Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2018-2-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2018-2-C2-P1.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2018-2-C2-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2018-2-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2018-2-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2018-2-C2-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2018-2-C2-P1.pdf")) % (code-eec-LATEX "2018-2-C2-P1") % (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2018-2-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2018-2-C2-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2018-2-C2-P1.pdf % file:///tmp/2018-2-C2-P1.pdf % file:///tmp/pen/2018-2-C2-P1.pdf % http://angg.twu.net/LATEX/2018-2-C2-P1.pdf % (find-LATEX "2019.mk") % «.gab-1» (to "gab-1") % «.gab-2» (to "gab-2") % «.gab-3» (to "gab-3") % «.gab-4» (to "gab-4") % «.gab-5» (to "gab-5") % «.gabarito-maxima» (to "gabarito-maxima") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams \catcode`\^^J=10 % (find-es "luatex" "spurious-omega") \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2018.2 \par P1 - 12/nov/2018 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar % \bsk % \bsk % (c2q) 1) \T(Total: 2.0 pts) Calcule $$\intx {(\sen x)^4(\cos x)^2}.$$ \bsk 2) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x^2}{\sqrt{4x^2 - 9}}}.$$ \bsk 3) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x^3}{x^2 + 7x + 12}}.$$ \bsk 4) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x^4}{(x-3)^2}}.$$ \bsk 5) \T(Total: 2.0 pts) Calcule por integração por partes: a) \B(1.0 pts) $\intx {1·\ln x}$, b) \B(1.0 pts) $\intx {x·\ln x}$. \bsk \bsk Algumas definições, fórmulas e substituições: $\begin{array}[t]{l} c = \cos θ \\ s = \sen θ \\ t = \tan θ \\ z = \sec θ \\ E = e^{iθ} \\ \end{array} % \begin{array}[t]{l} c^2+s^2=1 \\ z^2=t^2+1 \\ \sqrt{1-s^2} = c \\ \sqrt{t^2+1} = z \\ \sqrt{z^2-1} = t \\ \end{array} % \begin{array}[t]{l} \frac{ds}{dθ} = c \\ \frac{dc}{dθ} = -s \\ \frac{dt}{dθ} = z^2 \\ \frac{dz}{dθ} = zt \\ \end{array} % \begin{array}[t]{l} E = c+is \\ c = \frac{E+E¹}{2} \\ s = \frac{E-E¹}{2i} \\ e^{ikθ} + e^{-ikθ} = 2 \cos kθ \\ e^{ikθ} - e^{-ikθ} = 2i \sen kθ \\ \end{array} $ \newpage {\bf Gabarito} % «gab-1» (to ".gab-1") % (find-es "ipython" "2018.2-C2-P1") 1) $\begin{array}[t]{l} (\senθ)^4 = \left(\frac{E-E¹}{2i}\right)^4 = \frac{1}{16} (E^4 - 4E^2 + 6 - 4E^{-2} + E^4) \\ (\cosθ)^2 = \left(\frac{E+E¹}{2}\right)^2 = \frac{1}{4} (E^2 + 2 + E^{-2}) \\ (\senθ)^4 (\cosθ)^2 = \frac{1}{64} \begin{array}[t]{lrrrrrrrrr} ( & E^6 & -4E^4 & +6E^2 & -4 & +E^{-2} \\ & & +2E^4 & -8E^2 & +12 & -8E^{-2} & +2E^{-4} \\ & & & +E^2 & -4 & +6E^{-2} & -4E^{-4} & +E^{-6} & ) \\ \end{array} \\ \phantom{mmmmmmm.} = \frac{1}{64} (E^6 -2E^4 -E^2 +4 -E^{-2} -2E^{-4} +E^{-6}) \\ \phantom{mmmmmmm.} = \frac{1}{64} ((E^6+E^{-6}) -2(E^4+E^{-4}) -(E^2+E^{-2}) +4) \\ \phantom{mmmmmmm.} = \frac{1}{64} (2\cos6θ -4\cos4θ -2\cos2θ +4) \\[5pt] \intth {(\senθ)^4 (\cosθ)^2} = \frac{2}{64·6} \sen6θ + \frac{4}{64·4} \sen4θ - \frac{2}{64·2} \sen2θ + \frac{4}{64} θ \\ \end{array} $ \bsk % «gab-2» (to ".gab-2") % (find-es "ipython" "2018.2-C2-P1") \def\t{\textstyle} \def\d{\displaystyle} 2) $\begin{array}[t]{rcl} \d \intx {\frac{x^2}{\sqrt{4x^2-9}}} &=& \d \intx {\frac{x^2}{3\sqrt{\frac{4}{9}x^2-1}}} \\ &=& \d \intx {\frac{x^2}{3\sqrt{(\frac{2}{3}x)^2-1}}} \quad \subst{\frac23x=z \\ x=\frac32z \\ dx=\frac32dz} \\ &=& \d \intz {\frac{(\frac{3}{2}z)^2}{3\sqrt{z^2-1}} \textstyle \frac32} \\ &=& \d \frac98 \intz {\frac{z^2}{\sqrt{z^2-1}}} \quad \subst{z=\secθ=\frac1c \\ \sqrt{z^2-1}=\tanθ=\frac sc \\ dz=ztdθ=\frac{s}{c^2}dθ} \\ &=& \d \frac98 \intth {\frac{c^{-2}}{sc^{-1}} \textstyle{s}{c^{-2}}} \\ &=& \d \frac98 \intth {c^{-3}} \\ &=& \d \frac98 \intth {c^{-4}\,c} \quad \subst{c^2 = 1-s^2 \\ c\,dθ=ds} \\ &=& \d \frac98 \ints {\frac{1}{(1-s^2)^2}} \\ &=& \d \frac98 \ints {\frac{1}{(s^2-1)^2}} \\ &=& \d \frac98 \ints {\frac{1}{(s+1)^2(s-1)^2}} \\ &=& \d \frac98 \ints {\frac14 \left(\frac{1}{s+1} + \frac{1}{(s+1)^2} + \frac{1}{s-1} + \frac{1}{(s-1)^2} \right)} \\ &=& \d \frac9{32} \left(\ln|s+1| - \frac{1}{s+1} + \ln|s-1| - \frac{1}{s-1} \right) \\ &=& \d \frac9{32} \def\s{{\t\frac1z}} \left(\ln|\s+1| - \frac{1}{\s+1} + \ln|\s-1| - \frac{1}{\s-1} \right) \\ &=& \d \frac9{32} \def\s{{\t\frac3{2x}}} \left(\ln|\s+1| - \frac{1}{\s+1} + \ln|\s-1| - \frac{1}{\s-1} \right) \\ \end{array} $ % In [11]: f = 1 / ((s**2 - 1)**2) % In [12]: fa = apart(f, s) % In [13]: fa % Out[13]: % 1 1 1 1 % --------- + ---------- - --------- + ---------- % 4*(s + 1) 2 4*(s - 1) 2 % 4*(s + 1) 4*(s - 1) % % In [14]: Fa = integrate(fa, s) % % In [15]: Fa % Out[15]: % s log(s - 1) log(s + 1) % - -------- - ---------- + ---------- % 2 4 4 % 2*s - 2 % http://angg.twu.net/LATEX/2018-1-C2-P1.pdf \newpage % «gab-3» (to ".gab-3") % (find-es "ipython" "2018.2-C2-P1") 3) $\begin{array}[t]{lll} \d \intx {\frac{x^3}{x^2 + 7x + 12}} &=& \d \intx {x - 7 + \frac{37x + 84}{(x+3)(x+4)}} \\ &=& \d \intx {x - 7 - \frac{27}{x+3} + \frac{64}{x+4}} \\ &=& \d \frac{x^2}{2} - 7x - 27\ln|x+3| + 64\ln|x+4| \\ \end{array} $ \bsk % «gab-4» (to ".gab-4") % (find-es "ipython" "2018.2-C2-P1") \def\und#1#2{\underbrace{#1}_{#2}} \def\t{\textstyle{}} 4) $\begin{array}[t]{lll} \d \intx {\frac{x^4}{(x-3)^2}} \subst{u=x-3 \\ x=u+3 \\ dx=du} \\ = \;\;\; \d \intu {\frac{(u+3)^4}{u^2}} \\ = \;\;\; \d \intu {\frac{u^4 + 4·u^3·3 + 6·u^2·9 + 4·u·27 + 81}{u^2}} \\ = \;\;\; \d \intu {\frac{u^4 + 12u^3 + 54u^2 + 108u + 81}{u^2}} \\ = \;\;\; \d \intu {u^2 + 12u + 54 + \frac{108}{u} + \frac{81}{u^2}} \\ = \;\;\; \d \frac{u^2}{3} + 6u^2 + 54u + 108 \ln|u| - \frac{81}{u} \\ = \;\;\; \d \def\u{x-3} \frac{(\u)^2}{3} + 6(\u)^2 + 54(\u) + 108 \ln|\u| - \frac{81}{\u} \\ \end{array} $ \bsk % «gab-5» (to ".gab-5") % (find-es "ipython" "2017.1-C2-P1") 5a) $\intx {\und{1}{f'}·\und{\ln x}{g}} = \und{x}{f}·\und{\ln x}{g} - \intx {\und{x}{f}·\und{\t\frac1x}{g'}} = x\ln x - \intx {1} = x\ln x - x $ 5b) $\intx {\und{x}{f'}·\und{\ln x}{g}} = \und{\t\frac{x^2}{2}}{f}·\und{\ln x}{g} - \intx {\und{\t\frac{x^2}{2}}{f}·\und{\t\frac1x}{g'}} = \frac12 x^2 \ln x - \frac12 \intx {x} $ $ \phantom{mmm} = \frac12 x^2 \ln x - \frac14 x^2 $ % «gabarito-maxima» (to ".gabarito-maxima") % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^% ") % % * (eepitch-maxima) % * (eepitch-kill) % * (eepitch-maxima) % ** load("/usr/share/emacs/site-lisp/maxima/emaxima.lisp")$ % ** display2d:'emaxima$ % ** % ** Questao 1 % ** % f : sin(x)^4 * cos(x)^2; % g : expand(demoivre(expand(exponentialize(f)))); % G : integrate(g, x); % ** % ** Questao 2 % ** % f : x^2 / sqrt(4*x^2 - 9); % F : integrate (f, x); % ** % ** Questao 3 % ** % f : x^3 / (x^2 + 7*x + 12); % g : partfrac(f, x); % G : integrate(g, x); % ** % ** Questao 4 % ** % f : x^4 / (x-3)^2; % F : integrate (f, x); % g : subst([x=u+3], f); % h : partfrac(g, u); % H : integrate (h, u); % K : subst([u=x-3], H); % ratsimp(K - F); % ** % ** Questao 5 % ** % integrate( log(x), x); % integrate(x*log(x), x); \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % Local Variables: % coding: utf-8-unix % End: