Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017-1-GA-P2.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017-1-GA-P2.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017-1-GA-P2.pdf")) % (defun e () (interactive) (find-LATEX "2017-1-GA-P2.tex")) % (defun u () (interactive) (find-latex-upload-links "2017-1-GA-P2")) % (find-xpdfpage "~/LATEX/2017-1-GA-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2017-1-GA-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017-1-GA-P2.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017-1-GA-P2.pdf % file:///tmp/2017-1-GA-P2.pdf % file:///tmp/pen/2017-1-GA-P2.pdf % http://angg.twu.net/LATEX/2017-1-GA-P2.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-angg ".emacs.papers" "latexgeom") % (find-latexgeomtext "total={6.5in,8.75in},") \usepackage[%total={6.5in,4in}, %textwidth=4in, paperwidth=4.5in, %textheight=5in, paperheight=4.5in, a4paper, top=1.4in, left=1.4in%, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \pu \def\V(#1){\VEC{#1}} \def\und#1#2{\underbrace{#1}_{#2}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2017.1 \par P2 - 17/jul/2017 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Diagramas muito ambíguos {\sl serão} interpretados errado. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar Lembre que uma equação de cônica é uma equação da forma $ax^2 + bxy + cy^2 + dy + ey + f = 0$; $4+(x+y)(x-y)=5y$ não é uma equação de cônica mas é equivalente a uma: $x^2-y^2-5y+4=0$. E o truque pra gente se livrar das duas raízes quadradas em $√A + √B = C$ ou $√A - √B = C$ é: % $$\begin{array}{rcl} √A + √B = C &⇒& C^2(C^2 - 2(A+B)) + (A-B)^2 = 0 \\ √A - √B = C &⇒& C^2(C^2 - 2(A+B)) + (A-B)^2 = 0 \\ \end{array} $$ % Nas questões 3 e 4 vamos usar a abreviação $[\text{equação}] = % \setofxyzst{\text{equação}}$. \bsk % \def\myu {\frac{x-4}{2}} % \def\myv { y-\frac{x}{2} } \def\myu {y-x/2-3} \def\myv {y+x/2-3} \def\myuu{\und{\textstyle\myu}{u}} \def\myvv{\und{\textstyle\myv}{v}} 1) \T(Total: 4.5 pts) Faça esboços das cônicas com as equações abaixo. Algumas delas são degeneradas. Em todos os itens abaixo considere que $u=y-x/2$ e $v=y+x/2$ --- ou que $u$ e $v$ são {\sl abreviações} para $y-x/2$ e $y+x/2$. % $$ \begin{tabular}[t]{rl} a) (0.1 pts) & $x^2+y^2=1$ \\ b) (0.1 pts) & $x^2+y^2=4$ \\ c) (0.1 pts) & $x^2+y^2=0$ \\ d) (0.1 pts) & $xy=1$ \\ e) (0.1 pts) & $xy=4$ \\ f) (0.1 pts) & $xy=0$ \\ g) (0.1 pts) & $xy=-1$ \\ h) (0.1 pts) & $x^2=y$ \\ i) (0.1 pts) & $x=y^2$ \\ j) (0.1 pts) & $x^2=y^2$ \\ \end{tabular} \quad \begin{tabular}[t]{rl} k) (0.5 pts) & $u(u-1)=0$ \\ l) (0.5 pts) & $v(v-1)=0$ \\[4pt] m) (0.2 pts) & $u^2+v^2=0$ \\ n) (0.3 pts) & $u^2+v^2=1$ \\[4pt] o) (0.2 pts) & $uv=0$ \\ p) (0.4 pts) & $uv=1$ \\ q) (0.4 pts) & $uv=-1$ \\[4pt] r) (0.5 pts) & $u^2=v$ \\ s) (0.5 pts) & $u=v^2$ \\ \end{tabular} $$ \bsk 2) \T(Total: 1.5 pts) Seja $S=\setofxyst{y-x/2 = (y+x/2)^2}$ (veja o item $s$ da questão anterior). Dê as coordenadas $(x,y)$ de cinco pontos de $S$. {\sl Dica: confira os seus resultados!!!} \bsk 3) \T(Total: 1.5 pts) Sejam $F=(-1,0)$, $F'=(1,0)$, e % $$\begin{array}{rcl} S &=& \setofxyst{d((x,y),F) + d((x,y),F')=4} \\ &=& \setofxyst{\sqrt{(x+1)^2+y^2} + \sqrt{(x-1)^2+y^2} = 4}, \\ S' &=& \setofxyst{ax^2 + bx + c + dxy + ey + fy^2 = 0}. \\ \end{array} $$ % a) \B(1.0 pts) Encontre $a,b,c,d,e,f∈\R$ que façam com que $S=S'$. b) \B(0.5 pts) Dê as coordenadas de 4 pontos da elipse $S$. \bsk 4) \T(Total: 2.5 pts) Sejam $A=(0,0,2)$, $B=(0,1,0)$, $C=(1,0,0)$, $D=(1,1,0)$, $π$ o plano que contém $A,B,C$, $π'$ o plano paralelo a $π$ que contém o ponto $D$. a) \B(0.2 pts) Dê a equação do plano $π$. b) \B(0.3 pts) Dê a equação do plano $π'$. c) \B(0.5 pts) Calcule $d(π,π')$. d) \B(1.5 pts) Dê as coordenadas do ponto de $π'$ mais próximo de $A$. \newpage {\bf Gabarito} (versão revisada) \msk % _ % / | % | | % | | % |_| % \unitlength=5pt \def\closeddot{\circle*{0.6}} \def\pictpoint#1{\put(#1){\closeddot}} \def\pictline#1{{\linethickness{1.0pt}\expr{Line.new(#1):pict()}}} \def\pictlinethin#1{{\linethickness{0.2pt}\expr{Line.new(#1):pict()}}} \def\pictLine(#1)(#2)#3{% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictline{#3} \end{picture}% }}% } \def\pictellipse#1{{\linethickness{1.0pt}\expr{Ellipse.new(#1):pict()}}} \def\pictEllipse(#1)(#2)#3{% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictellipse{#3} \end{picture}% }}% } \def\pictEllipseF(#1)(#2)#3(#4)(#5){% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictellipse{#3} \put(#4){\closeddot} \put(#5){\closeddot} \end{picture}% }}% } \def\picthyperbole#1#2{{\linethickness{1.0pt}\expr{Hyperbole.new(#1):pict(#2)}}} \def\pictparabola #1#2{{\linethickness{1.0pt}\expr{Parabola .new(#1):pict(#2)}}} \def\mygrid{ \pictlinethin{v(0,-1), v(1,0), -1, 5} % y-2 = 1 \pictlinethin{v(0,-2), v(1,0), -1, 5} % y-2 = 0 \pictlinethin{v(0,-3), v(1,0), -1, 5} % y-2 = -1 \pictlinethin{v(0,-1), v(1,-1), -2, 3} % x+y = -1 \pictlinethin{v(0, 0), v(1,-1), -2, 4} % x+y = 0 \pictlinethin{v(1, 0), v(1,-1), -2, 4} % x+y = 1 } \def\mygrid{ \pictlinethin{v(0, 1), v(1,-.5), -2, 4} % y-2 = 0 \pictlinethin{v(0, 0), v(1,-.5), -3, 3} % y-2 = 1 \pictlinethin{v(0,-1), v(1,-.5), -4, 2} % y-2 = -1 \pictlinethin{v(0, 1), v(1, .5), -4, 2} % x+y = 0 \pictlinethin{v(0, 0), v(1, .5), -3, 3} % x+y = -1 \pictlinethin{v(0,-1), v(1, .5), -2, 4} % x+y = 1 } 1a) % a) x^2+y^2=1 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictellipse{v(0,0), v(1,0), v(0,1)} % \pictline{v(0,0), v(1,0), -2, 2} % \pictline{v(0,0), v(0,1), -2, 2} \end{picture}% }}$ \; 1b) % b) x^2+y^2=4 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictellipse{v(0,0), v(2,0), v(0,2)} %\pictline{v(0,0), v(1,1), -2, 2} %\pictline{v(0,0), v(1,-1), -2, 2} \end{picture}% }}$ \; 1c) % c) x^2+y^2=0 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \put(0,0){\closeddot} %\pictline{v(0,1), v(1,0), -2, 2} %\pictline{v(0,2), v(1,0), -2, 2} \end{picture}% }}$ % \quad % 1d) % d) xy=1 $\vcenter{\hbox{% \beginpicture(-4,-4)(4,4)% \pictaxes% \picthyperbole{v(0,0), v(1,0), v(0,1), 1}{10, -4, -1/4, 1/4, 4} \put(1,1){\closeddot} \put(-1,-1){\closeddot} %\pictline{v(0,0), v(-1,1), -2, 2} \end{picture}% }}$ \; 1e) % e) xy=4 $\vcenter{\hbox{% \beginpicture(-4,-4)(4,4)% \pictaxes% \picthyperbole{v(0,0), v(2,0), v(0,2), 1}{10, -2, -1/2, 1/2, 2} \put(2,2){\closeddot} \put(-2,-2){\closeddot} %\pictline{v(0,0), v(-1,1), -2, 2} \end{picture}% }}$ \; 1f) % f) xy=0 $\vcenter{\hbox{% \beginpicture(-3,-3)(3,3)% \pictaxes% \pictline{v(0,0), v(1,0), -3, 3} \pictline{v(0,0), v(0,1), -3, 3} \end{picture}% }}$ \; 1g) % g) xy=-1 $\vcenter{\hbox{% \beginpicture(-4,-4)(4,4)% \pictaxes% \picthyperbole{v(0,0), v(1,0), v(0,-1), 1}{10, -4, -1/4, 1/4, 4} \put(1,-1){\closeddot} \put(-1,1){\closeddot} \end{picture}% }}$ 1h) % h) x^2=y $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictparabola{v(0,0), v(1,0), v(0,1), 2}{10, -1.4, 1.4} \end{picture}% }}$ \quad 1i) % i) x=y^2 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictparabola{v(0,0), v(0,1), v(1,0), 2}{10, -1.4, 1.4} \end{picture}% }}$ \quad 1j) % j) x^2=y^2 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictline{v(0,0), v(1,1), -2, 2} \pictline{v(0,0), v(1,-1), -2, 2} \end{picture}% }}$ \quad 1k) % k) u(u-1)=0 $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \pictline{v(0,0), v(1,.5), -3, 3} \pictline{v(0,1), v(1,.5), -4, 2} \end{picture}% }}$ \; 1l) % l) v(v-1)=0 $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \pictline{v(0,0), v(1,-.5), -3, 3} \pictline{v(0,1), v(1,-.5), -2, 4} \end{picture}% }}$ \; 1m) % m) u^2+v^2=0 $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \put(0,0){\closeddot} \end{picture}% }}$ \; 1n) % n) u^2+v^2=1 $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \pictellipse{v(0,0), v(1,-.5), v(1,.5)} % \picthyperbole{v(2,-2), v(1,0), v(-1,1), 1}{10, -4, -1/2, 1/4, 4} % \put(2,-2){\closeddot} % \pictline{v(0,-2), v(1,0), -1, 5} % y-2 = 0 % \pictline{v(0, 0), v(1,-1), -2, 4} % x+y = 0 \end{picture}% }}$ \msk 1o) % o) uv=0 $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \pictline{v(0,0), v(1,.5), -3, 3} \pictline{v(0,0), v(1,-.5), -3, 3} \end{picture}% }}$ \quad 1p) % p) uv=1 $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \picthyperbole{v(0,0), v(1,.5), v(-1,.5), 1}{10, -3, -1/3, 1/3, 3} \end{picture}% }}$ \; 1q) % q) uv=-1 $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \picthyperbole{v(0,0), v(1,.5), v(1,-.5), 1}{10, -3, -1/3, 1/3, 3} \end{picture}% }}$ \; 1r) % r) u^2=v $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \pictparabola{v(0,0), v(-1,.5), v(1,.5), 2}{10, -1.4, 1.4} \end{picture}% }}$ \; 1s) $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \pictparabola{v(0,0), v(1,.5), v(-1,.5), 2}{10, -1.4, 1.4} % \pictellipse{v(4,6), v(2,0), v(0,3)} \end{picture}% }}$ \bsk % ____ % |___ \ % __) | % / __/ % |_____| % 2) % $\begin{array}[t]{rrrrl} % u & v & x & y \\\hline % 4 & -2 & -6 & 1 & \text{(0.5 pts)} \\ % 1 & -1 & -2 & 0 & \text{(0.2 pts)} \\ % 0 & 0 & 0 & 0 & \text{(0.1 pts)} \\ % 1 & 1 & 0 & 1 & \text{(0.2 pts)} \\ % 4 & 2 & -2 & 3 & \text{(0.5 pts)} \\ % \end{array} % $ % $\begin{array}[t]{rrrrl} u & v & x & y \\\hline 4 & -2 & -6 & 1 & \text{(0.5 pts)} \\ 1 & -1 & -2 & 0 & \text{(0.2 pts)} \\ 0 & 0 & 0 & 0 & \text{(0.1 pts)} \\ 1 & 1 & 0 & 1 & \text{(0.2 pts)} \\ 4 & 2 & -2 & 3 & \text{(0.5 pts)} \\ \end{array} $ \bsk % _____ % |___ / % |_ \ % ___) | % |____/ % 3a) Sejam % $$\begin{array}{rcl} A &=& (x+1)^2+y^2 = x^2 + 2x + 1 + y^2, \\ B &=& (x-1)^2+y^2 = x^2 - 2x + 1 + y^2, \\ C &=& 4. \\ \end{array} $$ % Então % $$\begin{array}{rcl} A+B &=& 2x^2 + 2y^2 + 2, \\ A-B &=& 4x, \\ C^2 - 2(A+B) &=& 16 - 4x^2 - 4y^2 - 4 = 12 - 4x^2 - 4y^2, \\ C^2(C^2 - 2(A+B)) &=& 192 - 64x^2 - 64y^2, \\ (A-B)^2 &=& 16x^2, \\ C^2(C^2 - 2(A+B)) + (A-B)^2 &=& 192 - 48x^2 - 64y^2 \\ &=& 192(1 - \frac{1}{4}{x^2} - \frac{1}{3}{y^2}), \\ \end{array} $$ % $$\begin{array}{rcl} S' &=& \setofxyst{-48x^2 +0x +192 +0xy + 0y - 64y^2 = 0} \\ &=& \setofxyst{\frac{1}{4}{x^2} + 0x - 1 +0xy + 0y +\frac{1}{3}{y^2} = 0}. \\ \end{array} $$ 3b) $\begin{array}[t]{rcl} & (0,√3), & \\ (-2,0), & & (2,0), \\ & (0,-√3). & \\ \end{array} $ % (find-es "ipython" "2017.1-GA-P2") \bsk % _ _ % | || | % | || |_ % |__ _| % |_| % 4a) $π=\setofxyzst{x+y+\frac z2 = 1}$ 4b) $π'=\setofxyzst{x+y+\frac z2 = 2}$ 4c) Sejam $\uu=\Vec{AB}=\VEC{0,1,-2}$, $\vv=\Vec{AC}=\VEC{1,0,-2}$, $\ww=\Vec{AD}=\VEC{1,1,-2}$. Então % $$\begin{array}{rcl} \uu×\vv &=& \VEC{-2,-2,-1}, \\ \area(\uu,\vv) &=& \sqrt{2^2 + 2^2 + 1^2} = 3, \\ |[\uu,\vv,\ww]| &=& \vsm{0 & 1 & -2 \\ 1 & 0 & -2 \\ 1 & 1 & -2} = -2, \\ d(π,π') &=& \left| \frac{|[\uu,\vv,\ww]|}{\area(\uu,\vv)} \right| = |-2/3| = 2/3. \end{array} $$ 4d) A reta $r = \setofst{A+t\VEC{2,2,1}}{t∈\R} = \setofst{(2t,2t,2+t)}{t∈\R}$ passa por $A$ e é ortogonal a $π$. Ela intersecta $π'$ quando $2t+2t+\frac{2+t}{2}=2$, i.e., quando $\frac92 t=1$ e quando $t=\frac29$, o que corresponde ao ponto $P=(\frac49, \frac49, \frac{20}{9})$. % (find-angg "LATEX/2015-2-GA-P2.tex") % n = (2,2,1) % u = (1,0,-2) % u = (0,1,-2) % % A=(0,0,2) % B=(0,1,0) % C=(1,0,0) % D=(1,1,0) \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: