Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2019classifier.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019classifier.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019classifier.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2019classifier.pdf")) % (defun e () (interactive) (find-LATEX "2019classifier.tex")) % (defun u () (interactive) (find-latex-upload-links "2019classifier")) % (find-pdf-page "~/LATEX/2019classifier.pdf") % (find-sh0 "cp -v ~/LATEX/2019classifier.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019classifier.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019classifier.pdf % file:///tmp/2019classifier.pdf % file:///tmp/pen/2019classifier.pdf % http://angg.twu.net/LATEX/2019classifier.pdf % (find-LATEX "2019.mk") % % (find-TH "math-b" "2020-classifier") % «.title» (to "title") % «.introduction» (to "introduction") % «.make» (to "make") \documentclass[oneside]{article} \usepackage[colorlinks,urlcolor=DarkRed,citecolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") \input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-u.bib} % (find-LATEX "catsem-u.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu \def\dnto{{\downarrow}} \def\ovl{\overline} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % «title» (to ".title") \title{Notes about classifiers and local operators in a $\Set^{(P,A)}$} \author{Eduardo Ochs} \maketitle % _ _ _ _ % / \ | |__ ___| |_ _ __ __ _ ___| |_ % / _ \ | '_ \/ __| __| '__/ _` |/ __| __| % / ___ \| |_) \__ \ |_| | | (_| | (__| |_ % /_/ \_\_.__/|___/\__|_| \__,_|\___|\__| % % «abstract» (to ".abstract") % (cl9p 1 "abstract") % (cl9 "abstract") \begin{abstract} The last section of the paper \cite{OchsPH2} shows, quite briefly, how to translate slashings on Planar Heyting Algebras to local operators on toposes, but it omits some details and calculations and says that they are ``routine''. These notes are an attempt to fill those gaps. \end{abstract} % ___ _ _ _ _ % |_ _|_ __ | |_ _ __ ___ __| |_ _ ___| |_(_) ___ _ __ % | || '_ \| __| '__/ _ \ / _` | | | |/ __| __| |/ _ \| '_ \ % | || | | | |_| | | (_) | (_| | |_| | (__| |_| | (_) | | | | % |___|_| |_|\__|_| \___/ \__,_|\__,_|\___|\__|_|\___/|_| |_| % % «introduction» (to ".introduction") % (cl9p 1 "introduction") % (cl9 "introduction") % (jopp 25 "the-right-classifier") % (joe "the-right-classifier") \bsk \bsk {\bf Warning:} this is currently 1) a mess 2) a work in progress! \bsk If $F$ and $G$ are functors from $\catA$ to $\Set$ and $T:F→G$ then we can draw the two internal views of the square condition of $T$ as: % %D diagram sqcond-1 %D 2Dx 100 +30 +30 +30 +45 %D 2D 100 B FB -> GB x |--> rx %D 2D | | | - - %D 2D | | | | v %D 2D +22 v v v v drx %D 2D +8 C FC -> GC dx |-> rdx %D 2D %D 2D +20 F --> G %D 2D %D ren rx drx ==> (TB)(x) (Gv∘TB)(x) %D ren dx rdx ==> (Fv)(x) (TC∘Fv)(x) %D %D (( B C -> .plabel= l v %D F G -> .plabel= a T %D %D FB GB -> .plabel= a TB %D FB FC -> .plabel= l Fv %D GB GC -> .plabel= r Gv %D FC GC -> .plabel= a TC %D %D x rx |-> rx drx |-> %D x dx |-> dx rdx |-> %D )) %D enddiagram %D $$\pu \diag{sqcond-1} $$ Formally, this is: $∀(v:B→C). \, ∀x∈FB. \, (Gv∘TB)(x) = (TC∘Fv)(x)$. \bsk In Section 7 of \cite{OchsPH2} I used these two diagrams to discuss $Ω$ and $j$, % %D diagram Omega-and-j %D 2Dx 100 +30 +30 %D 2D 100 B --> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren Om1 Om2 ==> Ω Ω %D %D (( B 1 -> .plabel= a ! %D B C >-> .plabel= l i %D 1 Om1 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D B relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D %D diagram Omega-and-j-2 %D 2Dx 100 +30 +30 %D 2D 100 B ----------> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren Om1 Om2 B ==> Ω Ω \ovl{B} %D %D (( B 1 -> .plabel= a ! %D B C >-> .plabel= l i %D 1 Om2 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D B relplace 7 7 \pbsymbol{7} %D )) %D enddiagram %D \pu $$\diag{Omega-and-j} \qquad \diag{Omega-and-j-2} $$ % and I defined the objects $1$ and $Ω$ by: % $$\begin{array}{rcl} 1(p) &=& \{*\} \\ 1(p\ton!q) &=& λ*.* \\ Ω(p) &=& \Sub(↓p) \\ Ω(p\ton!q) &=& λR{:}\Sub(↓p).R∧↓q \\ \end{array} $$ % Let's suppose that $B \monicto C$ is a canonical subobject, i.e., we have $∀p∈P.B(p)⊆C(p)$ and every map $B(p\ton!q)$ is a restriction of the corresponding map $C(p\ton!q)$. This means that: % %D diagram B->C-inj %D 2Dx 100 +30 +40 +35 +55 %D 2D 100 p Bp ---> Cp b |---> cb %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rcb %D 2D +8 q Bq ---> Cq rb |--> crb %D 2D %D 2D +20 B ----> C %D 2D %D ren Bp Bq Cp Cq ==> B(p) B(q) C(p) C(q) %D ren b cb rcb rb crb ==> b b C(p\ton!q)(b) B(p\ton!q)(b) B(p\ton!q)(b) %D %D (( p q -> .plabel= l ! %D Bp Cp `-> .plabel= a ip %D Bp Bq -> .plabel= l B(p\ton!q) %D Cp Cq -> .plabel= r C(p\ton!q) %D Bq Cq `-> .plabel= a iq %D B C `-> .plabel= a i %D %D b cb |-> cb rcb |-> %D b rb |-> rb crb |-> %D )) %D enddiagram % $$\pu \diag{B->C-inj} $$ $$\begin{array}{rcl} \end{array} $$ % (jopp 25 "the-right-classifier") % (joe "the-right-classifier") \newpage % (nyop 12 "first-yoneda-bijection-4") % (nyo "first-yoneda-bijection-4") % (nyo "yoneda-bij") %D diagram B->1 %D 2Dx 100 +30 +40 +35 +45 %D 2D 100 p Bp ---> 1p b |---> *p1 %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v *p2 %D 2D +8 q Bq --> 1q rb |--> *p3 %D 2D %D 2D +20 B ----> 1 %D 2D %D ren Bp Bq 1p 1q ==> B_0(p) B_0(q) \{*\} \{*\} %D ren b rb *p1 *p2 *p3 ==> b B_1(p\ton!q)(b) * * * %D %D (( p q -> .plabel= l ! %D Bp 1p -> .plabel= a ! %D Bp Bq -> .plabel= l B_1(p\ton!q) %D 1p 1q -> .plabel= r ! %D Bq 1q -> .plabel= a ! %D B 1 -> %D %D b *p1 |-> *p1 *p2 |-> %D b rb |-> rb *p3 |-> %D )) %D enddiagram $\pu \diag{B->1} $ \bsk \bsk %D diagram B->C %D 2Dx 100 +30 +40 +35 +55 %D 2D 100 p Bp ---> Cp b |---> cb %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rcb %D 2D +8 q Bq ---> Cq rb |--> crb %D 2D %D 2D +20 B ----> C %D 2D %D ren Bp Bq Cp Cq ==> B_0(p) B_0(q) C_0(p) C_0(q) %D ren b cb rcb rb crb ==> b b C_1(p\ton!q)(b) B_1(p\ton!q)(b) B_1(p\ton!q)(b) %D %D (( p q -> .plabel= l ! %D Bp Cp `-> .plabel= a ip %D Bp Bq -> .plabel= l B_1(p\ton!q) %D Cp Cq -> .plabel= r C_1(p\ton!q) %D Bq Cq `-> .plabel= a iq %D B C `-> .plabel= a i %D %D b cb |-> cb rcb |-> %D b rb |-> rb crb |-> %D )) %D enddiagram $\pu \diag{B->C} $ \bsk \bsk %D diagram 1->Om %D 2Dx 100 +30 +40 +35 +45 %D 2D 100 p 1p ---> Omp * |---> t* %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rt* %D 2D +8 q 1q --> Omq r* |--> tr* %D 2D %D 2D +20 1 ----> Om %D 2D %D ren 1p 1q Omp Omq ==> \{*\} \{*\} \Sub(↓p) \Sub(↓q) %D ren * t* rt* r* tr* ==> * ↓p ↓p∧↓q * ↓q %D ren Om ==> Ω %D %D (( p q -> .plabel= l ! %D 1p Omp -> .plabel= a ⊤p %D 1p 1q -> .plabel= l ! %D Omp Omq -> .plabel= r ! %D 1q Omq -> .plabel= a ⊤q %D 1 Om -> .plabel= a ⊤ %D %D * t* |-> t* rt* |-> %D * r* |-> r* tr* |-> %D )) %D enddiagram $\pu \diag{1->Om} $ \bsk \bsk %D diagram C->Om %D 2Dx 100 +30 +40 +45 +95 %D 2D 100 p Cp ---> Omp c |---> chic %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rchic %D 2D +8 q Cq ---> Omq rc |--> chirc %D 2D %D 2D +20 C ----> Om %D 2D %D ren Cp Omp ==> C(p) \Sub(↓p) %D ren Cq Omq ==> C(q) \Sub(↓q) %D ren C Om ==> C Ω %D %D ren c chic ==> c \setofst{r∈↓p}{C(p\ton!r)(c)∈B(r)} %D ren rchic ==> \setofst{r∈↓p}{C(p\ton!r)(c)∈B(r)}∧↓q %D ren rc chirc ==> C(p\ton!q)(c) \setofst{s∈↓q}{C(q\ton!s)(C(p\ton!q)(c))∈B(s)} %D %D (( p q -> .plabel= l ! %D Cp Omp -> .plabel= a χ_B(p) %D Cp Cq -> .plabel= l C(p\ton!q) %D Omp Omq -> .plabel= r Ω(p\ton!q) %D Cq Omq -> .plabel= a χ_B(q) %D C Om -> .plabel= a χ_B %D %D c chic |-> chic rchic |-> %D c rc |-> rc chirc |-> %D )) %D enddiagram $\pu \diag{C->Om} $ \bsk \bsk %D diagram classifier-j %D 2Dx 100 +30 +40 +35 +45 %D 2D 100 p Sp1 --> Sp2 R |---> jR %D 2D | | | - - %D 2D | | | | | %D 2D | | | | v %D 2D +25 v v v v rjR %D 2D +8 q Sq1 --> Sq2 rR |--> jrR %D 2D %D 2D +20 Om1 --> Om2 %D 2D %D ren Sp1 Sp2 ==> \Sub(↓p) \Sub(↓p) %D ren Sq1 Sq2 ==> \Sub(↓q) \Sub(↓q) %D ren Om1 Om2 ==> Ω Ω %D ren R jR rjR ==> R R^*∧↓p (R^*∧↓p)∧↓q %D ren rR jrR ==> R∧↓q (R∧↓q)^*∧↓q %D %D (( p q -> .plabel= l ! %D Sp1 Sp2 -> .plabel= a j(p) %D Sp1 Sq1 -> .plabel= l Ω(p\ton!q) %D Sp2 Sq2 -> .plabel= r Ω(p\ton!q) %D Sq1 Sq2 -> .plabel= a j(q) %D Om1 Om2 -> .plabel= a j %D %D R jR |-> jR rjR |-> %D R rR |-> rR jrR |-> %D )) %D enddiagram $\pu \diag{classifier-j} $ \newpage \section{Garbage?} $Ω(p) = \Sub(↓p)$ $Ω(p\ton!q) = λR{:}\Sub(↓p).(R∧↓q)$ \bsk We need to understand these five morphisms in $\Set^{(P,A)}$. Each one of them is a natural transformation. The object $1∈\Set^{(P,A)}$ is $1_0(p) = \{*\}$, $1_1(p\ton!q) = λ{*}.{*}$. The object $Ω∈\Set^{(P,A)}$ is $Ω_0(p) = ↓p$, $Ω_1(p\ton!q) = λr{:}↓p.r∧↓q$. \msk $B\ton!1$ is trivial: $(B\ton!1)(p) = λb{:}B_0(p).*$. \msk $B \diagxyto/^{ (}->/^{i} C$ is an inclusion: for every $p∈P$ we have $B_0(p)⊆C_0(p)$, and for every $p\ton!q$ the map $(B \diagxyto/^{ (}->/^{i} C)(p\ton!q)$ is a restriction of $C_1(p\ton!q)$. \msk $1 \diagxyto/{ >}->/^{⊤} Ω$ is $λp{:}P.λ{*}{:}1(p).↓p$. \msk $C \diagxyto/->/^{χ_B} Ω$ is $λp{:}P.λc{:}C(p).???$. % (find-sh "locate calvin") %D diagram Q %D 2Dx 100 +30 +30 %D 2D 100 B --> 1 %D 2D | | %D 2D v v %D 2D +30 C --> Om1 --> Om2 %D 2D %D ren Om1 Om2 ==> Ω Ω %D %D (( B 1 -> .plabel= a ! %D B C `-> .plabel= l i %D 1 Om1 >-> .plabel= r ⊤ %D C Om1 -> .plabel= a χ_B %D Om1 Om2 -> .plabel= a j %D )) %D enddiagram %D $$\pu \diag{Q} $$ \printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % «make» (to ".make") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2017planar-has-1.mk") make -f 2017planar-has-1.mk STEM=2019classifier veryclean make -f 2017planar-has-1.mk STEM=2019classifier pdf # (cl9p) # (jopp 25) % Local Variables: % coding: utf-8-unix % ee-tla: "cla" % End: