Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2010rings.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2010rings.tex && latex 2010rings.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2010rings.tex && pdflatex 2010rings.tex")) % (eev "cd ~/LATEX/ && Scp 2010rings.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (defun d () (interactive) (find-dvipage "~/LATEX/2010rings.dvi")) % (find-dvipage "~/LATEX/2010rings.dvi") % (find-pspage "~/LATEX/2010rings.ps") % (find-pspage "~/LATEX/2010rings.pdf") % (find-xpdfpage "~/LATEX/2010rings.pdf") % (find-zsh0 "cd ~/LATEX/ && dvipdf 2010rings.pdf 2010rings.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2010rings.ps 2010rings.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2010rings.ps 2010rings.dvi && ps2pdf 2010rings.ps 2010rings.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2010rings.pdf" (ee-twupfile "LATEX/2010rings.pdf") 'over) % (ee-cp "~/LATEX/2010rings.pdf" (ee-twusfile "LATEX/2010rings.pdf") 'over) % (find-twusfile "LATEX/" "2010rings") % http://angg.twu.net/LATEX/2010rings.pdf \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2010rings.dnt %* % (eedn4-51-bounded) %Index of the slides: %\msk % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") {\myttchars \footnotesize \begin{verbatim} k[x^2] `-> `-> k `-> k[x^6] k[x^2][x^3] `-> k[x] `-> `-> k[x^3] k[x]/<x^2> <<- <<-------------- k[x]/<x> k[x]/<0> <<- <<------------- k[x]/<x^3> A nilpots units irreds composites ^ ^ ^ ^ | | | | / / / / zerodivs 1 primes 4 ^ ^ | | / / 0 2 \end{verbatim} } \newpage \def\Ids {\operatorname{Idls}} \def\Spec{\operatorname{Spec}} \def\MIds{\operatorname{MaxIdls}} \def\ooo(#1,#2){\begin{picture}(0,0)\put(0,0){\oval(#1,#2)}\end{picture}} \def\oooo(#1,#2){{\setlength{\unitlength}{1ex}\ooo(#1,#2)}} \def\ctabular#1{\begin{tabular}{c}#1\end{tabular}} \def\ltabular#1{\begin{tabular}{l}#1\end{tabular}} \def\rtabular#1{\begin{tabular}{r}#1\end{tabular}} % (find-books "__alg/__alg.el" "eisenbudharris") % (find-books "__analysis/__analysis.el") % (find-books "__analysis/__analysis.el" "spivak") % \vbox to 1cm{} % {\Large \centerline{The Internal Diagram}} % {\huge \center{The Internal Diagram}} \par Slogan: \par ``The syntactical action of a functor on objects \par induces a syntactical action on morphisms'' \msk \par To obtain the name $a,b \mto a,c$ from $b \mto c$ \par we apply \verb|\syntAtimesdnc| twice. \msk \par In DNC the name `$b \funto a,b$' stands for the functor $A×$. \par (The weird arrow `$\funto$' is to remind us that \par (1) do not expect its meaning to be trivial, \par (2) a functor has two actions). \msk \par Its corresponding uppercased name, $B \mto A×B$, \par indicates an action on objects, \par but we will often commit an abuse of language \par and make it stand for the whole functor. \newpage \def\frakp{\mathfrak{p}} \def\Frac{\operatorname{Frac}} \def\kk{\kappa} \par Let me present an example of use of internal views: \par a set of diagrams that ``explain'' \par what is the topology on a scheme. \par Here's an (caricaturally short) external view of the definitions: \msk % \begin{quotation} \par Let $R$ be a commutative ring. \par We write $\Spec(R)$ for its set of prime ideals. \par For each point $\frakp İ \Spec(R)$ we have that $R/\frakp$ is a domain, \par and so we can form its field of fractions, $\kk(\frakp) = \Frac(R/\frakp)$. \par For each $\frakp$ we have a natural map $R \to \kk(\frakp)$, \par that we will write as: $f \mapsto f(\frakp)$. \par The fields $\kk(\frakp)$ may all be different, \par but each one of them has a point called ``0'', \par and for each $fİR$ we can form the set \par $V_f = \sst{\frakp İ \Spec(R)}{f(\frakp)=0}$. \par The family $\sst{V_f}{fİR} \subset \Pts(\Spec(R))$ is a basis \par for a topology on $\Spec(R)$: the Zariski topology. % \end{quotation} \bsk \par For years this definition was totally opaque to me... \par it only became clear very recently, when I was finally sat down \par and drew the internal diagrams corresponding to it. \par So now let me do something very naïve: I will take the ``problem'' \par of understanding this (which should be trivial to anyone with a \par minimum of knowledge of Algebra!), and show how I ``solve'' it. \par The tone will be student-like: ``look at how I solve this exercise!''... % (find-books "__alg/__alg.el" "eisenbudharris") % (find-eisenbudharrispage (+ 9 10) "V (S)") % (find-eisenbudharristext "V (S)") % (find-books "__analysis/__analysis.el" "royden") % (find-roydenpage (+ 13 171) "8 Topological spaces") \newpage %D diagram scheme-0 %D 2Dx 100 +50 +50 %D 2D 100 \Pts(R^2) %D 2D %D 2D +25 R[x,y] \Pts(R[x,y]) %D 2D %D 2D +25 (rings) \Ids(R[x,y]) %D 2D %D 2D +25 (domains) \Spec(R[x,y]) R^2şIrrs %D 2D %D 2D +25 (fields) \MIds(R[x,y]) R^2 %D 2D %D (( %D R[x,y] .tex= R %D \Pts(R[x,y]) .tex= \Pts(R) %D \Ids(R[x,y]) .tex= \Ids(R) %D \Spec(R[x,y]) .tex= \Spec(R) %D \MIds(R[x,y]) .tex= \MIds(R) %D (rings) .tex= ¯{(rings)} %D (domains) .tex= ¯{(domains)} %D (fields) .tex= ¯{(fields)} %D R^2şIrrs .tex= R^2ş¯{Irreds} %D # R[x,y] \Pts(R^2) --> .plabel= a \text{zeros} %D R[x,y] \Pts(R[x,y]) -> .plabel= a \{·\} %D R[x,y] \Ids(R[x,y]) --> .PLABEL= _(.40) \ang{·} %D # \Pts(R^2) \Pts(R[x,y]) -> sl_ %D # \Pts(R^2) \Pts(R[x,y]) <- sl^ %D \Pts(R[x,y]) \Ids(R[x,y]) ->> sl_ .plabel= l \ang{·} %D \Pts(R[x,y]) \Ids(R[x,y]) <-' sl^ %D \Ids(R[x,y]) \Spec(R[x,y]) <-' %D \Spec(R[x,y]) \MIds(R[x,y]) <-' %D (rings) (domains) <-' %D (domains) (fields) <-' sl^ %D (domains) (fields) ->> sl_ .plabel= l ¯{Frac} %D # \Spec(R[x,y]) R^2şIrrs <-> %D # \MIds(R[x,y]) R^2 <-> %D # \Pts(R^2) there+xy: 3 0 \Pts(R^2)' .tex= {\color{red}O} .tex= \phantom{O} %D # \Pts(R^2)' R^2şIrrs <-' %D # R^2şIrrs R^2 <-' %D (rings) \Ids(R[x,y]) <-' %D (domains) \Spec(R[x,y]) <-' %D (fields) \MIds(R[x,y]) <-' %D %D )) %D enddiagram %D $$\diag{scheme-0}$$ \newpage \par The main recurring idea in these notes is: \par {\sl internal diagrams are useful.} \par In a sense internal diagrams occur everywhere... \par when a book presents new concepts in a high-level, abstract way \par and then gives the reader some exercises, it is saying: \par {\sl now you do the internal diagrams yourself.} \par When we write ``real'' mathematics we usually expect the reader \par to construct the internal diagrams mentally as the exposition goes on. \par The writer presents the ``external view'' of the subject --- \par bacause that's what is non-trivial, and the mathematical formalism \par for the external view is precise enough, and % (find-books "__alg/__alg.el" "eisenbudharris") % (find-eisenbudharrispage (+ 9 10) "spectrum") %D diagram scheme-1 %D 2Dx 100 +50 +50 %D 2D 100 \Pts(R^2) %D 2D %D 2D +25 R[x,y] \Pts(R[x,y]) %D 2D %D 2D +25 (rings) \Ids(R[x,y]) %D 2D %D 2D +25 (domains) \Spec(R[x,y]) R^2şIrrs %D 2D %D 2D +25 (fields) \MIds(R[x,y]) R^2 %D 2D %D (( (rings) .tex= ¯{(rings)} %D (domains) .tex= ¯{(domains)} %D (fields) .tex= ¯{(fields)} %D R^2şIrrs .tex= R^2ş¯{Irreds} %D R[x,y] \Pts(R^2) --> .plabel= a \text{zeros} %D R[x,y] \Pts(R[x,y]) -> .plabel= a \{·\} %D R[x,y] \Ids(R[x,y]) --> .PLABEL= _(.40) \ang{·} %D \Pts(R^2) \Pts(R[x,y]) -> sl_ %D \Pts(R^2) \Pts(R[x,y]) <- sl^ %D \Pts(R[x,y]) \Ids(R[x,y]) ->> sl_ .plabel= l \ang{·} %D \Pts(R[x,y]) \Ids(R[x,y]) <-' sl^ %D \Ids(R[x,y]) \Spec(R[x,y]) <-' %D \Spec(R[x,y]) \MIds(R[x,y]) <-' %D (rings) (domains) <-' %D (domains) (fields) <-' sl^ %D (domains) (fields) ->> sl_ .plabel= l ¯{Frac} %D \Spec(R[x,y]) R^2şIrrs <-> %D \MIds(R[x,y]) R^2 <-> %D \Pts(R^2) there+xy: 3 0 \Pts(R^2)' .tex= {\color{red}O} .tex= \phantom{O} %D \Pts(R^2)' R^2şIrrs <-' %D R^2şIrrs R^2 <-' %D (rings) \Ids(R[x,y]) <-' %D (domains) \Spec(R[x,y]) <-' %D (fields) \MIds(R[x,y]) <-' %D %D )) %D enddiagram %D $$\diag{scheme-1}$$ %:*-*{-}* %:*+*{+}* %: %: %D diagram scheme-2 %D 2Dx 100 +30 +45 +50 %D 2D 100 \Pts(R^2) %D 2D %D 2D +25 R[x,y] \Pts(R[x,y]) %D 2D %D 2D +25 RI (rings) \Ids(R[x,y]) %D 2D %D 2D +25 DO (domains) \Spec(R[x,y]) R^2şIrrs %D 2D %D 2D +25 FI (fields) \MIds(R[x,y]) R^2 %D 2D %D (( (rings) .tex= ¯{(rings)} %D (domains) .tex= ¯{(domains)} %D (fields) .tex= ¯{(fields)} %D R^2şIrrs .tex= R^2ş¯{Irreds} %D %D R^2 .tex= (3,4) %D R^2şIrrs .tex= (3,4) %D \MIds(R[x,y]) .tex= \ang{x-3,y-4} %D \Spec(R[x,y]) .tex= \ang{x-3,y-4} %D \Ids(R[x,y]) .tex= \ang{x-3,y-4} %D \Pts(R[x,y]) .tex= \ang{x-3,y-4} %D \Pts(R^2) .tex= \{(3,4)\} %D (fields) .tex= \frac{\R[x,y]}{\ang{x-3,y-4}} %D (domains) .tex= \frac{\R[x,y]}{\ang{x-3,y-4}} %D (rings) .tex= \frac{\R[x,y]}{\ang{x-3,y-4}} %D FI .tex= \R %D DO .tex= \R %D RI .tex= \R %D %D # R[x,y] \Pts(R^2) --> .plabel= a \text{zeros} %D # R[x,y] \Pts(R[x,y]) -> .plabel= a \{·\} %D # R[x,y] \Ids(R[x,y]) --> .PLABEL= _(.40) \ang{·} %D \Pts(R^2) \Pts(R[x,y]) |-> sl_ %D \Pts(R^2) \Pts(R[x,y]) <.| sl^ %D \Pts(R[x,y]) \Ids(R[x,y]) |-> sl_ .plabel= l \ang{·} %D \Pts(R[x,y]) \Ids(R[x,y]) <-| sl^ %D \Ids(R[x,y]) \Spec(R[x,y]) <-| %D \Spec(R[x,y]) \MIds(R[x,y]) <-| %D (rings) (domains) <-| %D (domains) (fields) <-| sl^ %D (domains) (fields) |-> sl_ .plabel= l ¯{Frac} %D \Spec(R[x,y]) R^2şIrrs <-> %D \MIds(R[x,y]) R^2 <-> %D \Pts(R^2) there+xy: 3 0 \Pts(R^2)' .tex= {\color{red}O} .tex= \phantom{O} %D \Pts(R^2)' R^2şIrrs <-| %D R^2şIrrs R^2 <-| %D (rings) \Ids(R[x,y]) <-| %D (domains) \Spec(R[x,y]) <-| %D (fields) \MIds(R[x,y]) <-| %D FI (fields) = .plabel= a \sim %D DO (domains) = .plabel= a \sim %D RI (rings) = .plabel= a \sim %D %D )) %D enddiagram %D $$\diag{scheme-2}$$ % Imagem do <x-3,y-4> %* \end{document} % Local Variables: % coding: raw-text-unix % modes: (latex-mode fundamental-mode) % ee-anchor-format: "«%s»" % End: