \end{eqnarray*} \newpage \def\qv#1{\left[\begin{matrix}#1\end{matrix}\right]} \def\sqv#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} \def\displayfrac{\displaystyle\frac} Um exercício de frações parciais: usando esta notação, $\sqv{a_2 \\ a_1 \\ a_0} = [a_2,a_1,a_0] = a_2x^2 + a_1x + a_0$, $\sqv{a_3 \\ a_2 \\ a_1 \\ a_0} = [a_3,a_2,a_1,a_0] = a_3x^3 + a_2x^2 + a_1x + a_0$, etc, descubra que valores de $k_1, k_0, c_1, c_2$ e $c_3$ fazem a conta abaixo fazer sentido: $$\begin{array}{rcl} \multicolumn{3}{l}{ \displaystyle k_1x + k_0 + \frac{c_1}{x+2} + \frac{c_2}{x+1} + \frac{c_3}{(x+1)^2} = } \\ \\ \qquad\qquad\qquad & = & \displaystyle\frac{ k_1 \qv{1 \\ 5 \\ 7 \\ 3 \\ 0} + k_0 \qv{0 \\ 1 \\ 5 \\ 7 \\ 3} + c_1 \qv{0 \\ 0 \\ 1 \\ 2 \\ 1} + c_2 \qv{0 \\ 0 \\ 1 \\ 3 \\ 2} + c_3 \qv{0 \\ 0 \\ 0 \\ 1 \\ 2} }{ [1, 5, 7, 3] } \\ \\ & = & \displaystyle\frac{ \begin{array}{crl} & 10000 & x^4 \\ + & 51000 & x^3 \\ + & 75110 & x^2 \\ + & 37231 & x \\ + & 3122 & \\ \end{array} }{ x^3 + 5x^2 + 7x + 3 } \end{array} $$ E agora encontre uma primitiva para: % $$\int \frac{10000 x^4 + 51000 x^3 + 75110 x^2 + 37231 x + 3122} { x^3 + 5x^2 + 7x + 3 } \, dx $$ %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: