Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2010-semanact.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2010-semanact.tex && latex 2010-semanact.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2010-semanact.tex && pdflatex 2010-semanact.tex")) % (eev "cd ~/LATEX/ && Scp 2010-semanact.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (defun d () (interactive) (find-dvipage "~/LATEX/2010-semanact.dvi")) % (find-dvipage "~/LATEX/2010-semanact.dvi") % (find-pspage "~/LATEX/2010-semanact.ps") % (find-pspage "~/LATEX/2010-semanact.pdf") % (find-xpdfpage "~/LATEX/2010-semanact.pdf") % (find-zsh0 "cd ~/LATEX/ && dvipdf 2010-semanact.dvi 2010-semanact.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2010-semanact.ps 2010-semanact.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2010-semanact.ps 2010-semanact.dvi && ps2pdf 2010-semanact.ps 2010-semanact.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2010-semanact.pdf" (ee-twupfile "LATEX/2010-semanact.pdf") 'over) % (ee-cp "~/LATEX/2010-semanact.pdf" (ee-twusfile "LATEX/2010-semanact.pdf") 'over) % (find-twusfile "LATEX/" "2010-semanact") % http://angg.twu.net/LATEX/2010-semanact.pdf \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2010-semanact.dnt %* % (eedn4-51-bounded) %Index of the slides: %\msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") % {\color{red} % (Eduardo Ochs) % } % % \bsk % \bsk % \bsk {\bf Raciocínio diagramático} \msk \par O modo como a gente pensa (em Matemática) \par não é o modo como a gente escreve... \msk \par A gente tem que escrever demonstrações de um modo \par que convença qualquer um de que os nossos argumentos \par não têm furos. \newpage {\bf Minha trajetória:} \msk \par Cálculo \par $\to$ Análise: argumentos com $$s e $$s \par $\to$ Topologia \par $\to$ Análise Não-Standard \par $\to$ Lógica \par $\to$ Categorias \par $\to$ Semântica Categórica \par $\to$ Teoria de Toposes \par $\to$ Teoria de Tipos / $ð$-cálculo \par $\to$ Lógica Intuicionista \par $\to$ Lógica Modal \par $\to$ Feixes \par $\to$ ... \bsk (Complicando cada vez mais...) \newpage \par A ``literatura'' (livros, artigos) sobre estes \par assuntos é escrita de um modo bem técnico, \par muito complicado... \msk \par Apesar de eu ter estudado estas coisas durante anos \par tem poucos pedaços desses artigos e livros que \par entendo {\sl realmente} bem --- a notação costuma \par ser tão difícil que eu ainda levo horas em cada \par parágrafo. \bsk \par {\color{red} Como tornar a literatura mais acessível?} \bsk \par Solução: formalizar o modo como a gente pensa --- \par criar uma tradução (precisa o suficiente) entre \par meus diagramas (2D) e a linguagem usual dos artigos \par (algébrica, linear). \newpage {\bf Projeções e levantamentos} \def\twoninenyninelemma#1#2{ \fbox{ $\begin{array}{rcl} 2^{#2}-2^{#1} &=& 2^{1+#1}-2^{#1} \\ % &=& 2^{1}·2^{#1}-2^{#1} \\ &=& 2·2^{#1}-1·2^{#1} \\ &=& (2-1)·2^{#1} \\ % &=& 1·2^{#1} \\ &=& 2^{#1} \\ \end{array} $} } %:*&*&* %D diagram 2^100-2^99 %D 2Dx 100 %D 2D 100 proof-n %D 2D %D 2D +50 proof-99 %D 2D %D 2D +40 statement-99 %D 2D %D (( %D proof-n .tex= \twoninenyninelemma{n}{n+1} %D proof-99 .tex= \twoninenyninelemma{99}{100} %D statement-99 .tex= \fbox{$\begin{array}{rcl}2^{100}-2^{99}&=&2^{99}\end{array}$} %D @ 0 @ 1 -> %D @ 1 @ 2 -> %D )) %D enddiagram %D $$\diag{2^100-2^99}$$ %:*&*∧* \newpage {\bf Projeções e levantamentos (2)} % (find-854 "" "standard-erasings") % (find-854page 13 "standard-erasings") % (find-854 "" "generalization") % (find-854page 14 "generalization") %L forths["<.>"] = function () pusharrow("<.>") end %L forths["<-->"] = function () pusharrow("<-->") end %L forths["|-->"] = function () pusharrow("|-->") end % This gives us a way to draw all the "standard % erasings" of a tree from a single tree definition. % Low-level words: % \def\archfull#1#2#3{#1\equiv #2:#3} \def\ARCHFULL {\let\arch=\archfull} \def\archdnc#1#2#3{#1} \def\ARCHDNC {\let\arch=\archdnc} \def\archtermtype#1#2#3{#2:#3} \def\ARCHTERMTYPE{\let\arch=\archtermtype} \def\archterm#1#2#3{#2} \def\ARCHTERM {\let\arch=\archterm} \def\archtype#1#2#3{#3} \def\ARCHTYPE {\let\arch=\archtype} \def\rY#1{#1} \def\RY {\let\r=\rY} \def\rN#1{} \def\RN {\let\r=\rN} \def\ptypeY#1{#1} \def\PTYPEY {\let\ptype=\ptypeY} \def\pytpeN#1{} \def\PTYPEN {\let\ptype=\pytpeN} % % High-level words: % \def\FULLRP{\ARCHFULL\RY\PTYPEY} \def\FULLR {\ARCHFULL\RY\PTYPEN} \def\FULLP {\ARCHFULL\RN\PTYPEY} \def\FULL {\ARCHFULL\RN\PTYPEN} \def\TERMTYPERP{\ARCHTERMTYPE\RY\PTYPEY} \def\TERMTYPER {\ARCHTERMTYPE\RY\PTYPEN} \def\TERMTYPEP {\ARCHTERMTYPE\RN\PTYPEY} \def\TERMTYPE {\ARCHTERMTYPE\RN\PTYPEN} \def\TERMRP{\ARCHTERM\RY\PTYPEY} \def\TERMR {\ARCHTERM\RY\PTYPEN} \def\TERMP {\ARCHTERM\RN\PTYPEY} \def\TERM {\ARCHTERM\RN\PTYPEN} \def\TYPER {\ARCHTYPE\RY\PTYPEN} \def\TYPE {\ARCHTYPE\RN\PTYPEN} \def\DNCR {\ARCHDNC\RY\PTYPEN} \def\DNC {\ARCHDNC\RN\PTYPEN} %: %: \arch{a,b}{p}{A×B} %: ------------------\r{'} %: \arch{b}{'p}{B} \arch{b|->c}{f}{B->C} %: -------------------------------------\r{\app} %: \arch{c}{f('p)}{C} %: %: ^archetypal-deriv %: %: %: \arch{a,b}{p}{A×B} \arch{b|->c}{f}{B->C} %: ========================================== %: \arch{c}{f('p)}{C} %: %: ^archetypal=deriv %: %D diagram archderivs2 %D 2Dx 100 +70 +05 +45 +35 %D 2D 100 \foo{\FULLRP} %D 2D %D 2D +50 \foo{\DNCR} \foo{\TERMTYPERP} %D 2D %D 2D +50 \foo{\DNC} \foo{\TERMR} \foo{\TYPE} %D 2D %D 2D +45 \fooo{\DNC} \fooo{\TERMR} \fooo{\TYPE} %D 2D %D (( \foo{\DNCR} x+= 15 %D # \foo{\TERMR} y+= -10 %D # \fooo{\TERMR} y+= -10 %D %D \foo{\FULLRP} \foo{\TERMTYPERP} -> %D \foo{\FULLRP} \foo{\DNCR} -> %D \foo{\TERMTYPERP} \foo{\TERMR} -> %D \foo{\TERMTYPERP} \foo{\TYPE} -> %D \foo{\DNCR} \foo{\DNC} -> %D \foo{\TYPE} \foo{\DNC} <--> .slide= 30pt %D %D \foo{\TERMR} \fooo{\TERMR} -> %D \foo{\TYPE} \fooo{\TYPE} -> %D \foo{\DNC} \fooo{\DNC} -> %D \fooo{\TYPE} \fooo{\DNC} <--> .slide= 25pt %D )) %D enddiagram %D $$\def\foo#1{#1\fcded{archetypal-deriv}} \def\fooo#1{#1\fcded{archetypal=deriv}} \diag{archderivs2} $$ $$\text{Figure 2}$$ \newpage {\bf Diagramas e construções} %D diagram Frob-std %D 2Dx 100 +45 +35 +10 +30 %D 2D 100 B0 ================> B1 %D 2D ^ ^ ^ %D 2D | / | %D 2D - \ - %D 2D +20 B2 ========> B3 <--> B3' %D 2D - / - %D 2D | \ | %D 2D v v v %D 2D +20 B4 <================ B5 %D 2D %D 2D +15 b0 |---------------> b1 %D 2D %D (( B0 .tex= P B1 .tex= Æ_fP %D B2 .tex= P&f^*Q B3 .tex= Æ_f(P&f^*Q) B3' .tex= (Æ_fP)&Q %D B4 .tex= f^*Q B5 .tex= Q %D b0 .tex= A b1 .tex= B %D )) %D (( %D B0 B1 |-> B2 B0 -> B3 B1 -> B3' B1 -> %D B4 B5 <-| B2 B4 -> B3 B5 -> B3' B5 -> %D B2 B3 |-> B3 B3' -> sl^ .plabel= a \nat B3 B3' <- sl_ .plabel= b \Frob %D B0 B2 midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B2 B4 midpoint B3 B5 midpoint harrownodes nil 20 nil |-> %D )) %D (( b0 b1 -> .plabel= a f %D )) %D enddiagram % $$\diag{Frob-std}$$ \def\cob{¯{c.o.b.}} \def\EqE{{=}E} %: %: f P Q f P Q %: =====================\Frobnat ---------------------\Frob %: Æ_f(P∧f^*Q)|-(Æ_fP)∧Q Æ_f(P∧f^*Q)|-(Æ_fP)∧Q %: %: ^Frobnat-short-std ^Frob-std %: %: %: f Q f Q %: ---\cob -----\cob %: P f^*Q P f^*Q %: --------- ------------' %: P∧f^*Q|-P f P∧f^*Q|-f^*Q %: -----------------Æ_f --------------{Æ_f}^\flat %: Æ_f(P∧f^*Q)|-Æ_fP Æ_f(P∧f^*Q)|-Q %: -------------------------------------\ang{,} %: Æ_f(P∧f^*Q)|-(Æ_fP)∧Q %: %: ^Frobnat-std %: $$\begin{array}{l} \ded{Frobnat-short-std} \quad := \\ \\ \phantom{OO} \ded{Frobnat-std} \\ \end{array} $$ \bsk Mas claro que eu não lembro essa coisa toda aí acima de memória... eu lembro isso aqui: $$\includegraphics[scale=0.5]{frob-sketch.eps}$$ \newpage {\bf Diagramas internos} \def\Setito{\Set^{\ito}} \def\Setmto{\Set^{\monicto}} \def\Pred{¦{Pred}} \def\Pred{Ð{Pred}} \def\cob{¯{c.o.b.}} \def\EqE{{=}E} \def\TB{§\!_{B}} \def\TAB{§\!_{A×B}} \def\SDTB{Æ_\DD\!\TB} \def\pip { \pi'} \def\opip {\ov\pi'} \def\pipstar { \pi^{\prime*}} \def\opipstar{\ov\pi^{\prime*}} \def\pistar { \pi^{*}} \def\opistar {\ov\pi^{*}} \def\opi {\ov\pi} \def\EqEdomain{\opipstarÆ_\DD\TB \land \opistar\dd^*Q} \def\EqEL {\opipstarÆ_\DD\TB} \def\EqER {\opistar\dd^*Q} \def\EqEdomthin{\EqEL{∧}\EqER} \def\EqEdomwide{\EqEL\land\EqER} \def\fdiag#1{\fbox{\!\!\!$\diag{#1}$}} \def\fdiag#1{\fbox{$\diag{#1}$}} \def\ffdiag#1#2{\begin{tabular}{l}#2\\\fbox{$\diag{#1}$}\end{tabular}} \def\fdiag#1{\ffdiag{#1}{foo}} \def\ctabular#1{\begin{tabular}{c}#1\end{tabular}} \def\ltabular#1{\begin{tabular}{l}#1\end{tabular}} % \def\fdiagwithboxest#1#2{\ltabular{#2 \\ \fdiagwithboxes{#1}}} \def\fdiagest#1#2{\ltabular{#2 \\ \fdiag{#1}}} \def\fdiag#1{\fbox{$\diag{#1}$}} %D diagram 5-algebraic-internal %D 2Dx 100 +35 %D 2D 100 P ====> ÆP %D 2D - - %D 2D | <-> | %D 2D v v %D 2D +20 Q* <=== Q %D 2D - - %D 2D | <-> | %D 2D v v %D 2D +20 R ====> åR %D 2D %D 2D +15 A |---> B %D 2D %D (( P .tex= P ÆP .tex= Æ_fP %D Q* .tex= f^*Q Q .tex= Q %D R .tex= R åR .tex= å_fR %D A .tex= A B .tex= B %D )) %D (( P ÆP |-> %D P Q* -> ÆP Q -> P Q harrownodes nil 20 nil <-> %D Q* Q <-| %D Q* R -> Q åR -> Q* åR harrownodes nil 20 nil <-> %D R åR |-> %D A B -> .plabel= a f %D )) %D enddiagram %D % $$\diag{5-algebraic-internal}$$ % %D diagram 5-set-binary %D 2Dx 100 +35 %D 2D 100 P ====> ÆP %D 2D - - %D 2D | <-> | %D 2D v v %D 2D +20 Q* <=== Q %D 2D - - %D 2D | <-> | %D 2D v v %D 2D +20 R ====> åR %D 2D %D 2D +15 A |---> B %D 2D %D (( P .tex= \sm{00001\\00011} ÆP .tex= \sm{00011} %D Q* .tex= \sm{00111\\00111} Q .tex= \sm{00111} %D R .tex= \sm{01111\\11111} åR .tex= \sm{01111} %D A .tex= X×Y B .tex= X %D )) %D (( P ÆP |-> %D P Q* -> ÆP Q -> P Q harrownodes nil 20 nil <-> %D Q* Q <-| %D Q* R -> Q åR -> Q* åR harrownodes nil 20 nil <-> %D R åR |-> %D A B -> .plabel= a \pi %D )) %D enddiagram %D % $$\diag{5-set-binary}$$ % %D diagram 5-algebraic-external %D 2Dx 100 +25 +40 %D 2D 100 \bbE \bbE_A \bbE_B %D 2D %D 2D +35 \bbB A B %D 2D %D (( \bbE_A \bbE_B %D @ 0 @ 1 -> .slide= 13pt .plabel= a Æ_f %D @ 0 @ 1 <- .plabel= m f^* %D @ 0 @ 1 -> .slide= -13pt .plabel= b å_f %D @ 0 @ 1 midpoint y+= -5 .TeX= \text{\tiny$®$} place %D @ 0 @ 1 midpoint y+= 5 .TeX= \text{\tiny$®$} place %D )) %D (( \bbE \bbB -> .plabel= l p %D A B -> .plabel= a f %D )) %D enddiagram %D % $$\diag{5-algebraic-external}$$ % %D diagram 5-set-external %D 2Dx 100 +25 +40 %D 2D 100 \bbE \bbE_A \bbE_B %D 2D %D 2D +35 \bbB A B %D 2D %D (( \bbE_A .tex= \Setito_{X×Y} \bbE_B .tex= \Setito_X %D @ 0 @ 1 -> .slide= 13pt .plabel= a Æ_\pi %D @ 0 @ 1 <- .plabel= m \pi^* %D @ 0 @ 1 -> .slide= -13pt .plabel= b å_\pi %D @ 0 @ 1 midpoint y+= -5 .TeX= \text{\tiny$®$} place %D @ 0 @ 1 midpoint y+= 5 .TeX= \text{\tiny$®$} place %D )) %D (( \bbE .tex= \Setito \bbB .tex= \Set -> .plabel= l \Cod %D A .tex= X×Y B .tex= X -> .plabel= a \pi %D )) %D enddiagram %D % $$\diag{5-set-external}$$ % %D diagram adjoints-to-cob %D 2Dx 100 +95 %D 2D 100 text %D 2D %D 2D +60 EAEB PQR %D 2D %D 2D +85 EXYEX binary %D 2D %D (( %D text .tex= \fibrationbox BOX place %D EAEB .tex= \fdiag{5-algebraic-external} BOX place %D EXYEX .tex= \fdiag{5-set-external} BOX place %D PQR .tex= \fdiag{5-algebraic-internal} BOX place %D binary .tex= \fdiag{5-set-binary} BOX place %D text EAEB -> .plabel= l (1) %D EAEB PQR -> .plabel= a (2) %D EAEB EXYEX -> .plabel= l (3) %D PQR binary -> .plabel= r (4) %D EXYEX binary -> .plabel= a (5) %D )) %D enddiagram %D $$\def\fibrationbox{\fbox{\ltabular{ A fibration $p:\bbE \to \bbB$ \\ plus for each $f:A \to B$ in $\bbB$ \\ adjoints $Æ_f \dashv f^* \dashv å_f$ \\ }}} \diag{adjoints-to-cob} $$ \newpage {\bf Lógicas com mais de dois valores de verdade} Em algumas lógicas podemos ter $¬¬P \neq P$. Uma operação de fecho é uma que obedece: %:****^{**}* %:***^** %: %: P|-Q %: ---- ------ ------- %: |-§* P*|-Q* P**|-P* %: %: ^ax*-1 ^ax*-2 ^ax*-3 %: $$\ded{ax*-1} \qquad \ded{ax*-2} \qquad \ded{ax*-3}$$ Por exemplo, $P \mapsto ¬¬P$ é uma operação de fecho. \msk Conseqüências: %D diagram and-cube %D 2Dx 100 +20 +25 +20 +40 +20 +25 +20 %D 2D 100 P∧Q P∧Q* P∧Q' P∧Q*' %D 2D +20 (P∧Q)* (P∧Q*)* (P∧Q)*' (P∧Q*)*' %D 2D %D 2D +20 P*∧Q P*∧Q* P*∧Q' P*∧Q*' %D 2D +20 (P*∧Q)* (P*∧Q*)* (P*∧Q)*' (P*∧Q*)*' %D 2D %D (( P∧Q P*∧Q P∧Q* P*∧Q* %D (P∧Q)* (P*∧Q)* (P∧Q*)* (P*∧Q*)* %D @ 0 @ 1 -> @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 -> %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 -> @ 3 @ 7 = %D )) %D (( P∧Q' P*∧Q' P∧Q*' P*∧Q*' %D (P∧Q)*' (P*∧Q)*' (P∧Q*)*' (P*∧Q*)*' %D @ 0 .tex= \dagVee001 @ 1 .tex= \dagVee101 %D @ 2 .tex= \dagVee011 @ 3 .tex= \dagVee111 %D @ 4 .tex= \dagVee111 @ 5 .tex= \dagVee111 %D @ 6 .tex= \dagVee111 @ 7 .tex= \dagVee111 %D @ 0 @ 1 -> @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 -> %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 -> @ 3 @ 7 = %D )) %D enddiagram %D $$\diag{and-cube}$$ %D diagram or-cube %D 2Dx 100 +20 +25 +20 +40 +20 +25 +20 %D 2D 100 P∨Q P∨Q* P∨Q' P∨Q*' %D 2D +20 (P∨Q)* (P∨Q*)* (P∨Q)*' (P∨Q*)*' %D 2D %D 2D +20 P*∨Q P*∨Q* P*∨Q' P*∨Q*' %D 2D +20 (P*∨Q)* (P*∨Q*)* (P*∨Q)*' (P*∨Q*)*' %D 2D %D (( P∨Q P*∨Q P∨Q* P*∨Q* %D (P∨Q)* (P*∨Q)* (P∨Q*)* (P*∨Q*)* %D @ 0 @ 1 -> @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 -> %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 -> @ 3 @ 7 -> %D )) %D (( P∨Q' P*∨Q' P∨Q*' P*∨Q*' %D (P∨Q)*' (P*∨Q)*' (P∨Q*)*' (P*∨Q*)*' %D @ 0 .tex= \dagHouse00011 @ 1 .tex= \dagHouse00111 %D @ 2 .tex= \dagHouse01011 @ 3 .tex= \dagHouse01111 %D @ 4 .tex= \dagHouse11111 @ 5 .tex= \dagHouse11111 %D @ 6 .tex= \dagHouse11111 @ 7 .tex= \dagHouse11111 %D @ 0 @ 1 -> @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 -> %D @ 4 @ 5 = @ 4 @ 6 = @ 5 @ 7 = @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 -> @ 3 @ 7 -> %D )) %D enddiagram %D $$\diag{or-cube}$$ %D diagram imp-cube-Aor %D 2Dx 100 +20 +25 +20 +40 +20 +25 +20 %D 2D 100 P⊃Q P⊃Q* P⊃Q' P⊃Q*' %D 2D +20 (P⊃Q)* (P⊃Q*)* (P⊃Q)*' (P⊃Q*)*' %D 2D %D 2D +20 P*⊃Q P*⊃Q* P*⊃Q' P*⊃Q*' %D 2D +20 (P*⊃Q)* (P*⊃Q*)* (P*⊃Q)*' (P*⊃Q*)*' %D 2D %D (( P⊃Q P*⊃Q P⊃Q* P*⊃Q* %D (P⊃Q)* (P*⊃Q)* (P⊃Q*)* (P*⊃Q*)* %D @ 0 @ 1 <- @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 = %D @ 4 @ 5 <- @ 4 @ 6 -> @ 5 @ 7 -> @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 = @ 3 @ 7 = %D )) %D (( P⊃Q' P*⊃Q' P⊃Q*' P*⊃Q*' %D (P⊃Q)*' (P*⊃Q)*' (P⊃Q*)*' (P*⊃Q*)*' %D @ 0 .tex= \dagSqr0101 @ 1 .tex= \dagSqr0000 %D @ 2 .tex= \dagSqr1111 @ 3 .tex= \dagSqr1111 %D @ 4 .tex= \dagSqr0111 @ 5 .tex= \dagSqr0011 %D @ 6 .tex= \dagSqr1111 @ 7 .tex= \dagSqr1111 %D @ 0 @ 1 <- @ 0 @ 2 -> @ 1 @ 3 -> @ 2 @ 3 = %D @ 4 @ 5 <- @ 4 @ 6 -> @ 5 @ 7 -> @ 6 @ 7 = %D @ 0 @ 4 -> @ 1 @ 5 -> @ 2 @ 6 = @ 3 @ 7 = %D )) %D enddiagram %D $$\diag{imp-cube-Aor}$$ %* \end{document} % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: