Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2018vichy-video.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2018vichy-video.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2018vichy-video.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2018vichy-video; makeindex 2018vichy-video")) % (defun e () (interactive) (find-LATEX "2018vichy-video.tex")) % (defun u () (interactive) (find-latex-upload-links "2018vichy-video")) % (find-xpdfpage "~/LATEX/2018vichy-video.pdf") % (find-sh0 "cp -v ~/LATEX/2018vichy-video.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2018vichy-video.pdf /tmp/pen/") % file:///home/edrx/LATEX/2018vichy-video.pdf % file:///tmp/2018vichy-video.pdf % file:///tmp/pen/2018vichy-video.pdf % http://angg.twu.net/LATEX/2018vichy-video.pdf % % (find-es "ffmpeg" "vichy-video") % «.colors» (to "colors") % «.myoval» (to "myoval") % «.title-page» (to "title-page") % «.why» (to "why") % «.why-2» (to "why-2") % «.why-3» (to "why-3") % «.bigger-project» (to "bigger-project") % «.adults» (to "adults") % «.children» (to "children") % «.children-2» (to "children-2") % «.toolbox» (to "toolbox") % «.publish» (to "publish") % «.publish-2» (to "publish-2") % «.rest-adults» (to "rest-adults") % «.VGM» (to "VGM") % «.VGM-2» (to "VGM-2") % «.VGM-3» (to "VGM-3") % «.VGM-4» (to "VGM-4") % «.VGM-5» (to "VGM-5") % «.VGM-6» (to "VGM-6") % «.internal-views» (to "internal-views") % «.internal-views-functors» (to "internal-views-functors") % «.internal-views-functors-2» (to "internal-views-functors-2") % «.internal-views-gm» (to "internal-views-gm") % «.internal-views-gm-2» (to "internal-views-gm-2") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-angg ".emacs.papers" "latexgeom") % (find-LATEXfile "2016-2-GA-VR.tex" "{geometry}") % (find-latexgeomtext "total={6.5in,8.75in},") \usepackage[paperwidth=11cm, paperheight=8.5cm, %total={6.5in,4in}, %textwidth=4in, paperwidth=4.5in, %textheight=5in, paperheight=4.5in, %a4paper, top=1.5cm, bottom=.5cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %\directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % «colors» (to ".colors") % (find-LATEX "2017ebl-slides.tex" "colors") % (find-LATEX "2017ebl-slides.tex" "colors" "\\def\\ColorGreen") \long\def\ColorRed #1{{\color{Red}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} % «myoval» (to ".myoval") % (find-LATEXfile "2018pict2e.tex" "\\def\\myoval") \def\myvcenter#1{\ensuremath{\vcenter{\hbox{#1}}}}% \def\myoval(#1,#2)(#3,#4)[#5]{% \myvcenter{% \begin{picture}(#1,#2)(-#3,-#4) \put(0,0){\oval[#5](#1,#2)} \end{picture}% }} \def\calU{{\mathcal{U}}} \def\calI{{\mathcal{I}}} \setlength{\parindent}{0em} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % «title-page» (to ".title-page") % (vivp 1 "title-page") % (viv "title-page") {\Huge {\bf Logic for Children}} (i.e., for people without mathematical maturity --- a workshop at UniLog 2018) % $$ \begin{tabular}[b]{c} % (xz "~/LATEX/2018vichy-video-edrx.jpg") \includegraphics[width=2cm]{2018vichy-video-edrx.jpg} \\ Eduardo \\ Ochs \\ \end{tabular} \quad \begin{tabular}[b]{c} % (xz "~/LATEX/2018vichy-video-lucatelli.jpg") \includegraphics[width=2cm]{2018vichy-video-lucatelli.jpg} \\ Fernando \\ Lucatelli \\ \end{tabular} \quad \begin{tabular}[b]{c} % (xz "~/LATEX/2018vichy-video-selana.jpg") \includegraphics[width=2cm]{2018vichy-video-selana.jpg} \\ Selana \\ Ochs \\ \end{tabular} $$ \newpage \noedrxfooter % __ ___ ___ % \ \ / / |__ _ |__ \ % \ \ /\ / /| '_ \| | | |/ / % \ V V / | | | | |_| |_| % \_/\_/ |_| |_|\__, (_) % |___/ % % «why» (to ".why") % (vivp 2) {\bf Why?} \ssk \par Many years ago... \par Non-Standard Analysis \par $→$ Ultrapowers \par $→$ Filter-powers \par $→$ Toposes \par $→$ Johnstone's ``Topos Theory'' \newpage % __ ___ ___ ____ % \ \ / / |__ _ |__ \ |___ \ % \ \ /\ / /| '_ \| | | |/ / __) | % \ V V / | | | | |_| |_| / __/ % \_/\_/ |_| |_|\__, (_) |_____| % |___/ % % «why-2» (to ".why-2") % (vivp 3) {\bf Why?} \ssk \par Many years ago... \par Non-Standard Analysis \par $→$ Ultrapowers \par $→$ Filter-powers \par $→$ Toposes \par $→$ Johnstone's ``Topos Theory'' \par $→$ FAR too abstract for me \newpage % __ ___ ___ _____ % \ \ / / |__ _ |__ \ |___ / % \ \ /\ / /| '_ \| | | |/ / |_ \ % \ V V / | | | | |_| |_| ___) | % \_/\_/ |_| |_|\__, (_) |____/ % |___/ % % «why-3» (to ".why-3") % (vivp 4) {\bf Why?} \ssk \par Many years ago... \par Non-Standard Analysis \par $→$ Ultrapowers \par $→$ Filter-powers \par $→$ Toposes \par $→$ Johnstone's ``Topos Theory'' \par $→$ FAR too abstract for me \par $→$ {\bf I NEED A VERSION FOR CHILDREN OF THIS} \newpage % __ ___ ___ _____ % \ \ / / |__ _ |__ \ |___ / % \ \ /\ / /| '_ \| | | |/ / |_ \ % \ V V / | | | | |_| |_| ___) | % \_/\_/ |_| |_|\__, (_) |____/ % |___/ % % «why-3» (to ".why-3") % (vivp 5) {\bf Why?} \ssk \par Many years ago... \par Non-Standard Analysis \par $→$ Ultrapowers \par $→$ Filter-powers \par $→$ Toposes \par $→$ Johnstone's ``Topos Theory'' \par $→$ FAR too abstract for me \par $→$ {\bf I NEED A VERSION \ColorRed{FOR CHILDREN} OF THIS} \newpage % ____ _ _ % | _ \ _ __ ___ (_) ___ ___| |_ % | |_) | '__/ _ \| |/ _ \/ __| __| % | __/| | | (_) | | __/ (__| |_ % |_| |_| \___// |\___|\___|\__| % |__/ % % «bigger-project» (to ".bigger-project") % (vivp 6) With time this became \ssk {\Large {\bf A MUCH BIGGER}} project... \msk Some subtasks: {\def\Sub#1{} 1. Find the right definition of ``children'' \Sub{(inspired by how I function)} 2. Develop a basic toolbox \Sub{(and name its tools)} 3. Make these things publishable \Sub{(make them look formal and non-trivial)} } \newpage % (vivp 7 "bigger-project") % (viv "bigger-project") With time this became \ssk {\Large {\bf A MUCH BIGGER}} project... \msk Some subtasks: {\def\Sub#1{\quad\ColorGray{#1}} 1. Find the right definition of ``children'' \Sub{(inspired by how I function)} 2. Develop a basic toolbox \Sub{(and name its tools)} 3. Make these things publishable \Sub{(make them look formal and non-trivial)} } \newpage % _ _ _ _ % / \ __| |_ _| | |_ ___ % / _ \ / _` | | | | | __/ __| % / ___ \ (_| | |_| | | |_\__ \ % /_/ \_\__,_|\__,_|_|\__|___/ % % «adults» (to ".adults") % (vivp 8) {\bf The opposite of ``children''} The opposite of ``children'' is ``\ColorRed{adults}'', or ``\ColorRed{mathematicians}''. % An ``adult'' feels that everything A ``mathematician'' feels that everything should be done as generally and as abstractly as possible --- and doing otherwise is {\sl bad style}. \newpage % (vivp 9) {\bf The opposite of ``children''} The opposite of ``children'' is ``\ColorRed{adults}'', or ``\ColorRed{mathematicians}''. % An ``adult'' feels that everything A ``mathematician'' feels that everything should be done as generally and as abstractly as possible --- and doing otherwise is {\sl bad style}. \msk Example: finding a right adjoint by guesswork / trial and error... \msk One expression that I love is: ``{\sl this step (or argument) offends adults}''. \newpage % ____ _ _ _ _ % / ___| |__ (_) | __| |_ __ ___ _ __ % | | | '_ \| | |/ _` | '__/ _ \ '_ \ % | |___| | | | | | (_| | | | __/ | | | % \____|_| |_|_|_|\__,_|_| \___|_| |_| % % «children» (to ".children") % (vivp 10 "children") % (viv "children") {\bf Task 1: The right definition of ``children'':} They prefer to start from particular cases and then generalize --- They like diagrams and finite objects drawn very explicitly --- They become familiar with mathematical ideas by calculating / checking several cases (rather than by proving theorems) \newpage % «children-2» (to ".children-2") % (vivp 11 "children-2") % (viv "children-2") {\bf Task 1: The right definition of ``children'':} They prefer to start from particular cases and then generalize --- They like diagrams and finite objects drawn very explicitly --- They become familiar with mathematical ideas by calculating / checking several cases (rather than by proving theorems) \msk % http://puzzler.sourceforge.net/docs/pentominoes.html % http://puzzler.sourceforge.net/docs/images/ominoes/pentominoes-8x8.png $\hskip-5.5pt % \begin{tabular}[b]{l} Example: pentominos. \\ Let ``children'' \ColorRed{play} \\ with pentominos for a while \\ \ColorRed{before} showing to them \\ theorems and game trees! \\ \end{tabular} % \qquad \quad % \includegraphics[height=52pt]{pentominoes-8x8.png} $ \newpage % _____ _ _ % |_ _|__ ___ | | |__ _____ __ % | |/ _ \ / _ \| | '_ \ / _ \ \/ / % | | (_) | (_) | | |_) | (_) > < % |_|\___/ \___/|_|_.__/ \___/_/\_\ % % «toolbox» (to ".toolbox") % (vivp 12) {\bf Task 2: Develop a basic toolbox} I'm starting with ``Category Theory for children'' because I am a categorist, and because CT uses diagrams and generalizations {\sl a lot}... \msk Basic tools: Use \ColorRed{parallel diagrams}, \ColorRed{positional notations}, \ColorRed{internal views}, \ColorGray{archetypal cases}... \msk \ColorGreen{(I'll show some diagrams soon)} \newpage % ____ _ _ _ _ % | _ \ _ _| |__ | (_)___| |__ % | |_) | | | | '_ \| | / __| '_ \ % | __/| |_| | |_) | | \__ \ | | | % |_| \__,_|_.__/|_|_|___/_| |_| % % «publish» (to ".publish") % (vivp 13) {\bf Task 3: Find ways to publish this} CT books treat examples very briefly, as if they were trivial exercises... ${=}($ Ideas: do things ``for children'' and ``for adults'' in parallel, find ways to {\sl transfer knowledge} between the two approaches... \msk \ColorGreen{(Non-standard Analysis has transfer theorems between the standard universe, $\Set$, and $\Set^\calU/\calI$)} \newpage % ____ _ _ _ _ ____ % | _ \ _ _| |__ | (_)___| |__ |___ \ % | |_) | | | | '_ \| | / __| '_ \ __) | % | __/| |_| | |_) | | \__ \ | | | / __/ % |_| \__,_|_.__/|_|_|___/_| |_| |_____| % % «publish-2» (to ".publish-2") % (vivp 14) {\bf Task 3: Find ways to publish this} CT books treat examples very briefly, as if they were trivial exercises... ${=}($ Ideas: do things ``for children'' and ``for adults'' in \ColorRed{parallel}, find ways to \ColorRed{\sl transfer knowledge} between the two approaches... % \def\tm #1#2{ \begin{tabular}{#1}#2\end{tabular}} \def\ptm#1#2{\left (\begin{tabular}{#1}#2\end{tabular}\right )} \def\smm#1#2{\sm{\text{#1}\\\text{#2}}} % $$\ptm{c}{particular \\ case \\ ``for children''} \two/<-`->/<500>^{\smm{particularize}{(easy)}}_{\smm{generalize}{(hard)}} \ptm{c}{general \\ case \\ ``for adults''} $$ The diagrams for the general case and for a particular case {\sl have the same shape!!!} \newpage % _ __ _ _ _ % _ __ ___ ___| |_ / / __ _ __| |_ _| | |_ ___ % | '__/ _ \/ __| __| / / / _` |/ _` | | | | | __/ __| % | | | __/\__ \ |_ / / | (_| | (_| | |_| | | |_\__ \ % |_| \___||___/\__| /_/ \__,_|\__,_|\__,_|_|\__|___/ % % «rest-adults» (to ".rest-adults") % (vivp 15) {\bf In the rest of these slides...} ...we will show an example: \ColorRed{Geometric Morphisms} for children! ($↑$ a thing from Topos Theory) \newpage % __ ______ __ __ % \ \ / / ___| \/ | % \ \ / / | _| |\/| | % \ V /| |_| | | | | % \_/ \____|_| |_| % % «VGM» (to ".VGM") % (vivp 16) {\bf Visualizing Geometric Morphisms} An application: \ColorRed{Sheaves} and \ColorRed{Geometric Morphisms} $↑$ two parts of Topos Theory that look {\sl incredibly abstract} at first % \msk \ColorGray{ (Btw, I'll give a talk at the ``Logic and Categories'' workshop about that) } \msk Trick: Start with presheaves {\sl that are easy to visualize;} Start with a very small, planar category like this... \newpage % __ ______ __ __ ____ % \ \ / / ___| \/ | |___ \ % \ \ / / | _| |\/| | __) | % \ V /| |_| | | | | / __/ % \_/ \____|_| |_| |_____| % % «VGM-2» (to ".VGM-2") % (vivp 17) % (find-angg "LUA/texinfo.lua" "preproc") {\bf Visualizing Geometric Morphisms} \ColorRed{Trick: positional notations} Start with presheaves {\sl that are easy to visualize;} Start with a very small, planar category like this, % %L sesw = {[" w"]="↙", [" e"]="↘"} % %R local B, BF = 3/ 1 \, 3/ F_1 \ %R | w e | | w e | %R | 2 3 | |F_2 F_3 | %R | e w e | | e w e | %R | 4 5 | | F_4 F_5| %R | e w | | e w | %R \ 6 / \ F_6 / %R %R B:tozmp({def="Bbig", scale="10pt", meta="p"}):addcells(sesw):output() $$\pu \catB = \Bbig $$ {\color{GrayLight} Technicalities: $\catB$ is a preorder } \newpage % __ ______ __ __ _____ % \ \ / / ___| \/ | |___ / % \ \ / / | _| |\/| | |_ \ % \ V /| |_| | | | | ___) | % \_/ \____|_| |_| |____/ % % «VGM-3» (to ".VGM-3") % (vivp 18) {\bf Visualizing Geometric Morphisms} ...and now a presheaf $F$ on $\catB$ can be drawn like this... % %R local B, BF = 3/ 1 \, 3/ F_1 \ %R | w e | | w e | %R | 2 3 | |F_2 F_3 | %R | e w e | | e w e | %R | 4 5 | | F_4 F_5| %R | e w | | e w | %R \ 6 / \ F_6 / %R %R B :tozmp({def="Bmed", scale="7pt", meta="s p"}):addcells(sesw):output() %R BF:tozmp({def="BF", scale="7pt", meta="s p"}):addcells(sesw):output() $$\pu \catB = \Bmed \qquad F = \BF $$ \newpage % __ ______ __ __ _ _ % \ \ / / ___| \/ | | || | % \ \ / / | _| |\/| | | || |_ % \ V /| |_| | | | | |__ _| % \_/ \____|_| |_| |_| % % «VGM-4» (to ".VGM-4") % (vivp 19) {\bf Visualizing Geometric Morphisms} ...and now a presheaf $F$ on $\catB$ can be drawn like this... % %R local B, BF = 3/ 1 \, 3/ F_1 \ %R | w e | | w e | %R | 2 3 | |F_2 F_3 | %R | e w e | | e w e | %R | 4 5 | | F_4 F_5| %R | e w | | e w | %R \ 6 / \ F_6 / %R %R B :tozmp({def="Bmed", scale="7pt", meta="s p"}):addcells(sesw):output() %R BF:tozmp({def="BF", scale="7pt", meta="s p"}):addcells(sesw):output() $$\pu \catB = \Bmed \qquad F = \BF $$ {\color{GrayLight} Technicalities: $F_1, F_2, \ldots, F_6$ are sets, the `$F_i→F_j$'s are functions, $F:\catB→\Set$, i.e., $F∈\Set^{\catB}$, And there may be an `$\op$' omitted somewhere } % \newpage % % {\bf Visualizing Geometric Morphisms} % % ...and now a presheaf $F$ on $\catB$ % % can be drawn like this... % % % %R local B, BF = 3/ 1 \, 3/ F_1 \ % %R | w e | | w e | % %R | 2 3 | |F_2 F_3 | % %R | e w e | | e w e | % %R | 4 5 | | F_4 F_5| % %R | e w | | e w | % %R \ 6 / \ F_6 / % %R % %R B :tozmp({def="Bmed", scale="7pt", meta="s p"}):addcells(sesw):output() % %R BF:tozmp({def="BF", scale="7pt", meta="s p"}):addcells(sesw):output() % $$\pu \catB = \Bmed \qquad F = \BF % $$ \newpage % __ ______ __ __ ____ % \ \ / / ___| \/ | | ___| % \ \ / / | _| |\/| | |___ \ % \ V /| |_| | | | | ___) | % \_/ \____|_| |_| |____/ % % «VGM-5» (to ".VGM-5") % (vivp 20) {\bf Visualizing Geometric Morphisms} ...choose a subcategory $\catA$ of $\catB$, e.g., the one below. Then a presheaf $G$ on $\catA$ can be drawn as: % %R local B, BF, BG = 3/ 1 \, 3/ F_1 \, 3/ !Gt \ %R | w e | | w e | | w e | %R | 2 3 | |F_2 F_3 | |G_2 G_3 | %R | e w e | | e w e | | e w e | %R | 4 5 | | F_4 F_5| | G_4 G_5| %R | e w | | e w | | e w | %R \ 6 / \ F_6 / \ 1 / %R %R local A, AG, AF = 3/ 2 3 \, 3/G_2 G_3 \, 3/F_2 F_3 \ %R | e w e | | e w e | | e w e | %R \ 4 5 / \ G_4 G_5/ \ F_4 F_5/ %R %R %R B :tozmp({def="Bmed", scale="7pt", meta="s p"}):addcells(sesw):output() %R BF:tozmp({def="BF", scale="7pt", meta="s p"}):addcells(sesw):output() %R BG:tozmp({def="BG", scale="7pt", meta="s p"}):addcells(sesw):output() %R A :tozmp({def="Amed", scale="7pt", meta="s p"}):addcells(sesw):output() %R AG:tozmp({def="AG", scale="7pt", meta="s p"}):addcells(sesw):output() %R AF:tozmp({def="AF", scale="7pt", meta="s p"}):addcells(sesw):output() \def\Gt{G_2 {×_{G_4}} G_3} \pu $$\catB = \Bmed \qquad F = \BF $$ $$\catA = \Amed \qquad G = \AG $$ {\color{GrayLight} Technicalities: too many ${=}($ } \newpage % __ ______ __ __ __ % \ \ / / ___| \/ | / /_ % \ \ / / | _| |\/| | | '_ \ % \ V /| |_| | | | | | (_) | % \_/ \____|_| |_| \___/ % % «VGM-6» (to ".VGM-6") % (vivp 21) {\bf Visualizing Geometric Morphisms} ...and the inclusion $f:\catA→\catB$ induces a geometric morphism $f:\Set^\catA→\Set^\catB$, that ``is'' an adjunction $f^*⊣f_*$: % $$\Set^\catA \two/<-`->/<200>^{f^*}_{f_*} \Set^\catB $$ ...where $f^*$ is ``obvious'' \ColorGray{(for some value of ``obvious'')} and $f_*$ can be obtained by \ColorRed{trial and error} if we don't understand Kan Extensions... Kan Extensions: \ColorRed{for adults} Trial and error: \ColorRed{for children} \newpage % ___ _ _ % |_ _|_ __ | |_ ___ _ __ _ __ __ _| | % | || '_ \| __/ _ \ '__| '_ \ / _` | | % | || | | | || __/ | | | | | (_| | | % |___|_| |_|\__\___|_| |_| |_|\__,_|_| % % «internal-views» (to ".internal-views") % (vivp 22 "internal-views") % (viv "internal-views") {\bf Interlude: internal views} The best way to explain the adjunction of the previous slide to children is through \ColorRed{\sl internal views}. The internal view of the \ColorRed{function} $√{}:\N→\R$ is: % \def\ooo(#1,#2){\begin{picture}(0,0)\put(0,0){\oval(#1,#2)}\end{picture}} \def\oooo(#1,#2){{\setlength{\unitlength}{1ex}\ooo(#1,#2)}} % %D diagram second-blob-function %D 2Dx 100 +20 +20 %D 2D 100 a-1 |--> b-1 %D 2D +08 a0 |--> b0 %D 2D +08 a1 |--> b1 %D 2D +08 a2 |--> b2 %D 2D +08 a3 |--> b3 %D 2D +08 a4 |--> b4 %D 2D +14 a5 |--> b5 %D 2D +25 \N ---> \R %D 2D %D ren a-1 a0 a1 a2 a3 a4 a5 ==> -1 0 1 2 3 4 n %D ren b-1 b0 b1 b2 b3 b4 b5 ==> -1 0 1 \sqrt{2} \sqrt{3} 2 \sqrt{n} %D (( a0 a5 midpoint .TeX= \oooo(7,23) y+= -2 place %D b-1 b5 midpoint .TeX= \oooo(7,25) y+= -2 place %D b-1 place %D a0 b0 |-> %D a1 b1 |-> %D a2 b2 |-> %D a3 b3 |-> %D a4 b4 |-> %D a5 b5 |-> %D \N \R -> .plabel= a \sqrt{\phantom{a}} %D a-1 relplace -7 -7 \phantom{foo} %D b5 relplace 7 7 \phantom{bar} %D )) %D enddiagram %D $$\pu \resizebox{2.2cm}{!}{$\diag{second-blob-function}$} $$ (`$↦$'s take elements of a blob-set to another blob-set) % Internal views of \ColorRed{functors} have blob-{\sl categories}. \newpage % «internal-views-functors» (to ".internal-views-functors") % (vivp 23) {\bf Interlude: internal views} Internal views of \ColorRed{functors} have blob-\ColorRed{categories} instead of blob-\ColorRed{sets}, like this: \unitlength=10pt %D diagram ?? %D 2Dx 100 +40 %D 2D 100 A FA %D 2D %D 2D +30 B FB %D 2D %D 2D +20 \catC \catD %D 2D %D %D (( A FA |-> %D B FB |-> %D A FB harrownodes nil 18 nil |-> %D A B -> .plabel= l g %D FA FB -> .plabel= r Fg %D \catC \catD -> .plabel= a F %D A B midpoint .TeX= \myoval(3.4,7)(1.7,3.5)[1] place %D FA FB midpoint .TeX= \myoval(3.4,7)(1.7,3.5)[1] place %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % «internal-views-functors-2» (to ".internal-views-functors-2") % (vivp 24) {\bf Interlude: internal views} We draw the internal view of $F:\catC → \catD$ as this, %D diagram ?? %D 2Dx 100 +25 %D 2D 100 A FA %D 2D %D 2D +20 B FB %D 2D %D 2D +15 \catC \catD %D 2D %D %D (( A FA |-> %D B FB |-> %D # A FB harrownodes nil 18 nil |-> %D A B -> .plabel= l g %D FA FB -> .plabel= r Fg %D \catC \catD -> .plabel= a F %D # A B midpoint .TeX= \myoval(3.4,7)(1.7,3.5)[1] place %D # FA FB midpoint .TeX= \myoval(3.4,7)(1.7,3.5)[1] place %D )) %D enddiagram %D $$\pu \diag{??} $$ \msk we omit the blobs (the ``{\unitlength=5pt\myoval(1,2)(0.5,1)[0.3]}''s), and we draw the internal view --- objects and maps in $\catC$ and $\catD$ --- above the external view ($F:\catC→\catD$). \newpage % «internal-views-gm» (to ".internal-views-gm") % (vivp 25 "internal-views-gm") % (viv "internal-views-gm") {\bf Internal views} Here is the internal view of the geometric morphism $f:\Set^\catA→\Set^\catB$... remember that $f$ is an adjunction $f^*⊣f_*$. %D diagram GM-particular %D 2Dx 100 +35 %D 2D 100 A0 A1 %D 2D %D 2D +25 A2 A3 %D 2D %D 2D +15 A4 A5 %D 2D %D ren A0 A1 ==> f^*F F %D ren A2 A3 ==> G f_*G %D ren A4 A5 ==> \Set^\catA \Set^\catB %D %D (( A0 A1 <- %D A2 A3 -> %D A0 A2 -> %D A1 A3 -> %D A0 A3 harrownodes nil 20 nil <-> %D A4 A5 <- sl^ .plabel= a f^* %D A4 A5 -> sl_ .plabel= b f_* %D %D )) %D enddiagram %D %D diagram GM-general %D 2Dx 100 +35 %D 2D 100 A0 A1 %D 2D %D 2D +25 A2 A3 %D 2D %D 2D +15 A4 A5 %D 2D %D ren A0 A1 ==> f^*F F %D ren A2 A3 ==> G f_*G %D ren A4 A5 ==> \calF \calE %D %D (( A0 A1 <- %D A2 A3 -> %D A0 A2 -> %D A1 A3 -> %D A0 A3 harrownodes nil 20 nil <-> %D A4 A5 <- sl^ .plabel= a f^* %D A4 A5 -> sl_ .plabel= b f_* %D %D )) %D enddiagram %D \pu $$%\pu \resizebox{!}{50pt}{$ \begin{array}{ccc} \diag{GM-particular}& \quad& \ColorGray{ \diag{GM-general} } \\ \\ \ColorGray{\text{(particular case)}}&& \ColorGray{\text{(general case)}}\\ \end{array} $} $$ \newpage % «internal-views-gm-2» (to ".internal-views-gm-2") % (vivp 26 "internal-views-gm-2") % (viv "internal-views-gm-2") {\bf A geometric morphism (for children)} %D diagram GM-children-big %D 2Dx 100 +55 %D 2D 100 A0 A1 %D 2D %D 2D +45 A2 A3 %D 2D %D 2D +25 A4 A5 %D 2D %D ren A0 A1 ==> \AF \BF %D ren A2 A3 ==> \AG \BG %D ren A4 A5 ==> \Set^\catA \Set^\catB %D %D (( A0 A1 <-| %D A2 A3 |-> %D A0 A2 -> %D A1 A3 -> %D A0 A3 harrownodes nil 20 nil <-> %D A4 A5 <- sl^ .plabel= a f^* %D A4 A5 -> sl_ .plabel= b f_* %D %D )) %D enddiagram %D $$\pu \resizebox{!}{70pt}{$ \begin{array}{ccc} \diag{GM-children-big}& \qquad \qquad& \diag{GM-general}\\ \\ \text{(for children)}&& \text{(for adults)}\\ \end{array} $} $$ \newpage % (vivp 27) {\bf Resources about the workshop} Here: \url{http://angg.twu.net/logic-for-children-2018.html} Cheers! $=)$ \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "viv" % End: