Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-2-LA-cats.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-2-LA-cats.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-2-LA-cats.pdf")) % (defun e () (interactive) (find-LATEX "2016-2-LA-cats.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-2-LA-cats")) % (find-xpdfpage "~/LATEX/2016-2-LA-cats.pdf") % (find-sh0 "cp -v ~/LATEX/2016-2-LA-cats.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-2-LA-cats.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-2-LA-cats.pdf % file:///tmp/2016-2-LA-cats.pdf % file:///tmp/pen/2016-2-LA-cats.pdf % http://angg.twu.net/LATEX/2016-2-LA-cats.pdf % % «.composition» (to "composition") % «.lateral-inverses» (to "lateral-inverses") % «.multiple-inverses» (to "multiple-inverses") % «.no-inverses» (to "no-inverses") % «.products» (to "products") % «.exponentials» (to "exponentials") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} %\usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") % \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} \directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} % \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") % %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\und#1#2{\underbrace{#1}_{#2}} \def\und#1#2{\underbrace{#1}_{\textstyle #2}} \def\subf#1{\underbrace{#1}_{}} \def\p{\phantom{(}} \def\cur{\operatorname{cur}} \def\uncur{\operatorname{uncur}} \def\app{\operatorname{app}} \def\ren{\operatorname{ren}} \def∧{\&} \def\namedfunction#1#2#3#4#5{ \begin{array}{rrcl} #1: & #2 & → & #3 \\ & #4 & ↦ & #5 \\ \end{array} } % _ _ _ % ___ ___ _ __ ___ _ __ ___ ___(_) |_(_) ___ _ __ % / __/ _ \| '_ ` _ \| '_ \ / _ \/ __| | __| |/ _ \| '_ \ % | (_| (_) | | | | | | |_) | (_) \__ \ | |_| | (_) | | | | % \___\___/|_| |_| |_| .__/ \___/|___/_|\__|_|\___/|_| |_| % |_| % % «composition» (to ".composition") % (lac162p 1 "composition") Composition (is associative) %L mapstos_1 = function (str) %L local n, latex = 0, "" %L for d in str:gmatch("%d") do %L latex = latex .. format("%d \\mapsto %d \\\\\n", n, d) %L n = n + 1 %L end %L return latex %L end %L %L mapstos_2 = function (str) %L local latex = "" %L for a,b in str:gmatch("(%d)(%d)") do %L latex = latex .. format("%d \\mapsto %d \\\\\n", a, b) %L end %L return latex %L end \pu \def\mapsb #1{\sm{\expr{mapstos_1("#1")}}} \def\mapsab#1{\sm{\expr{mapstos_2("#1")}}} % \bsk %D diagram ?? %D 2Dx 100 +35 +35 +35 +35 +35 %D 2D 100 A --> B a --> b %D 2D | | %D 2D v v %D 2D +35 C --> D c --> d %D 2D %D ren a b ==> \{1,2\} \{3,4\} %D ren c d ==> \{5,6\} \{7,8\} %D (( A B -> .plabel= a f %D B C -> .plabel= m g %D C D -> .plabel= b h %D A C -> .plabel= l (g∘f=)\;\;f;g %D B D -> .plabel= r g;h\;\;(=h∘g) %D %D a b -> .plabel= a \mapsab{13,24} %D b c -> .plabel= m \mapsab{36,45} %D c d -> .plabel= b \mapsab{57,67} %D a c -> b d -> %D )) %D enddiagram %D $$\pu \diag{??} $$ \bsk %D diagram composition-1 %D 2Dx 100 +30 +30 +30 %D 2D 100 D <-- C <-- B <-- A %D 2D %D (( D A <- .plabel= a (h∘g)∘f .slide= 22pt %D D B <- .plabel= a h∘g .slide= 10pt %D D C <- .plabel= m h C B <- .plabel= m g B A <- .plabel= m f %D C A <- .plabel= b g∘f .slide= -10pt %D D A <- .plabel= b h∘(g∘f) .slide= -22pt %D )) %D enddiagram %D % $$\begin{array}{rcl} ((h∘g)∘f)(a) &=& (h∘g)(f(a)) \\ &=& h(g(f(a))) \\ &=& h((g∘f)(a)) \\ &=& (h∘(g∘f))(a) \\[5pt] ((h∘g)∘f)(a) &=& (h∘(g∘f))(a) \\[5pt] (h∘g)∘f &=& h∘(g∘f) \\ \end{array} \qquad \Diag{composition-1} $$ \bsk \bsk Identities: If $f:A→B$ then $\id_A;f = f = f;\id_B$ %D diagram ?? %D 2Dx 100 +35 +35 +35 +35 +35 %D 2D 100 A --> B a --> b %D 2D | | %D 2D v v %D 2D +35 C --> D c --> d %D 2D %D ren A B ==> A A %D ren C D ==> B B %D ren a b ==> \{1,2\} \{1,2\} %D ren c d ==> \{3,4\} \{3,4\} %D (( A B -> .plabel= a \id_A %D B C -> .plabel= m f %D C D -> .plabel= b \id_B %D A C -> .plabel= l f\;=\;\id_A;f %D B D -> .plabel= r f;\id_B\;=\;f %D %D a b -> .plabel= a \mapsab{11,22} %D b c -> .plabel= m \mapsab{13,24} %D c d -> .plabel= b \mapsab{33,44} %D a c -> b d -> %D )) %D enddiagram %D $$\pu \diag{??} $$ \bsk \bsk % «lateral-inverses» (to ".lateral-inverses") A theorem about lateral inverses: If $f;g = \id$ and $g;h=\id$ then $f=h$ %D diagram ?? %D 2Dx 100 +35 +35 +35 +35 +35 %D 2D 100 A --> B a --> b %D 2D | | %D 2D v v %D 2D +35 C --> D c --> d %D 2D %D ren A B ==> B A %D ren C D ==> B A %D ren a b ==> \{1,2\} \{1,2\} %D ren c d ==> \{3,4\} \{3,4\} %D (( A B -> .plabel= a f %D B C -> .plabel= m g %D C D -> .plabel= b h %D A C -> .plabel= l \id_B\;=\;f;g %D B D -> .plabel= r \id_A\;=\;g;h %D %D # a b -> .plabel= a \mapsab{11,22} %D # b c -> .plabel= m \mapsab{13,24} %D # c d -> .plabel= b \mapsab{33,44} %D # a c -> b d -> %D )) %D enddiagram %D $$\pu \diag{??} \qquad \begin{array}{rcl} \multicolumn {3}{c} {(f;g);h = \id_B;h = h} \\ \multicolumn {3}{c} {f;(g;h) = f;\id_A = f} \\[5pt] f &=& f;\id_A \\ &=& f;(g;h) \\ &=& (f;g);h \\ &=& \id_B;h \\ &=& h \end{array} $$ \newpage % «multiple-inverses» (to ".multiple-inverses") % (lac162p 2 "multiple-inverses") Multiple inverses %L forths["->>"] = function () pusharrow("->>") end %D diagram ?? %D 2Dx 100 +35 +35 +35 %D 2D 100 A --> B D %D 2D | | %D 2D v v %D 2D +35 C E --> F %D 2D %D ren A B D ==> \{1,2\} \{3,4,5\} \{5,6\} %D ren C E F ==> \{1,2\} \{7,8,9\} \{5,6\} %D (( A B >-> sl^ .plabel= a ? A B >-> sl_ .plabel= b ? %D B C ->> .plabel= r \mapsab{31,42,52} %D A C -> .plabel= l \id %D %D D E ->> .plabel= l \mapsab{57,68} %D E F >-> sl^ .plabel= a ? E F >-> sl_ .plabel= b ? %D D F -> .plabel= r \id %D )) %D enddiagram %D $$\pu \diag{??} $$ \bsk \bsk \def\frown{=(} % «no-inverses» (to ".no-inverses") No inverses %D diagram ?? %D 2Dx 100 +35 +35 +10 +35 +35 %D 2D 100 A --> B E --> F %D 2D | | %D 2D v v %D 2D +35 C --> D G --> H %D 2D %D ren A B E F ==> \{3,4,5\} \{1,2\} \{8,9\} \{5,6,7\} %D ren C D G H ==> \{3,4,5\} \{1,2\} \{8,9\} \{5,6,7\} %D (( A B -> .plabel= a \frown %D B C >-> .plabel= m \mapsab{13,24} %D A C -> .plabel= l \id %D C D ->> sl^ C D ->> sl_ %D B D -> .plabel= r \id %D %D E G -> .plabel= l \id %D E F >-> sl^ E F >-> sl_ %D F G ->> .plabel= m \mapsab{58,69,79} %D G H -> .plabel= b \frown %D F H -> .plabel= r \id %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +35 +35 %D 2D 100 A --> B %D 2D | %D 2D v %D 2D +35 C --> D %D 2D %D ren A B ==> \{4,5,6\} \{1,2,3\} %D ren C D ==> \{4,5,6\} \{1,2,3\} %D (( A B -> .plabel= a \frown %D B C -> .plabel= m \mapsab{14,25,35} %D C D -> .plabel= r \frown %D A C -> .plabel= l \id %D B D -> .plabel= r \id %D )) %D enddiagram %D $$\pu \diag{??} $$ \bsk \bsk \bsk % «products» (to ".products") % (lac162p 2 "products") {\bf Products} Property: $∀f,g.∃!h.(f=h;π\;∧\;g=h;π')$ Solution: $h=λa:A.(f(a),g(a))$ Bijection: $(f,g)↔h$ $(→)$: $λ(f,g).(λa:A.(f(a),g(a)))$ $(←)$: $λh.((h;π),(h;π'))$ \bsk %D diagram product-ABC %D 2Dx 100 +45 +45 %D 2D 100 A %D 2D | %D 2D v %D 2D +45 B <-- BxC --> C %D 2D %D ren A ==> A %D ren B BxC C ==> B B×C C %D %D (( A B -> .plabel= l f %D A BxC -> .plabel= m h %D A C -> .plabel= r g %D B BxC <- .plabel= b π\mathstrut %D BxC C -> .plabel= b π' %D )) %D enddiagram %D %D diagram product-explicit %D 2Dx 100 +45 +45 %D 2D 100 A %D 2D | %D 2D v %D 2D +45 B <-- BxC --> C %D 2D %D ren A ==> \{1,2\} %D ren B BxC C ==> \{3,4\} \csm{(3,5),(3,6),\\(4,5),(4,6)} \{5,6\} %D %D (( A B -> .plabel= l \mapsab{13,24} %D A BxC -> .plabel= m \midmap %D A C -> .plabel= r \mapsab{15,26} %D B BxC <- .plabel= b π\mathstrut %D BxC C -> .plabel= b π' %D )) %D enddiagram %D $$\pu \def\midmap{\sm{1↦(3,5)\\2↦(4,6)}} % \diag{product-ABC} \qquad \diag{product-explicit} $$ \newpage % «exponentials» (to ".exponentials") % (lac162p 3 "exponentials") {\bf Exponentials} Bijection: $f↔g$ $(→)$ (``currying''): $g := \cur f := λa:A.λb:B.f(a,b)$ $(←)$ (``uncurrying''): $f := \uncur g := λ(a,b):A×B.((g(a))(b))$ \bsk %D diagram exponentials-ABC %D 2Dx 100 +45 %D 2D 100 AxB <--| A %D 2D | | %D 2D | <-> | %D 2D v v %D 2D +50 C |--> B->C %D 2D %D ren AxB A ==> A×B A %D ren C B->C ==> C B{→}C %D (( AxB A <-| .plabel= a λA.(A×B) %D C B->C |-> .plabel= b λC.(B{→}C) %D AxB C -> .plabel= l f %D A B->C -> .plabel= r g %D A C harrownodes nil 20 nil <-> %D )) %D enddiagram %D %D diagram exponentials-explicit %D 2Dx 100 +60 %D 2D 100 AxB <--| A %D 2D | | %D 2D | <-> | %D 2D v v %D 2D +50 C |--> B->C %D 2D %D ren AxB A ==> \csm{(1,3),(1,4)\\(2,3),(2,4)} \{1,2\} %D ren C B->C ==> \{5,6\} \csm{\fu55,\fu56,\\\fu65,\fu66} %D (( AxB A <-| %D C B->C |-> %D AxB C -> .plabel= l \sm{(1,3)↦5\\(1,4)↦6\\(2,3)↦6\\(2,4)↦5} %D A B->C -> .plabel= r \sm{1↦\fu56\\2↦\fu65} %D A C harrownodes nil 20 nil <-> %D )) %D enddiagram %D $$\pu \def\fu#1#2{\csm{(3,#1),\\(4,#2)}} \diag{exponentials-ABC} \diag{exponentials-explicit} $$ \bsk \bsk Properties: $\cur \uncur f = f$, \; $\uncur \cur g = g$ where: $f×f' := \ang{π;f,\,π';f'}$, \; $\uncur g := (g×\id);\ev$ solving type equations: \bsk %:*"* * %: %: %: π f π' f' π:A×?→A f:A→B π':?×A'→A' f':A'→B' %: ----- ------ ------ ------------ --------------------- %: π;f π';f' π;f:A×?→B π';f':?×A'→B' %: ---------------- ---------------------------------------- %: \ang{π;f,\,π';f'} \ang{π;f,\,π';f'}:A×A'→B×B' %: ------------------\ren ----------------------------\ren %: f×f' f×f':A×A'→B×B' %: %: ^fxf'_1 ^fxf'_2 %: %: %: g \id g:A→(B{→}C) \id:?→? %: ------ ---------------------- %: g×\id \ev g×\id:A×?→(B{→}C)×? \ev:(B{→}C)×B→C %: ----------- ----------------------------------------- %: (g×\id);\ev (g×\id);\ev:A×?→C %: -----------\ren ------------------ %: \uncur"g \uncur"g:A×?→C %: %: ^uncur_g_1 ^uncur_g_2 %: \pu $$\ded{fxf'_1} \qquad \ded{fxf'_2}$$ $$\ded{uncur_g_1} \qquad \ded{uncur_g_2}$$ \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: