Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2018vichy-vgms-slides.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2018vichy-vgms-slides.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2018vichy-vgms-slides.pdf")) % (defun e () (interactive) (find-LATEX "2018vichy-vgms-slides.tex")) % (defun u () (interactive) (find-latex-upload-links "2018vichy-vgms-slides")) % (find-xpdfpage "~/LATEX/2018vichy-vgms-slides.pdf") % (find-sh0 "cp -v ~/LATEX/2018vichy-vgms-slides.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2018vichy-vgms-slides.pdf /tmp/pen/") % (find-sh0 "cp -v ~/LATEX/2018vichy-vgms-slides.pdf /tmp/pen/ochs-talk-cats.pdf") % file:///home/edrx/LATEX/2018vichy-vgms-slides.pdf % file:///tmp/2018vichy-vgms-slides.pdf % file:///tmp/pen/2018vichy-vgms-slides.pdf % http://angg.twu.net/LATEX/2018vichy-vgms-slides.pdf % (find-fline "~/.emacs" "\"vgm\"") % «.colors» (to "colors") % «.myoval» (to "myoval") % «.title-page» (to "title-page") % % «.LCT-for-children» (to "LCT-for-children") % «.PHAfC» (to "PHAfC") % «.PHAfC-2» (to "PHAfC-2") % «.local-operators» (to "local-operators") % «.ZCategories» (to "ZCategories") % «.ZPresheaves» (to "ZPresheaves") % «.internal-views» (to "internal-views") % «.internal-views-2» (to "internal-views-2") % «.internal-views-3» (to "internal-views-3") % «.internal-views-4» (to "internal-views-4") % «.parallel» (to "parallel") % «.first-gm» (to "first-gm") % «.a-factorization» (to "a-factorization") % «.factorization-2» (to "factorization-2") % «.factorization-3» (to "factorization-3") % «.factorization-4» (to "factorization-4") % «.surjection-inclusion» (to "surjection-inclusion") % «.dense-closed» (to "dense-closed") % «.cats-for-children» (to "cats-for-children") % «.on-children» (to "on-children") % «.tools» (to "tools") \documentclass[oneside]{book} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") \usepackage{svgcolor} % (find-es "tex" "svgcolor") \usepackage[colorlinks,urlcolor=brown]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") \input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % % (find-angg ".emacs.papers" "latexgeom") % (find-LATEXfile "2016-2-GA-VR.tex" "{geometry}") % (find-latexgeomtext "total={6.5in,8.75in},") \usepackage[paperwidth=11cm, paperheight=8.5cm, %total={6.5in,4in}, %textwidth=4in, paperwidth=4.5in, %textheight=5in, paperheight=4.5in, %a4paper, top=1.5cm, bottom=.5cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 % \directlua{dednat6dir = "dednat6/"} % \directlua{dofile(dednat6dir.."dednat6.lua")} % \directlua{texfile(tex.jobname)} % \directlua{verbose()} % \directlua{output(preamble1)} % \def\expr#1{\directlua{output(tostring(#1))}} % \def\eval#1{\directlua{#1}} % \def\pu{\directlua{pu()}} \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % «colors» (to ".colors") % (find-LATEX "2017ebl-slides.tex" "colors") % (find-LATEX "2017ebl-slides.tex" "colors" "\\def\\ColorGreen") \long\def\ColorRed #1{{\color{Red}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} % «myoval» (to ".myoval") % (find-LATEXfile "2018pict2e.tex" "\\def\\myoval") \def\myvcenter#1{\ensuremath{\vcenter{\hbox{#1}}}}% \def\myoval(#1,#2)(#3,#4)[#5]{% \myvcenter{% \begin{picture}(#1,#2)(-#3,-#4) \put(0,0){\oval[#5](#1,#2)} \end{picture}% }} \catcode`•=13 \def•{\ensuremath{\bullet}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\bbG{\mathbb{G}} \def\antitabular{\hskip-5.5pt} \setlength{\parindent}{0em} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % «title-page» (to ".title-page") % (find-es "tex" "huge") \begin{center} {\Large {\bf Visualizing Geometric Morphisms}} % {\large {\bf (An application of ``Logic for Children'')}} {\large An application of the ``Logic for Children'' project to Category Theory } \msk \ColorGray{(talk @ ``Logic and Categories'' workshop, UniLog 2018)} \bsk %$$ \text{By:} \quad \begin{tabular}{c} % (xz "~/LATEX/2018vichy-video-edrx.jpg") \includegraphics[height=50pt]{2018vichy-video-edrx.jpg} \\ Eduardo \\ Ochs \\ (UFF, Brazil) \end{tabular} \quad \begin{tabular}{c} % (xz "~/LATEX/2018vichy-video-selana.jpg") \includegraphics[height=50pt]{2018vichy-video-selana.jpg} \\ Selana \\ Ochs \\ \\ \end{tabular} % \quad % \begin{tabular}[b]{c} % % (xz "~/LATEX/2018vichy-video-lucatelli.jpg") % \includegraphics[width=2cm]{2018vichy-video-lucatelli.jpg} \\ % Fernando \\ Lucatelli \\ % \end{tabular} %$$ \end{center} \newpage % _____ _ _ _ _ % | ___|__ _ __ ___| |__ (_) | __| |_ __ ___ _ __ % | |_ / _ \| '__| / __| '_ \| | |/ _` | '__/ _ \ '_ \ % | _| (_) | | | (__| | | | | | (_| | | | __/ | | | % |_| \___/|_| \___|_| |_|_|_|\__,_|_| \___|_| |_| % % «LCT-for-children» (to ".LCT-for-children") % (vgsp 2 "LCT-for-children") % (vgs "LCT-for-children") \noedrxfooter {\bf Logic / categories / toposes for children} ({\sl Very} short version; for the long version see the resources for the ``Logic for Children'' workshop) \msk \par Many years ago... \par Non-Standard Analysis % \par $→$ Toposes \par $→$ Johnstone's ``Topos Theory'' \par $→$ FAR too abstract for me \par $→$ {\bf I NEED A VERSION \ColorRed{FOR CHILDREN} OF THIS} \msk \ColorRed{For Children:} using ``internal views'' and examples with finite objects that are easy to draw Heyting Algebras that are subset of $\Z^2$ \ColorGray{(paper)} Presheaves that can be drawn on a subset of $\Z^2$ \ColorGray{(new)} \newpage % ______ _ _ % |__ / | | | / \ ___ % / /| |_| | / _ \ / __| % / /_| _ |/ ___ \\__ \ % /____|_| |_/_/ \_\___/ % % «PHAfC» (to ".PHAfC") {\bf Planar Heyting Algebras for Children} ($↑$ paper submitted in 2017 --- \url{http://angg.twu.net/math-b.html}) \msk \unitlength=8pt \def\closeddot{\circle*{0.7}} $ \antitabular \begin{tabular}[c]{l} Main definition: \\ A ZHA is a finite subset of $\Z^2$ \\ made of all even points ($x+y=2k$) \\ between $(0,0)$ and $⊤$ \\ between a ``left'' and a ``right wall''. \\ (The ``Z'' in \ColorRed{Z}HA means ``$⊂\Z^2$'') \\[5pt] Main theorems: \\ every ZHA is a Heyting Algebra \\ every ZHA is a topology in disguise \\ \end{tabular} \qquad \begin{tabular}{c} $\picturedotsa(-3,0)(3,7){ 0,6 -1,5 1,5 0,4 2,4 -1,3 1,3 -2,2 0,2 2,2 -1,1 1,1 0,0 } $ \\[32pt] $↑$ a ZHA \end{tabular} $ \newpage % ______ _ _ ____ % |__ / | | | / \ ___ |___ \ % / /| |_| | / _ \ / __| __) | % / /_| _ |/ ___ \\__ \ / __/ % /____|_| |_/_/ \_\___/ |_____| % % «PHAfC-2» (to ".PHAfC-2") {\bf Planar Heyting Algebras for Children} ($↑$ Very good paper! No prerequisites! Lots of fun! Go read it!) \msk %R local PQaoi = %R 1/ T \, 1/ T \, 1/ T \ %R | . . | | . . | | . | %R | . . . | | . . . | | . . | %R | . o . i | | . o . . | |d . n| %R |. P . . .| |. P . . .| | P . | %R | . . Q . | | . . Q . | \ F / %R | . a . | | . . . | %R | . . | | . . | %R \ F / \ F / %R local T = {a="(∧)", o="(∨)", i="(\\!→\\!)", n="(¬)", d="(\\!\\!¬¬\\!)", %R T="·", F="·", T="⊤", F="⊥", } %R PQaoi:tozmp({def="PQaoi", scale="12pt", meta=nil}):addcells(T):addcontour():output() %R PQaoi:tozmp({def="lozfive", scale="12pt", meta=nil}):addlrs():addcontour():output() \pu $ \antitabular \begin{tabular}[c]{l} Most toposes have more \\ than two truth-values and \\ an intuitionistic logic. \\[5pt] The paper PHAfC shows how \\ to visualize this (on ZHAs). \\ It uses LR-coordinates and \\ shows how the `$→$' on ZHAs \\ can be calculated quickly \\ using a formula with four cases. \\ % It doesn't mention categories. \\ \end{tabular} % \quad \resizebox{!}{2.2cm}{$ \begin{array}{c} \lozfive \qquad\qquad \qquad\qquad \\[-10pt] \qquad\qquad \qquad\qquad \PQaoi \end{array} $} $ \newpage % ____ _ _ _ __ ____ ____ % | _ \| | | | / \ / _|/ ___| |___ \ % | |_) | |_| | / _ \ | |_| | __) | % | __/| _ |/ ___ \| _| |___ / __/ % |_| |_| |_/_/ \_\_| \____| |_____| % % «local-operators» (to ".local-operators") {\bf Planar Heyting Algebras for Children 2:} {\bf Local Operators} %L mp = mpnew({def="ZQuotients"}, "1R2R3212RL1"):addlrs():addcuts("c 4321/0 0123|45|6"):output() $ \pu \antitabular \begin{tabular}[c]{l} The second paper in the series. \\[5pt] Sheaves {\sl correspond} to local \\ operators on HAs. \\[5pt] A local operator on a ZHA \\ corresponds to slashing the ZHA \\ by diagonal cuts and blurring \\ the distinction between \\ the truth-values in each region. \\[5pt] PHAfC doesn't mention categories. \\ PHAfC2 doesn't mention categories \ColorRed{yet}. \\ \end{tabular} % \quad \resizebox{!}{2.2cm}{$ \begin{array}{c} \ZQuotients \end{array} $} $ \newpage % _________ _ % |__ / ___|__ _| |_ ___ % / / | / _` | __/ __| % / /| |__| (_| | |_\__ \ % /____\____\__,_|\__|___/ % % «ZCategories» (to ".ZCategories") % (vgmp 6 "ZCategories") % (vgm "ZCategories") {\bf ZCategories} %D diagram ZCatPB %D 2Dx 100 +20 +20 %D 2D 100 o1 %D 2D %D 2D +20 o2 o3 %D 2D %D 2D +20 o4 o5 %D 2D %D ren o1 o2 o3 o4 o5 ==> 1 2 3 4 5 %D %D (( o1 o2 -> o1 o3 -> o1 o4 -> %D o2 o3 -> o2 o4 -> o3 o5 -> o4 o5 -> %D %D )) %D enddiagram %D diagram ZPresheaf %D 2Dx 100 +20 +20 %D 2D 100 o1 %D 2D %D 2D +20 o2 o3 %D 2D %D 2D +20 o4 o5 %D 2D %D ren o1 o2 o3 o4 o5 ==> F_1 F_2 F_3 F_4 F_5 %D %D (( o1 o2 -> o1 o3 -> o1 o4 -> %D o2 o3 -> o2 o4 -> o3 o5 -> o4 o5 -> %D %D )) %D enddiagram \pu $ \antitabular \begin{tabular}[c]{l} Choose a finite subset of $\Z^2$. \\ (Optional step: rename its points.) \\ Use this set as the set of objects \\ of a category. \\ Add a finite set of arrows. \\ This is a \ColorRed{ZCategory}. \\ The $\Z^2$-coordinates tell \\ how to draw it. \\ \end{tabular} \quad \diag{ZCatPB} $ \newpage % _________ _ % |__ / _ \ _ __ ___ ___| |__ ___ __ ___ _____ ___ % / /| |_) | '__/ _ \/ __| '_ \ / _ \/ _` \ \ / / _ \/ __| % / /_| __/| | | __/\__ \ | | | __/ (_| |\ V / __/\__ \ % /____|_| |_| \___||___/_| |_|\___|\__,_| \_/ \___||___/ % % «ZPresheaves» (to ".ZPresheaves") % (vgmp 7 "ZPresheaves") % (vgm "ZPresheaves") {\bf ZPresheaves and ZToposes} A ZPresheaf is a functor $F:\catA → \Set$, where $\catA$ is a ZCategory. (Obs: not $F:\catA^{\ColorRed\op} → \Set$!) A ZPresheaf $F$ inherits its drawing instructions from $\catA$. \ColorGray{(``Positional notations'')} % $$ \resizebox{!}{35pt}{$ \catA = \left( \diag{ZCatPB} \right) \quad F = \left( \diag{ZPresheaf} \right) $} $$ A ZTopos is a category $\Set^\catA$ where $\catA$ is a ZCategory. \newpage % ___ _ _ % |_ _|_ __ | |_ ___ _ __ _ __ __ _| | % | || '_ \| __/ _ \ '__| '_ \ / _` | | % | || | | | || __/ | | | | | (_| | | % |___|_| |_|\__\___|_| |_| |_|\__,_|_| % % «internal-views» (to ".internal-views") % (find-LATEX "2018vichy-video.tex" "internal-views") % (find-LATEX "2018vichy-video.tex" "internal-views-2") {\bf Internal views} (Part 1: functions) \unitlength=10pt The internal view of the \ColorRed{function} $√{}:\N→\R$ is: % \def\ooo(#1,#2){\begin{picture}(0,0)\put(0,0){\oval(#1,#2)}\end{picture}} \def\oooo(#1,#2){{\setlength{\unitlength}{1ex}\ooo(#1,#2)}} % %D diagram second-blob-function %D 2Dx 100 +20 +20 %D 2D 100 a-1 |--> b-1 %D 2D +08 a0 |--> b0 %D 2D +08 a1 |--> b1 %D 2D +08 a2 |--> b2 %D 2D +08 a3 |--> b3 %D 2D +08 a4 |--> b4 %D 2D +14 a5 |--> b5 %D 2D +25 \N ---> \R %D 2D %D ren a-1 a0 a1 a2 a3 a4 a5 ==> -1 0 1 2 3 4 n %D ren b-1 b0 b1 b2 b3 b4 b5 ==> -1 0 1 \sqrt{2} \sqrt{3} 2 \sqrt{n} %D (( # a0 a5 midpoint .TeX= \oooo(7,23) y+= -2 place %D a0 a5 midpoint .TeX= \myoval(3.4,10)(1.7,5)[1.5] place %D b-1 b5 midpoint .TeX= \myoval(3.4,11)(1.7,5.5)[1.5] place %D b-1 place %D a0 b0 |-> %D a1 b1 |-> %D a2 b2 |-> %D a3 b3 |-> %D a4 b4 |-> %D a5 b5 |-> %D \N \R -> .plabel= a \sqrt{\phantom{a}} %D a-1 relplace -7 -7 \phantom{foo} %D b5 relplace 7 7 \phantom{bar} %D )) %D enddiagram %D \pu $$\scalebox{0.7}{$\diag{second-blob-function}$} $$ (`$↦$'s take elements of a blob-set to another blob-set) \newpage % ___ _ _ ____ % |_ _|_ __ | |_ ___ _ __ _ __ __ _| | |___ \ % | || '_ \| __/ _ \ '__| '_ \ / _` | | __) | % | || | | | || __/ | | | | | (_| | | / __/ % |___|_| |_|\__\___|_| |_| |_|\__,_|_| |_____| % % «internal-views-2» (to ".internal-views-2") % (vgmp 9 "internal-views-2") % (vgm "internal-views-2") {\bf Internal views} (Part 2: functors) Internal views of \ColorRed{functors} have blob-\ColorRed{categories} instead of blob-\ColorRed{sets}. Compare: %D diagram internal-view-F %D 2Dx 100 +40 %D 2D 100 A FA %D 2D %D 2D +30 B FB %D 2D %D 2D +20 \catC \catD %D 2D %D %D (( A FA |-> %D B FB |-> %D A FB harrownodes nil 18 nil |-> %D A B -> .plabel= l g %D FA FB -> .plabel= r Fg %D \catC \catD -> .plabel= a F %D A B midpoint .TeX= \myoval(3.4,7)(1.7,3.5)[1] place %D FA FB midpoint .TeX= \myoval(3.4,7)(1.7,3.5)[1] place %D )) %D enddiagram %D %D diagram internal-view-F-noblobs %D 2Dx 100 +40 %D 2D 100 A FA %D 2D %D 2D +30 B FB %D 2D %D 2D +20 \catC \catD %D 2D %D %D (( A FA |-> %D B FB |-> %D A FB harrownodes nil 18 nil |-> %D A B -> .plabel= l g %D FA FB -> .plabel= r Fg %D \catC \catD -> .plabel= a F %D # A B midpoint .TeX= \myoval(3.4,7)(1.7,3.5)[1] place %D # FA FB midpoint .TeX= \myoval(3.4,7)(1.7,3.5)[1] place %D )) %D enddiagram %D \pu $$\scalebox{0.7}{$\diag{second-blob-function}$} \qquad \qquad \scalebox{0.7}{$\diag{internal-view-F}$} $$ \newpage % ___ _ _ _____ % |_ _|_ __ | |_ ___ _ __ _ __ __ _| | |___ / % | || '_ \| __/ _ \ '__| '_ \ / _` | | |_ \ % | || | | | || __/ | | | | | (_| | | ___) | % |___|_| |_|\__\___|_| |_| |_|\__,_|_| |____/ % % «internal-views-3» (to ".internal-views-2") {\bf Internal views} (Part 3: omitting the blobs) $$\scalebox{0.9}{$\diag{internal-view-F}$} \qquad \quad \scalebox{0.9}{$\diag{internal-view-F-noblobs}$} $$ \newpage % ___ _ _ _ _ % |_ _|_ __ | |_ ___ _ __ _ __ __ _| | | || | % | || '_ \| __/ _ \ '__| '_ \ / _` | | | || |_ % | || | | | || __/ | | | | | (_| | | |__ _| % |___|_| |_|\__\___|_| |_| |_|\__,_|_| |_| % % «internal-views-4» (to ".internal-views-4") % (vgsp 11 "internal-views-4") % (vgs "internal-views-4") {\bf Internal views} (Part 4: adjunctions) Left: generic adjunction $L⊣R$ Middle: generic geometric morphism $f^*⊣f_*$ Right: g.m. between toposes $\Set^\catA$ and $\Set^\catB$ % %D diagram adjunctions %D 2Dx 100 +25 +30 +25 +30 +30 %D 2D 100 A0 A1 B0 B1 C0 C1 %D 2D %D 2D +20 A2 A3 B2 B3 C2 C3 %D 2D %D 2D +15 A4 A5 B4 B5 C4 C5 %D 2D %D 2D +20 C6 C7 %D 2D %D ren A0 A1 A2 A3 A4 A5 ==> LC C D RD \catD \catC %D ren B0 B1 B2 B3 B4 B5 ==> f^*F F G f_*G \mathcal{E} \mathcal{F} %D ren C0 C1 C2 C3 C4 C5 ==> f^*F F G f_*G \Set^\catA \Set^\catB %D ren C6 C7 ==> \catA \catB %D %D (( A0 A1 <-| %D A0 A2 -> A1 A3 -> %D A2 A3 |-> %D A4 A5 <- sl^ .plabel= a L %D A4 A5 -> sl_ .plabel= b R %D A0 A3 harrownodes nil 20 nil <-> %D %D B0 B1 <-| %D B0 B2 -> B1 B3 -> %D B2 B3 |-> %D B4 B5 <- sl^ .plabel= a f^* %D B4 B5 -> sl_ .plabel= b f_* %D B0 B3 harrownodes nil 20 nil <-> %D %D C0 C1 <-| %D C0 C2 -> C1 C3 -> %D C2 C3 |-> %D C4 C5 <- sl^ .plabel= a f^* %D C4 C5 -> sl_ .plabel= b f_* %D C0 C3 harrownodes nil 20 nil <-> %D C6 C7 -> .plabel= a f %D %D %D )) %D enddiagram %D $$\pu \diag{adjunctions} $$ \newpage % ____ _ _ _ % | _ \ __ _ _ __ __ _| | | ___| | % | |_) / _` | '__/ _` | | |/ _ \ | % | __/ (_| | | | (_| | | | __/ | % |_| \__,_|_| \__,_|_|_|\___|_| % % «parallel» (to ".parallel") % (vgmp 12 "parallel") % (vgm "parallel") % (vivp 10 "children") % (viv "children") {\bf Working in two languages in parallel} Ideas: do things ``for children'' and ``for adults'' in \ColorRed{parallel}, find ways to \ColorRed{\sl transfer knowledge} between the two approaches... % \def\tm #1#2{ \begin{tabular}{#1}#2\end{tabular}} \def\ptm#1#2{\left (\begin{tabular}{#1}#2\end{tabular}\right )} \def\smm#1#2{\sm{\text{#1}\\\text{#2}}} % $$\ptm{c}{particular \\ case \\ ``for children''} \two/<-`->/<500>^{\smm{particularize}{(easy)}}_{\smm{generalize}{(hard)}} \ptm{c}{general \\ case \\ ``for adults''} $$ The diagrams for the general case and for a particular case {\sl have the same shape!!!} \newpage {\bf Working in two universes in parallel} In Non-Standard Analysis we have {\sl transfer theorems} $$\ptm{c}{Standard \\ universe} \two/<-`->/<500> \ptm{c}{Non-Standard \\ universe \\ (ultrapower)} $$ \newpage % _ _ ____ __ __ % / |___| |_ / ___| \/ | % | / __| __| | | _| |\/| | % | \__ \ |_ | |_| | | | | % |_|___/\__| \____|_| |_| % % «first-gm» (to ".first-gm") % (vgsp 14 "first-gm") % (vgs "first-gm") {\bf Our first geometric morphism} % %L sesw = {[" w"]="↙", [" e"]="↘"} % %R local B, F, RG = 3/ 1 \, 3/ F_1 \, 3/ !Gt \ %R | w e | | w e | | w e | %R | 2 3 | |F_2 F_3 | |G_2 G_3 | %R | e w e | | e w e | | e w e | %R | 4 5 | | F_4 F_5| | G_4 G_5| %R | e w | | e w | | e w | %R \ 6 / \ F_6 / \ 1 / %R %R local A, G, LF = 3/ 2 3 \, 3/G_2 G_3 \, 3/F_2 F_3 \ %R | e w e | | e w e | | e w e | %R \ 4 5 / \ G_4 G_5/ \ F_4 F_5/ %R %R B :tozmp({def="pB", scale="7pt", meta="s p"}):addcells(sesw):output() %R F :tozmp({def="pF", scale="7pt", meta="s p"}):addcells(sesw):output() %R RG:tozmp({def="pRG", scale="7pt", meta="s p"}):addcells(sesw):output() %R A :tozmp({def="pA", scale="7pt", meta="s p"}):addcells(sesw):output() %R G :tozmp({def="pG", scale="7pt", meta="s p"}):addcells(sesw):output() %R LF:tozmp({def="pLF", scale="7pt", meta="s p"}):addcells(sesw):output() \def\Gt{G_2 {×_{G_4}} G_3} \pu %D diagram GM-children-big %D 2Dx 100 +55 %D 2D 100 A0 A1 %D 2D %D 2D +45 A2 A3 %D 2D %D 2D +25 A4 A5 %D 2D %D 2D +25 A6 A7 %D 2D %D ren A0 A1 ==> \pLF \pF %D ren A2 A3 ==> \pG \pRG %D ren A4 A5 ==> \Set^\catA \Set^\catB %D ren A6 A7 ==> \pA \pB %D %D (( A0 A1 <-| %D A2 A3 |-> %D A0 A2 -> %D A1 A3 -> %D A0 A3 harrownodes nil 20 nil <-> %D A4 A5 <- sl^ .plabel= a f^* %D A4 A5 -> sl_ .plabel= b f_* %D A6 A7 -> sl^ .plabel= a f %D %D )) %D enddiagram %D %D diagram GM-general %D 2Dx 100 +35 %D 2D 100 A0 A1 %D 2D %D 2D +25 A2 A3 %D 2D %D 2D +15 A4 A5 %D 2D %D ren A0 A1 ==> f^*F F %D ren A2 A3 ==> G f_*G %D ren A4 A5 ==> \calF \calE %D %D (( A0 A1 <- %D A2 A3 -> %D A0 A2 -> %D A1 A3 -> %D A0 A3 harrownodes nil 20 nil <-> %D A4 A5 <- sl^ .plabel= a f^* %D A4 A5 -> sl_ .plabel= b f_* %D %D )) %D enddiagram %D $$\pu \resizebox{!}{70pt}{$ \begin{array}{ccc} \diag{GM-children-big}& \qquad \qquad& \diag{GM-general}\\ \\ \text{(for children; inclusion, sheaf)}&& \text{(for adults)}\\ \end{array} $} $$ \newpage % _ __ _ _ _ _ % / \ / _| __ _ ___| |_ ___ _ __(_)______ _| |_(_) ___ _ __ % / _ \ | |_ / _` |/ __| __/ _ \| '__| |_ / _` | __| |/ _ \| '_ \ % / ___ \ | _| (_| | (__| || (_) | | | |/ / (_| | |_| | (_) | | | | % /_/ \_\ |_| \__,_|\___|\__\___/|_| |_/___\__,_|\__|_|\___/|_| |_| % % «a-factorization» (to ".a-factorization") % (vgmp 15 "a-factorization") % (vgm "a-factorization") {\bf A factorization} Elephant $=$ Bible Section A4: Geometric Morphisms Each `$\diagxyto/->/<200>$' below is a g.m. (an adjunction) Any g.m. factors as a surjection followed by an inclusion. Any inclusion factors as a dense g.m. followed by a closed g.m.\,. % %D diagram ?? %D 2Dx 100 +30 +30 +30 %D 2D 100 A0 A3 %D 2D %D 2D +12 B0 B1 B3 %D 2D %D 2D +12 C1 C2 C3 %D 2D %D ren A0 A3 ==> \calA \calD %D ren B0 B1 B3 ==> \calA \calB \calD %D ren C1 C2 C3 ==> \calB \calC \calD %D %D (( A0 A3 -> .plabel= a \text{any} %D B0 B1 -> .plabel= a \text{surjection} %D B1 B3 -> .plabel= a \text{inclusion} %D C1 C2 -> .plabel= a \text{dense} %D C2 C3 -> .plabel= a \text{close} %D %D )) %D enddiagram %D $$\pu \diag{??} $$ The Elephant {\sl constructs} the toposes $\calB$, $\calC$ and the maps. \newpage % _____ _ _ _ _ ____ % | ___|_ _ ___| |_ ___ _ __(_)______ _| |_(_) ___ _ __ |___ \ % | |_ / _` |/ __| __/ _ \| '__| |_ / _` | __| |/ _ \| '_ \ __) | % | _| (_| | (__| || (_) | | | |/ / (_| | |_| | (_) | | | | / __/ % |_| \__,_|\___|\__\___/|_| |_/___\__,_|\__|_|\___/|_| |_| |_____| % % «factorization-2» (to ".factorization-2") % (vgmp 16 "factorization-2") % (vgm "factorization-2") {\bf A factorization: version using ZPresheaves} This would be a nicer theorem --- that if we start with ZToposes $\Set^\catA$ and $\Set^\catD$ the factorization can be through ZToposes... \def\ftext#1#2{\text{$#1$ (#2)}} \def\ftext#1#2{\text{#2}} %L forths["=="] = function () pusharrow("==") end % %D diagram ?? %D 2Dx 100 +35 +35 +35 %D 2D 100 A0 A3 %D 2D %D 2D +20 B0 B1 B3 %D 2D %D 2D +20 C1 C2 C3 %D 2D %D 2D +20 D2 %D 2D %D ren A0 A3 ==> \Set^\catA \Set^\catD %D ren B0 B1 B3 ==> \Set^\catA \calB \Set^\catD %D ren C1 C2 C3 ==> \Set^\catB \calC \Set^\catD %D ren D2 ==> \Set^\catC %D %D (( A0 A3 -> .plabel= a \ftext{a}{any} %D B0 B1 -> .plabel= a \ftext{s}{surjection} %D B1 B3 -> .plabel= a \ftext{i}{inclusion} %D C1 C2 -> .plabel= a \ftext{d}{dense} %D C2 C3 -> .plabel= a \ftext{c}{closed} %D A0 B0 = A3 B3 = B1 C1 == B3 C3 = C2 D2 == %D )) %D enddiagram %D $$\pu \resizebox{!}{50pt}{$ \diag{??} $} $$ \newpage % _____ _ _ _ _ _____ % | ___|_ _ ___| |_ ___ _ __(_)______ _| |_(_) ___ _ __ |___ / % | |_ / _` |/ __| __/ _ \| '__| |_ / _` | __| |/ _ \| '_ \ |_ \ % | _| (_| | (__| || (_) | | | |/ / (_| | |_| | (_) | | | | ___) | % |_| \__,_|\___|\__\___/|_| |_/___\__,_|\__|_|\___/|_| |_| |____/ % % «factorization-3» (to ".factorization-3") % (visp 15) % _____ _ _ _ _ _ _ % | ___|_ _ ___| |_ ___ _ __(_)______ _| |_(_) ___ _ __ | || | % | |_ / _` |/ __| __/ _ \| '__| |_ / _` | __| |/ _ \| '_ \ | || |_ % | _| (_| | (__| || (_) | | | |/ / (_| | |_| | (_) | | | | |__ _| % |_| \__,_|\___|\__\___/|_| |_/___\__,_|\__|_|\___/|_| |_| |_| % % «factorization-4» (to ".factorization-4") % (visp 16) {\bf That factorization, for children} We start with a particular case, with a factorization that only has ZToposes, and we use it to understand how the Elephant defines sujection, inclusion, etc... ($s$ is not an inclusion, $i$ is not a surjection, and so on) % \def\ftext#1#2{\text{#2}} \def\ftext#1#2{\text{$#1$ (#2)}} % %D diagram fact-children %D 2Dx 100 +55 +45 +45 %D 2D 100 F G H I %D 2D %D 2D +15 A0 A3 %D 2D %D 2D +20 B0 B1 B3 %D 2D %D 2D +20 C1 C2 C3 %D 2D %D ren A0 A3 ==> \Set^\catA \Set^\catD %D ren B0 B1 B3 ==> \Set^\catA \Set^\catB \Set^\catD %D ren C1 C2 C3 ==> \Set^\catB \Set^\catC \Set^\catD %D %D (( F place G place H place I place %D A0 A3 -> .plabel= a \ftext{g}{any} %D B0 B1 -> .plabel= a \ftext{s}{surjection} %D B1 B3 -> .plabel= a \ftext{i}{inclusion} %D C1 C2 -> .plabel= a \ftext{d}{dense} %D C2 C3 -> .plabel= a \ftext{c}{closed} %D A0 B0 = A3 B3 = B1 C1 = B3 C3 = %D )) %D enddiagram % \pu $$ \resizebox{!}{50pt}{$ \diag{fact-children} $} $$ \newpage % ____ _ __ _ _ % / ___| _ _ _ __(_) / / (_)_ __ ___| | % \___ \| | | | '__| | / / | | '_ \ / __| | % ___) | |_| | | | | / / | | | | | (__| | % |____/ \__,_|_| _/ | /_/ |_|_| |_|\___|_| % |__/ % % «surjection-inclusion» (to ".surjection-inclusion") % (ele "elephant-A4.2.6") % (vgmp 18 "surjection-inclusion") % (vgm "surjection-inclusion") {\bf The surjection-inclusion factorization for children} % %D diagram dense-closed %D 2Dx 100 +55 +20 +40 +20 +120 %D 2D 100 AD0 <----------------| AD1 %D 2D %D 2D +25 AD2 |----------------> AD3 %D 2D %D 2D +15 AD4 -----------------> AD5 %D 2D %D 2D +20 AB0 AB1 ABa BDa BD0 BD1 %D 2D %D 2D +20 AB2 AB3 ABb BDb BD2 BD3 %D 2D %D 2D +15 AB4 AB5 BD4 BD5 %D 2D %D ren AD0 AD1 ==> g^*I I %D ren AD2 AD3 ==> F g_*F %D ren AD4 AD5 ==> \Set^\catA \Set^\catD %D %D ren AB0 AB1 ==> s^*G G %D ren AB2 AB3 ==> F s_*F %D ren AB4 AB5 ==> \Set^\catA \Set^\catB %D ren ABa ABb ==> G s_*s^*G %D %D ren BD0 BD1 ==> i^*I I %D ren BD2 BD3 ==> G i_*G %D ren BD4 BD5 ==> \Set^\catB \Set^\catD %D ren BDa BDb ==> i^*i_*G G %D %D (( AD0 AD1 <-| %D AD0 AD2 -> %D AD1 AD3 -> %D AD2 AD3 |-> %D AD0 AD3 harrownodes nil 20 nil <-> %D AD4 AD5 -> .plabel= a \ftext{g}{any} %D %D AB0 AB1 <-| %D ABa ABb -> .plabel= r \sm{ηG\\\text{(monic)}} %D AB0 AB2 -> %D AB1 AB3 -> %D AB2 AB3 |-> %D AB0 AB3 harrownodes nil 20 nil <-> %D AB4 AB5 -> .plabel= a \ftext{s}{surjection} %D %D BDa BDb -> .plabel= l \sm{εG\\\text{(iso)}} %D BD0 BD1 <-| %D BD0 BD2 -> %D BD1 BD3 -> %D BD2 BD3 |-> %D BD0 BD3 harrownodes nil 20 nil <-> %D BD4 BD5 -> .plabel= a \ftext{i}{inclusion} %D %D )) %D enddiagram \pu $$ % \resizebox{!}{60pt}{$ \resizebox{220pt}{!}{$ \diag{dense-closed} $} $$ \newpage % ____ __ _ _ % | _ \ ___ _ __ ___ ___ / / ___| | ___ ___ ___ __| | % | | | |/ _ \ '_ \/ __|/ _ \ / / / __| |/ _ \/ __|/ _ \/ _` | % | |_| | __/ | | \__ \ __/ / / | (__| | (_) \__ \ __/ (_| | % |____/ \___|_| |_|___/\___| /_/ \___|_|\___/|___/\___|\__,_| % % «dense-closed» (to ".dense-closed") % (vgmp 19 "dense-closed") % (vgm "dense-closed") % (visp 16) % (vis ) {\bf The dense-closed factorization for children} % %D diagram dense-closed %D 2Dx 100 +20 +45 +20 +40 +45 %D 2D 100 BDa BD0 <----------------| BD1 %D 2D %D 2D +25 BDb BD2 |----------------> BD3 %D 2D %D 2D +15 BD4 -----------------> BD5 %D 2D %D 2D +20 BC0 BC1 BCa CD0 CD1 %D 2D %D 2D +20 BC2 BC3 BCb CD2 CD3 %D 2D %D 2D +20 BC4 BC5 CD4 CD5 %D 2D %D 2D +20 %D 2D %D ren BDa BDb ==> i^*i_*G G %D ren BD0 BD1 ==> i^*I I %D ren BD2 BD3 ==> G i_*G %D ren BD4 BD5 ==> \Set^\catB \Set^\catD %D %D ren BCa BCb ==> K d_*d^*K %D ren BC0 BC1 ==> d^*H H %D ren BC2 BC3 ==> G d_*G %D ren BC4 BC5 ==> \Set^\catB \Set^\catC %D %D ren CD0 CD1 ==> c^*I I %D ren CD2 CD3 ==> H c_*H %D ren CD4 CD5 ==> \Set^\catC \Set^\catD %D %D (( BDa BDb -> .plabel= l \sm{εG\\\text{(iso)}} %D BD0 BD1 <-| %D BD0 BD2 -> %D BD1 BD3 -> %D BD2 BD3 |-> %D BD0 BD3 harrownodes nil 20 nil <-> %D BD4 BD5 -> .plabel= a \ftext{i}{inclusion} %D %D BCa BCb -> .plabel= r \sm{ηK\\\text{(monic)}} %D BC0 BC1 <-| %D BC0 BC2 -> %D BC1 BC3 -> %D BC2 BC3 |-> %D BC0 BC3 harrownodes nil 20 nil <-> %D BC4 BC5 -> .plabel= a \ftext{d}{dense} %D %D CD0 CD1 <-| %D CD0 CD2 -> %D CD1 CD3 -> %D CD2 CD3 |-> %D CD0 CD3 harrownodes nil 20 nil <-> %D CD4 CD5 -> .plabel= a \ftext{c}{closed} %D %D )) %D enddiagram % \pu $$ \resizebox{!}{60pt}{$ \diag{dense-closed} $} $$ \ColorGray{($K$ is a constant ZPresheaf in $\Set^\catC$)} \newpage {\bf Acoording to the Elephant...} %D diagram mysterious-B-and-C %D 2Dx 100 +45 +45 +40 %D 2D 100 A0 A3 %D 2D %D 2D +20 B0 B1 B3 %D 2D %D 2D +20 c1 %D 2D %D 2D +20 C1 C2 C3 %D 2D %D 2D +20 d2 %D 2D %D 2D +20 D2 %D 2D %D ren A0 A3 ==> \Set^\catA \Set^\catD %D ren B0 B1 B3 ==> \Set^\catA \calB \Set^\catD %D ren C1 C2 C3 ==> \Set^\catB \calC \Set^\catD %D ren D2 ==> \Set^\catC %D %D ren c1 ==> (\Set^\catB)_\bbG %D ren d2 ==> \mathsf{sh}_{¬¬}(\Set^\catD)\oque %D %D (( A0 A3 -> .plabel= a \ftext{a}{any} %D B0 B1 -> .plabel= a \ftext{s}{surjection} %D B1 B3 -> .plabel= a \ftext{i}{inclusion} %D C1 C2 -> .plabel= a \ftext{d}{dense} %D C2 C3 -> .plabel= a \ftext{c}{closed} %D A0 B0 = A3 B3 = B1 c1 == c1 C1 == B3 C3 = C2 d2 == d2 D2 == %D )) %D enddiagram %D \pu \def\oque{\;\;\;(???)} \antitabular \begin{tabular}{l} A4.2.7, 4.2.10: \\ to build $\calB$ we need \\ comonads and \\ coalgebras \\ \\ A4.5.9, A4.5.20: \\ $\calC = \mathsf{sh}_{¬¬}(\Set^\catD)$ \\ \ColorRed{(can't be!)} \\ \end{tabular} \quad $\resizebox{!}{60pt}{$ \diag{mysterious-B-and-C} $} $ \newpage {\bf Another strategy} Start with a functor $g:\catA → \catD$. It induces a geometric morphism $g^*⊣g_*$. $g^*$ is trivial to build. $g_*$ can be found by guess-and-test. \ColorGray{(or by Kan extensions)} \msk The functor $g$ can: collapse objects, $(1 \;\;\; 2) → (1)$ create objects, $(\,) → (3)$ collapse arrows, $(4 \two/->`->/ 5) → (4 → 5)$ create arrows, $(6 \;\;\; 7) → (6 → 7)$ \msk Try to factor it. Example: if $g$ just collapses objects... \newpage {\bf Another strategy} The functor $g$ can do several \ColorRed{things}: collapse objects, $(1 \;\;\; 2) → (1)$ create objects, $(\,) → (3)$ collapse arrows, $(4 \two/->`->/ 5) → (4 → 5)$ create arrows, $(6 \;\;\; 7) → (6 → 7)$ refine the order, $(2 → 4) → (1 → 2 → 3 → 4 → 5)$... \msk Try to factor it. Example: if $g$ just \ColorRed{collapses} objects, then it factor as $s=g$ (surj. part), $i=\id$ (inclusion part)... The factorization filters the {\sl things} that the functor can do, \ColorRed{collapsing objects} go to the surjective part. \newpage {\bf Another strategy} \antitabular \begin{tabular}{l} Choose a functor \\ $f:\catA→\catB$ \\ that does all \ColorRed{things}. \\ Factorize it. \\ $\calB$ and $\calC$ will \\ be non-trivial. \\ They tell us how \\ $\calB$ and $\calC$ will be \\ \ColorRed{modulo} \\ \ColorRed{isomorphism}. \\ \end{tabular} \;\; $\resizebox{!}{60pt}{$ \diag{mysterious-B-and-C} $} $ \newpage For more information: \url{http://angg.twu.net/logic-for-children-2018.html} \url{http://angg.twu.net/math-b.html} % (ph2 "algebra-of-J-ops") % (ph2p 32 "algebra-of-J-ops") % (ph2p 34 "algebra-of-J-ops" "algebra") \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "vgs" % End: