Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2018-2-MD-set-compr.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2018-2-MD-set-compr.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2018-2-MD-set-compr.pdf")) % (defun e () (interactive) (find-LATEX "2018-2-MD-set-compr.tex")) % (defun u () (interactive) (find-latex-upload-links "2018-2-MD-set-compr")) % (find-xpdfpage "~/LATEX/2018-2-MD-set-compr.pdf") % (find-sh0 "cp -v ~/LATEX/2018-2-MD-set-compr.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2018-2-MD-set-compr.pdf /tmp/pen/") % file:///home/edrx/LATEX/2018-2-MD-set-compr.pdf % file:///tmp/2018-2-MD-set-compr.pdf % file:///tmp/pen/2018-2-MD-set-compr.pdf % http://angg.twu.net/LATEX/2018-2-MD-set-compr.pdf % «.mypsection» (to "mypsection") % «.picturedots» (to "picturedots") % «.comprehension» (to "comprehension") % «.comprehension-tables» (to "comprehension-tables") % «.comprehension-ex123» (to "comprehension-ex123") % «.comprehension-prod» (to "comprehension-prod") % «.comprehension-gab» (to "comprehension-gab") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams \catcode`\^^J=10 % (find-es "luatex" "spurious-omega") \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % «mypsection» (to ".mypsection") % (find-es "tex" "protect") % (find-angg ".emacs" "eewrap-mypsection") % \def\mypsection#1#2{\label{#1}{\bf #2}\ssk} % (find-es "tex" "page-numbers") %L psections = {} %L psectionstex = function () %L local f = function(A) %L return format("\\mypsectiontex{%s}{%s}", A[1], A[2]) %L end %L return mapconcat(f, psections, "\n") %L end \def\mypsectiontex#1#2{\par\pageref{#1} #2} \def\mypsectionstex{\expr{psectionstex()}} \pu \def\mypsectionadd#1#2{\directlua{table.insert(psections, {"#1", [[#2]]})}} \def\mypsection #1#2{\label{#1}{\bf #2}\mypsectionadd{#1}{#2}\ssk} %\def\mypsection #1#2{\label{#1}{\bf #2}\mypsectionadd{#1}{\protect{#2}}\ssk} % (find-es "tex" "protect") % «picturedots» (to ".picturedots") % (find-LATEX "edrxpict.lua" "pictdots") % (find-LATEX "edrxgac2.tex" "pict2e") % (to "comprehension-gab") % \def\beginpicture(#1,#2)(#3,#4){\expr{beginpicture(v(#1,#2),v(#3,#4))}} \def\pictaxes{\expr{pictaxes()}} \def\pictdots#1{\expr{pictdots("#1")}} \def\picturedots(#1,#2)(#3,#4)#5{% \vcenter{\hbox{% \beginpicture(#1,#2)(#3,#4)% \pictaxes% \pictdots{#5}% \end{picture}% }}% } \unitlength=5pt % ____ _ _ % / ___|___ _ __ ___ _ __ _ __ ___| |__ ___ _ __ ___(_) ___ _ __ % | | / _ \| '_ ` _ \| '_ \| '__/ _ \ '_ \ / _ \ '_ \/ __| |/ _ \| '_ \ % | |__| (_) | | | | | | |_) | | | __/ | | | __/ | | \__ \ | (_) | | | | % \____\___/|_| |_| |_| .__/|_| \___|_| |_|\___|_| |_|___/_|\___/|_| |_| % |_| % % «comprehension» (to ".comprehension") % (gam181p 5 "comprehension") \mypsection {comprehension} {``Set comprehensions''} \def\und#1#2{\underbrace{#1}_{#2}} \def\und#1#2{\underbrace{#1}_{\text{#2}}} \def\ug#1{\und{#1}{ger}} \def\uf#1{\und{#1}{filt}} \def\ue#1{\und{#1}{expr}} Notação explícita, com geradores, filtros, e um ``;'' separando os geradores e filtros da expressão final: $\begin{array}{lll} \{\ug{a∈\{1,2,3,4\}}; \ue{10a}\} &=& \{10,20,30,40\} \\ \{\ug{a∈\{1,2,3,4\}}; \ue{a}\} &=& \{1,2,3,4\} \\ \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{a}\} &=& \{3,4\} \\ \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{10a}\} &=& \{30,40\} \\ \{\ug{a∈\{10,20\}}, \ug{b∈\{3,4\}}; \ue{a+b}\} &=& \{13,14,23,24\} \\ \{\ug{a∈\{1,2\}}, \ug{b∈\{3,4\}}; \ue{(a,b)}\} &=& \{(1,3),(1,4),(2,3),(2,4)\} \\ \end{array} $ % (setq last-kbd-macro (kbd "C-w \\ uf{ C-y }")) % (setq last-kbd-macro (kbd "C-w \\ ue{ C-y }")) \msk \msk Notações convencionais, com ``$|$'' ao invés de ``;'': Primeiro tipo --- expressão final, ``$|$'', geradores e filtros: $\begin{array}{lll} \setofst{10a}{a∈\{1,2,3,4\}} &=& \{\ug{a∈\{1,2,3,4\}}; \ue{10a}\} \\ \setofst{10a}{a∈\{1,2,3,4\}, a≥3} &=& \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{10a}\} \\ \setofst{a}{a∈\{1,2,3,4\}} &=& \{\ug{a∈\{1,2,3,4\}}; \ue{a}\} \\ % \{\ug{a∈\{1,2\}}, \ug{b∈\{3,4\}}; \ue{(a,b)}\} \\ \end{array} $ \msk O segundo tipo --- gerador, ``$|$'', filtros --- pode ser convertido para o primeiro... o truque é fazer a expressão final ser a variável do gerador: $\begin{array}{lll} \setofst{a∈\{1,2,3,4\}}{a≥3} &=& \\ \setofst{a}{a∈\{1,2,3,4\}, a≥3} &=& \{\ug{a∈\{1,2,3,4\}}, \uf{a≥3}; \ue{a}\} \\ % \{\ug{a∈\{10,20\}}, \ug{b∈\{3,4\}}; \ue{a+b}\} \\ \end{array} $ \msk O que distingue as duas notacões ``$\{\ldots|\ldots\}$'' é se o que vem antes da ``$|$'' é ou não um gerador. \bsk Observações: $\setofst{\text{gerador}}{\text{filtros}} = \{\text{gerador},\text{filtros};\ue{\text{variável do gerador}}\}$ $\setofst{\text{expr}}{\text{geradores e filtros}} = \{\text{geradores e filtros}; \text{expr}\} $ \msk As notações ``$\{\ldots|\ldots\}$'' são padrão e são usadas em muitos livros de matemática. A notação ``$\{\ldots;\ldots\}$'' é bem rara; eu aprendi ela em artigos sobre linguagens de programação, e resolvi apresentar ela aqui porque acho que ela ajuda a explicar as duas notações ``$\{\ldots|\ldots\}$''. \newpage % _ _ _____ % ___ ___ _ __ ___ _ __ _ __ ___| |__ ___ _ __ ___(_) ___ _ __ |_ _| % / __/ _ \| '_ ` _ \| '_ \| '__/ _ \ '_ \ / _ \ '_ \/ __| |/ _ \| '_ \ | | % | (_| (_) | | | | | | |_) | | | __/ | | | __/ | | \__ \ | (_) | | | | | | % \___\___/|_| |_| |_| .__/|_| \___|_| |_|\___|_| |_|___/_|\___/|_| |_| |_| % |_| % % «comprehension-tables» (to ".comprehension-tables") % (gam181p 6 "comprehension-tables") \mypsection {comprehension-tables} {``Set comprehensions'': como calcular usando tabelas} \def\tbl#1#2{\fbox{$\begin{array}{#1}#2\end{array}$}} \def\tbl#1#2{\fbox{$\sm{#2}$}} \def\V{\mathbf{V}} \def\F{\mathbf{F}} % "Stop": % (find-es "tex" "vrule") \def\S{\omit$|$\hss} \def\S{\omit\vrule\hss} \def\S{\omit\vrule$($\hss} \def\S{\omit\vrule$\scriptstyle($\hss} \def\S{\omit\vrule\phantom{$\scriptstyle($}\hss} % stop Alguns exemplos: \msk \def\s{\mathstrut} \def\s{\phantom{$|$}} \def\s{\phantom{|}} \def\s{} Se $A := \{x∈\{1,2\}; (x,3-x)\}$ então $A = \{(1,2), (2,1)\}$: \tbl{ccc}{ \s x & (x,3-x) \\\hline \s 1 & (1,2) \\ \s 2 & (2,1) \\ } \msk Se $I := \{x∈\{1,2,3\}, y∈\{3,4\}, x+y<6; (x,y)\}$ então $I = \{(1,3),(1,4),(1,5)\}$: \tbl{ccc}{ \s x & y & x+y<6 & (x,y) \\\hline \s 1 & 3 & \V & (1,3) \\ \s 1 & 4 & \V & (1,4) \\ \s 2 & 3 & \V & (2,3) \\ \s 2 & 4 & \F & \S \\ \s 3 & 3 & \F & \S \\ \s 3 & 4 & \F & \S \\ } \msk Se $D := \setofst{(x,2x)}{x∈\{0,1,2,3\}}$ então $D = \{x∈\{0,1,2,3\}; (x,2x)\}$, $D = \{(0,0), (1,2), (2,4), (3,6)\}$: \tbl{ccc}{ \s x & (x,2x) \\\hline \s 0 & (0,0) \\ \s 1 & (1,2) \\ \s 2 & (2,4) \\ \s 3 & (3,6) \\ } \msk Se $P := \setofst {(x,y)∈\{1,2,3\}^2} {x≥y}$ então $P = \{(x,y)∈\{1,2,3\}^2, x≥y; (x,y)\}$, $P = \{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)\}$: \tbl{ccc}{ \s (x,y) & x & y & x≥y & (x,y) \\\hline \s (1,1) & 1 & 1 & \V & (1,1) \\ \s (1,2) & 1 & 2 & \F & \S \\ \s (1,3) & 1 & 3 & \F & \S \\ \s (2,1) & 2 & 1 & \V & (2,1) \\ \s (2,2) & 2 & 2 & \V & (2,2) \\ \s (2,3) & 2 & 3 & \F & \S \\ \s (3,1) & 3 & 1 & \V & (3,1) \\ \s (3,2) & 3 & 2 & \V & (3,2) \\ \s (3,3) & 3 & 3 & \V & (3,3) \\ } \bsk Obs: os exemplos acima correspondem aos exercícios 2A, 2I, 3D e 5P das próximas páginas. \newpage % _____ _ _ % | ____|_ _____ _ __ ___(_) ___(_) ___ ___ % | _| \ \/ / _ \ '__/ __| |/ __| |/ _ \/ __| % | |___ > < __/ | | (__| | (__| | (_) \__ \ % |_____/_/\_\___|_| \___|_|\___|_|\___/|___/ % % «comprehension-ex123» (to ".comprehension-ex123") % (gam181p 7 "comprehension-ex123") \mypsection {comprehension-ex123} {Exercícios de ``set comprehensions''} 1) Represente graficamente: $\begin{array}{rcl} A & := & \{(1,4), (2,4), (1,3)\} \\ B & := & \{(1,3), (1,4), (2,4)\} \\ C & := & \{(1,3), (1,4), (2,4), (2,4)\} \\ D & := & \{(1,3), (1,4), (2,3), (2,4)\} \\ E & := & \{(0,3), (1,2), (2,1), (3,0)\} \\ \end{array} $ \msk 2) Calcule e represente graficamente: $\begin{array}{rcl} A & := & \{x∈\{1,2\}; (x,3-x)\} \\ B & := & \{x∈\{1,2,3\}; (x,3-x)\} \\ C & := & \{x∈\{0,1,2,3\}; (x,3-x)\} \\ D & := & \{x∈\{0,0.5,1, \ldots, 3\}; (x,3-x)\} \\ E & := & \{x∈\{1,2,3\}, y∈\{3,4\}; (x,y)\} \\ F & := & \{x∈\{3,4\}, y∈\{1,2,3\}; (x,y)\} \\ G & := & \{x∈\{3,4\}, y∈\{1,2,3\}; (y,x)\} \\ H & := & \{x∈\{3,4\}, y∈\{1,2,3\}; (x,2)\} \\ I & := & \{x∈\{1,2,3\}, y∈\{3,4\}, x+y<6; (x,y)\} \\ J & := & \{x∈\{1,2,3\}, y∈\{3,4\}, x+y>4; (x,y)\} \\ K & := & \{x∈\{1,2,3,4\}, y∈\{1,2,3,4\}; (x,y)\} \\ L & := & \{x,y∈\{0,1,2,3,4\}; (x,y)\} \\ M & := & \{x,y∈\{0,1,2,3,4\}, y=3; (x,y)\} \\ N & := & \{x,y∈\{0,1,2,3,4\}, x=2; (x,y)\} \\ O & := & \{x,y∈\{0,1,2,3,4\}, x+y=3; (x,y)\} \\ P & := & \{x,y∈\{0,1,2,3,4\}, y=x; (x,y)\} \\ Q & := & \{x,y∈\{0,1,2,3,4\}, y=x+1; (x,y)\} \\ R & := & \{x,y∈\{0,1,2,3,4\}, y=2x; (x,y)\} \\ S & := & \{x,y∈\{0,1,2,3,4\}, y=2x+1; (x,y)\} \\ \end{array} $ \msk 3) Calcule e represente graficamente: $\begin{array}{rcl} A & := & \setofst{(x,0)}{x∈\{0,1,2,3\}} \\ B & := & \setofst{(x,x/2)}{x∈\{0,1,2,3\}} \\ C & := & \setofst{(x,x)}{x∈\{0,1,2,3\}} \\ D & := & \setofst{(x,2x)}{x∈\{0,1,2,3\}} \\ E & := & \setofst{(x,1)}{x∈\{0,1,2,3\}} \\ F & := & \setofst{(x,1+x/2)}{x∈\{0,1,2,3\}} \\ G & := & \setofst{(x,1+x)}{x∈\{0,1,2,3\}} \\ H & := & \setofst{(x,1+2x)}{x∈\{0,1,2,3\}} \\ I & := & \setofst{(x,2)}{x∈\{0,1,2,3\}} \\ J & := & \setofst{(x,2+x/2)}{x∈\{0,1,2,3\}} \\ K & := & \setofst{(x,2+x)}{x∈\{0,1,2,3\}} \\ L & := & \setofst{(x,2+2x)}{x∈\{0,1,2,3\}} \\ M & := & \setofst{(x,2)}{x∈\{0,1,2,3\}} \\ N & := & \setofst{(x,2-x/2)}{x∈\{0,1,2,3\}} \\ O & := & \setofst{(x,2-x)}{x∈\{0,1,2,3\}} \\ P & := & \setofst{(x,2-2x)}{x∈\{0,1,2,3\}} \\ \end{array} $ \newpage % ____ _ _ % | _ \ _ __ ___ __| | ___ __ _ _ __| |_ % | |_) | '__/ _ \ / _` | / __/ _` | '__| __| % | __/| | | (_) | (_| | | (_| (_| | | | |_ % |_| |_| \___/ \__,_| \___\__,_|_| \__| % % «comprehension-prod» (to ".comprehension-prod") % (gam181p 8 "comprehension-prod") \mypsection {comprehension-prod} {Produto cartesiano de conjuntos} $A×B:=\{a∈A,b∈B;(a,b)\}$ Exemplo: $\{1,2\}×\{3,4\} = \{(1,3),(1,4),(2,3),(2,4)\}$. \ssk Uma notação: $A^2 = A×A$. Exemplo: $\{3,4\}^2 = \{3,4\}×\{3,4\} = \{(3,3),(3,4),(4,3),(4,4)\}$. \msk Sejam: $A = \{1,2,4\}$, $B = \{2,3\}$, $C = \{2,3,4\}$. \msk {\bf Exercícios} \ssk 4) Calcule e represente graficamente: \begin{tabular}{lll} a) $A×A$ & d) $B×A$ & g) $C×A$ \\ b) $A×B$ & e) $B×B$ & h) $C×B$ \\ c) $A×C$ & f) $B×C$ & i) $C×C$ \\ \end{tabular} \msk 5) Calcule e represente graficamente: $\begin{array}{rcl} A &:=& \{x,y∈\{0,1,2,3\};(x,y)\} \\ B &:=& \{x,y∈\{0,1,2,3\}, y=2; (x,y)\} \\ C &:=& \{x,y∈\{0,1,2,3\}, x=1; (x,y)\} \\ D &:=& \{x,y∈\{0,1,2,3\}, y=x; (x,y)\} \\ E &:=& \{x,y∈\{0,1,2,3,4\}, y=2x; (x,y)\} \\ F &:=& \{(x,y)∈\{0,1,2,3,4\}^2, y=2x; (x,y)\} \\ G &:=& \{(x,y)∈\{0,1,2,3,4\}^2, y=x; (x,y)\} \\ H &:=& \{(x,y)∈\{0,1,2,3,4\}^2, y=x/2; (x,y)\} \\ I &:=& \{(x,y)∈\{0,1,2,3,4\}^2, y=x/2+1; (x,y)\} \\ J &:=& \setofst {(x,y)∈\{0,1,2,3,4\}^2} {y=2x} \\ K &:=& \setofst {(x,y)∈\{0,1,2,3,4\}^2} {y=x} \\ L &:=& \setofst {(x,y)∈\{0,1,2,3,4\}^2} {y=x/2} \\ M &:=& \setofst {(x,y)∈\{0,1,2,3,4\}^2} {y=x/2+1} \\ N &:=& \setofst {(x,y)∈\{1,2,3\}^2} {0x+0y=0} \\ O &:=& \setofst {(x,y)∈\{1,2,3\}^2} {0x+0y=2} \\ P &:=& \setofst {(x,y)∈\{1,2,3\}^2} {x≥y} \\ \end{array} $ \msk 6) Represente graficamente: $\begin{array}{rcl} J' &:=& \setofst {(x,y)∈\R^2} {y=2x} \\ K' &:=& \setofst {(x,y)∈\R^2} {y=x} \\ L' &:=& \setofst {(x,y)∈\R^2} {y=x/2} \\ M' &:=& \setofst {(x,y)∈\R^2} {y=x/2+1} \\ N' &:=& \setofst {(x,y)∈\R^2} {0x+0y=0} \\ O' &:=& \setofst {(x,y)∈\R^2} {0x+0y=2} \\ P' &:=& \setofst {(x,y)∈\R^2} {x≥y} \\ \end{array} $ \newpage % ____ _ _ _ % / ___| __ _| |__ __ _ _ __(_) |_ ___ % | | _ / _` | '_ \ / _` | '__| | __/ _ \ % | |_| | (_| | |_) | (_| | | | | || (_) | % \____|\__,_|_.__/ \__,_|_| |_|\__\___/ % % «comprehension-gab» (to ".comprehension-gab") % (gam181p 9 "comprehension-gab") % (to "picturedots") \mypsection {comprehension-gab} {Gabarito dos exercícios de set comprehensions} % \bhbox{$\picturedots(-1,-2)(5,5){ 3,1 3,2 3,3 }$} 1) $ A = B = C = \picturedots(0,0)(3,4){ 1,4 2,4 1,3 } \quad D = \picturedots(0,0)(3,4){ 1,4 2,4 1,3 2,3 } \quad E = \picturedots(0,0)(4,4){ 0,3 1,2 2,1 3,0 } $ \bsk 2) $ A = \picturedots(0,0)(4,4){ 1,2 2,1 } \quad B = \picturedots(0,0)(4,4){ 1,2 2,1 3,0 } \quad C = \picturedots(0,0)(4,4){ 0,3 1,2 2,1 3,0 } \quad D = \picturedots(0,0)(4,4){ 0,3 .5,2.5 1,2 1.5,1.5 2,1 2.5,.5 3,0 } $ \msk $ \quad E = \picturedots(0,0)(4,4){ 1,3 2,3 3,3 1,4 2,4 3,4 } \quad F = \picturedots(0,0)(4,4){ 3,1 4,1 3,2 4,2 3,3 4,3 } \quad G = \picturedots(0,0)(4,4){ 1,3 2,3 3,3 1,4 2,4 3,4 } \quad H = \picturedots(0,0)(4,4){ 3,2 4,2 } \quad I = \picturedots(0,0)(4,4){ 1,3 2,3 1,4 } \quad J = \picturedots(0,0)(4,4){ 2,3 3,3 1,4 2,4 3,4 } $ \msk $ \quad K = \picturedots(0,0)(4,4){ 1,4 2,4 3,4 4,4 1,3 2,3 3,3 4,3 1,2 2,2 3,2 4,2 1,1 2,1 3,1 4,1 } \quad L = \picturedots(0,0)(4,4){ 0,4 1,4 2,4 3,4 4,4 0,3 1,3 2,3 3,3 4,3 0,2 1,2 2,2 3,2 4,2 0,1 1,1 2,1 3,1 4,1 0,0 1,0 2,0 3,0 4,0 } \quad M = \picturedots(0,0)(4,4){ 0,3 1,3 2,3 3,3 4,3 } \quad N = \picturedots(0,0)(4,4){ 2,0 2,1 2,2 2,3 2,4 } \quad O = \picturedots(0,0)(4,4){ 0,3 1,2 2,1 3,0 } \quad P = \picturedots(0,0)(4,4){ 0,0 1,1 2,2 3,3 4,4 } $ \msk $ \quad Q = \picturedots(0,0)(4,4){ 0,1 1,2 2,3 3,4 } \quad R = \picturedots(0,0)(4,4){ 0,0 1,2 2,4 } \quad S = \picturedots(0,0)(4,4){ 0,1 1,3 } $ \bsk 3) $ A = \picturedots(0,0)(4,4){ 0,0 1,0 2,0 3,0 } \quad B = \picturedots(0,0)(4,4){ 0,0 1,.5 2,1 3,1.5 } \quad C = \picturedots(0,0)(4,4){ 0,0 1,1 2,2 3,3 } \quad D = \picturedots(0,0)(4,7){ 0,0 1,2 2,4 3,6 } $ $ \quad E = \picturedots(0,0)(4,4){ 0,1 1,1 2,1 3,1 } \quad F = \picturedots(0,0)(4,4){ 0,1 1,1.5 2,2 3,2.5 } \quad G = \picturedots(0,0)(4,4){ 0,1 1,2 2,3 3,4 } \quad H = \picturedots(0,0)(4,7){ 0,1 1,3 2,5 3,7 } $ $ \quad I = \picturedots(0,0)(4,4){ 0,2 1,2 2,2 3,2 } \quad J = \picturedots(0,0)(4,4){ 0,2 1,2.5 2,3 3,3.5 } \quad K = \picturedots(0,0)(4,4){ 0,2 1,3 2,4 3,5 } \quad L = \picturedots(0,0)(4,8){ 0,2 1,4 2,6 3,8 } $ $ \quad M = \picturedots(0,0)(4,4){ 0,2 1,2 2,2 3,2 } \quad N = \picturedots(0,0)(4,4){ 0,2 1,1.5 2,1 3,.5 } \quad O = \picturedots(0,-1)(4,4){ 0,2 1,1 2,0 3,-1 } \quad P = \picturedots(0,-5)(4,3){ 0,2 1,0 2,-2 3,-4 } $ \bsk 4) $ A×A = \picturedots(0,0)(4,4){ 1,1 2,1 4,1 1,2 2,2 4,2 1,4 2,4 4,4 } \quad B×A = \picturedots(0,0)(4,4){ 2,1 3,1 2,2 3,2 2,4 3,4 } \quad C×A = \picturedots(0,0)(4,4){ 2,1 3,1 4,1 2,2 3,2 4,2 2,4 3,4 4,4 } $ \msk $ \quad A×B = \picturedots(0,0)(4,4){ 1,2 2,2 4,2 1,3 2,3 4,3 } \quad B×B = \picturedots(0,0)(4,4){ 2,2 3,2 2,3 3,3 } \quad C×B = \picturedots(0,0)(4,4){ 2,2 3,2 4,2 2,3 3,3 4,3 } $ \msk $ \quad A×C = \picturedots(0,0)(4,4){ 1,2 2,2 4,2 1,3 2,3 4,3 1,4 2,4 4,4 } \quad B×C = \picturedots(0,0)(4,4){ 2,2 3,2 2,3 3,3 2,4 3,4 } \quad C×C = \picturedots(0,0)(4,4){ 2,2 3,2 4,2 2,3 3,3 4,3 2,4 3,4 4,4 } $ \bsk 5) $ A = \picturedots(0,0)(4,4){ 0,3 1,3 2,3 3,3 0,2 1,2 2,2 3,2 0,1 1,1 2,1 3,1 0,0 1,0 2,0 3,0 } \quad B = \picturedots(0,0)(4,4){ 0,2 1,2 2,2 3,2 } \quad C = \picturedots(0,0)(4,4){ 1,0 1,1 1,2 1,3 } \quad D = \picturedots(0,0)(4,4){ 0,0 1,1 2,2 3,3 } \quad E = \picturedots(0,0)(4,4){ 0,0 1,2 2,4 } $ \msk $ \quad F = \picturedots(0,0)(4,4){ 0,0 1,2 2,4 } \quad G = \picturedots(0,0)(4,4){ 0,0 1,1 2,2 3,3 4,4 } \quad H = \picturedots(0,0)(4,4){ 0,0 2,1 4,2 } \quad I = \picturedots(0,0)(4,4){ 0,1 2,2 4,3 } $ \msk $ \quad J = \picturedots(0,0)(4,4){ 0,0 1,2 2,4 } \quad K = \picturedots(0,0)(4,4){ 0,0 1,1 2,2 3,3 4,4 } \quad L = \picturedots(0,0)(4,4){ 0,0 2,1 4,2 } \quad M = \picturedots(0,0)(4,4){ 0,1 2,2 4,3 } $ \msk $ \quad N = \picturedots(0,0)(4,4){ 1,3 2,3 3,3 1,2 2,2 3,2 1,1 2,1 3,1 } \quad O = \picturedots(0,0)(4,4){ } \quad P = \picturedots(0,0)(4,4){ 3,3 2,2 3,2 1,1 2,1 3,1 } $ \end{document} % Local Variables: % coding: utf-8-unix % End: