Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2019ebl-five-appls.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019ebl-five-appls.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019ebl-five-appls.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2019ebl-five-appls.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2019ebl-five-appls; makeindex 2019ebl-five-appls")) % (defun e () (interactive) (find-LATEX "2019ebl-five-appls.tex")) % (defun u () (interactive) (find-latex-upload-links "2019ebl-five-appls")) % (find-xpdfpage "~/LATEX/2019ebl-five-appls.pdf") % (find-sh0 "cp -v ~/LATEX/2019ebl-five-appls.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019ebl-five-appls.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019ebl-five-appls.pdf % file:///tmp/2019ebl-five-appls.pdf % file:///tmp/pen/2019ebl-five-appls.pdf % http://angg.twu.net/LATEX/2019ebl-five-appls.pdf % % Upload to: % «.colors» (to "colors") % «.defs» (to "defs") % «.title-page» (to "title-page") % «.category-theory» (to "category-theory") % «.children» (to "children") % «.five-applications» (to "five-applications") % «.finite-topologies» (to "finite-topologies") % «.finite-topologies-2» (to "finite-topologies-2") % «.finite-topologies-3» (to "finite-topologies-3") % «.finite-topologies-4» (to "finite-topologies-4") % «.famous-J-operator» (to "famous-J-operator") % «.strange-J-operator» (to "strange-J-operator") % «.logic-in-a-ZHA» (to "logic-in-a-ZHA") % «.logic-in-a-ZHA-2» (to "logic-in-a-ZHA-2") % «.logic-in-a-ZHA-3» (to "logic-in-a-ZHA-3") % «.J-operators» (to "J-operators") % «.famous-J-operator-2» (to "famous-J-operator-2") % «.strange-J-operator-2» (to "strange-J-operator-2") % «.question-marks» (to "question-marks") % «.question-marks-2» (to "question-marks-2") % «.geometric-morphisms» (to "geometric-morphisms") % «.geometric-morphisms-2» (to "geometric-morphisms-2") % «.geometric-morphisms-3» (to "geometric-morphisms-3") % «.a-factorization» (to "a-factorization") % «.a-factorization-2» (to "a-factorization-2") % «.a-factorization-3» (to "a-factorization-3") % «.a-factorization-4» (to "a-factorization-4") % «.shape-and-movement» (to "shape-and-movement") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{color} % (find-LATEX "edrx15.sty" "colors") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") \input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % % (find-angg ".emacs.papers" "latexgeom") % (find-LATEXfile "2016-2-GA-VR.tex" "{geometry}") % (find-latexgeomtext "total={6.5in,8.75in},") \usepackage[paperwidth=11.5cm, paperheight=9cm, %total={6.5in,4in}, %textwidth=4in, paperwidth=4.5in, %textheight=5in, paperheight=4.5in, %a4paper, top=1.5cm, bottom=.5cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") % «colors» (to ".colors") % (find-angg ".emacs.papers" "xcolor") \long\def\ColorRed #1{{\color{Red1}#1}} \long\def\ColorBrown #1{{\color{Brown}#1}} \long\def\ColorBrown #1{{\color{brown}#1}} \long\def\ColorBook #1{{\color{brown}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorViolet#1{{\color{Violet!50!black}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGreen #1{{\color{SpringGreen4}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} \long\def\ColorGray #1{{\color{black!30!white}#1}} % «defs» (to ".defs") \def\V{\mathbf{T}} \def\F{\mathbf{F}} \def\smile{\ensuremath{{=})}} \def\frown{\ensuremath{{=}(}} \def\smirk{\ensuremath{{=}/}} \def\BPM{𝐬{BPM}} \def\bbG{{\mathbb{G}}} \def\sh{{\mathbf{sh}}} \def\und#1#2{\underbrace{#1}_{#2}} \def\und#1#2{\underbrace{#1}_{\text{#2}}} \def\ug#1{\und{#1}{gen}} \def\uf#1{\und{#1}{filt}} \def\ue#1{\und{#1}{expr}} \def\uC#1{\und{#1}{context}} \def\uCH#1{\und{#1}{context / hypotheses}} \def\uvt#1{\und{#1}{v:T}} \def\uterm#1{\und{#1}{term}} \def\utype#1{\und{#1}{type}} \def\uconc#1{\und{#1}{conclusion}} \def\Sets{\mathsf{Sets}} \def\TALA{\mathsf{TA}_λ^→} \def\app {\mathsf{app}} \def\pair{\mathsf{pair}} \def\picturedotsa(#1,#2)(#3,#4)#5{% \vcenter{\hbox{% \beginpicture(#1,#2)(#3,#4)% \pictaxes% \pictdots{#5}% \end{picture}% }}% } \def\myvcenter#1{\begin{matrix}#1\end{matrix}} \def\setofst#1#2{\{\,#1\;|\;#2\,\}} \def\setofsc#1#2{\{\,#1\;;\;#2\,\}} \setlength{\parindent}{0em} \def\O{\mathcal{O}} \def\T{\mathbf{T}} \def\F{\mathbf{F}} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % «title-page» (to ".title-page") % (ntyp 1 "title-page") % (nty "title-page") % (find-es "tex" "huge") % (find-LATEXfile "2019ebl-abs.tex" "Five applications") \begin{center} \Large {\bf Five applications of the ``Logic for Children'' project to Category Theory \large \ssk % \ColorGray{and to the ``Logic for Children'' project} } %\bsk % \normalsize % %(a part of the ``Logic for Children'' project) \msk Eduardo Ochs (UFF, Brazil) \footnotesize \url{http://angg.twu.net/math-b.html\#ebl-2019} \end{center} \newpage \noedrxfooter % ____ _____ % / ___|_ _| % | | | | % | |___ | | % \____| |_| % % «category-theory» (to ".category-theory") {\bf Category Theory...} ...\ColorRed{seems} to be a very elegant area with ``the right abstractions'' and lots of diagrams, but the diagrams are usually omitted from the texts as if they were ``obvious exercises'', and the motivating examples are mentioned briefly, if at all --- so the comparisons between these ``abstractions'' and the examples are also left as exercises. \msk Topos Theory is a very important sub-area of CT. When I tried to read Johnstone's ``Topos Theory'' (1977) I understood very little, even though I tried \ColorRed{very} hard. \ColorRed{``I need a version for children of this!!!''} (I.e., with the \ColorRed{missing} diagrams and the examples.) \newpage % ____ _ _ _ _ % / ___| |__ (_) | __| |_ __ ___ _ __ % | | | '_ \| | |/ _` | '__/ _ \ '_ \ % | |___| | | | | | (_| | | | __/ | | | % \____|_| |_|_|_|\__,_|_| \___|_| |_| % % «children» (to ".children") {\bf My current favorite definition of ``children'':} They prefer to start from particular cases and then generalize --- They like diagrams and finite objects drawn very explicitly --- They become familiar with mathematical ideas by calculating / checking several cases (rather than by proving theorems) \msk % http://puzzler.sourceforge.net/docs/pentominoes.html % http://puzzler.sourceforge.net/docs/images/ominoes/pentominoes-8x8.png $\hskip-5.5pt % \begin{tabular}[b]{l} Example: pentominos. \\ Let ``children'' \ColorRed{play} \\ with pentominos for a while \\ \ColorRed{before} showing to them \\ theorems and game trees! \\ \end{tabular} % \qquad \quad % \includegraphics[height=52pt]{pentominoes-8x8.png} $ \newpage % _____ _ _ % | ___(_)_ _____ __ _ _ __ _ __ | |___ % | |_ | \ \ / / _ \ / _` | '_ \| '_ \| / __| % | _| | |\ V / __/ | (_| | |_) | |_) | \__ \ % |_| |_| \_/ \___| \__,_| .__/| .__/|_|___/ % |_| |_| % % «five-applications» (to ".five-applications") {\bf Five applications} {%\footnotesize \begin{enumerate} \item A way to develop visual intuition about Intuitionistic Propositional Logic. Models for IPL are Heyting Algebras; topologies are HAs. Look for finite topologies! Use order topologies. Bonus: use \ColorRed{planar} topologies (``\ColorRed{ZHA}s''). \item A way to build a topos with a given logic (when that logic is a ZHA). Solution: $\Set^{(P,A)}$. \item Sheaves are related to J-operators ($←$ old terminology) on HAs. So: a way to visualize J-operators on ZHAs (``slashings''). \end{enumerate} \newpage \begin{enumerate} \item The sheaf associated to a J-operator. Solution: \ColorRed{question marks}; erasing followed by reconstruction yields the sheafification functor. \item A version ``for children'' for parts of The Elephant --- in which the ``missing diagrams'' are no longer missing and we can remember theorems and constructions by \ColorRed{shape} and \ColorRed{movement}. Also: motivating examples ``for children'', in which everything is finite and can be drawn explicitly. ``Children'' develop familiarity with mathematical structures by \ColorRed{calculating} rather than by \ColorRed{proving theorems}. \end{enumerate} } \newpage % _____ _ _ _ _ % | ___(_)_ __ (_) |_ ___ | |_ ___ _ __ ___ % | |_ | | '_ \| | __/ _ \ | __/ _ \| '_ \/ __| % | _| | | | | | | || __/ | || (_) | |_) \__ \ % |_| |_|_| |_|_|\__\___| \__\___/| .__/|___/ % |_| % % «finite-topologies» (to ".finite-topologies") % (eb5p 6 "finite-topologies") % (eb5 "finite-topologies") % (ph1p 24 "topologies-as-partial-orders") % (ph1 "topologies-as-partial-orders") {\bf Finite topologies} %R local house, ohouse = 2/ #1 \, 7/ !h11111 \ %R |#2 #3| | !h01111 | %R \#4 #5/ | !h01011 !h00111 | %R |!h01010 !h00011 !h00101| %R | !h00010 !h00001 | %R \ !h00000 / %R house:tomp({def="zfHouse#1#2#3#4#5", scale="5pt", meta="s"}):addcells():output() %R house:tomp({def="zdagHouseMicro", scale="6.8pt", meta="t"}):addbullets():addarrows():output() %R house:tomp({def="zdagHouse", scale="20pt", meta=nil}):addbullets():addarrows():output() %R ohouse:tomp({def="zdagOHouse", scale="28pt", meta=nil}):addcells():addarrows("w"):output() %R ohouse:tozmp({def="zdagohouse", scale="12pt", meta="s"}):addlrs():addarrows("w"):output() % %R local guill, oguill = 2/ #1 #2\, 8/ !g111111 \ %R |#3 #4 | | !g101111 !g011111 | %R \ #5 #6/ | !g001111 !g010111| %R | !g001011 !g000111 | %R |!g001010 !g000011 | %R | !g000010 !g000001 | %R \ !g000000 / %R guill:tomp({def="zfGuill#1#2#3#4#5#6", scale="3.5pt", meta="s"}):addcells():output() %R guill:tomp({def="zdagGuill", scale="7pt", meta="t"}):addbullets():addarrows():output() %R guill:tomp({def="zdagGuill", scale="20pt", meta=nil}):addbullets():addarrows():output() %R oguill:tomp({def="zdagOGuill", scale="28pt", meta=nil}):addcells():addarrows("w"):output() %R oguill:tozmp({def="zdagoguill", scale="12pt", meta="s"}):addlrs():addarrows():output() % %R local w, womit, W = %R 2/#1 #2 #3\, 2/ a \, 7/ !w11111 \ %R \ #4 #5 / | b c d | | !w11011!w10111!w01111 | %R | e f g | | !w10011!w01011!w00111 | %R |h i j | |!w10010 !w00011 !w00101| %R | k l | | !w00010 !w00001 | %R \ m / \ !w00000 / %R w:tomp({def="zfW#1#2#3#4#5", scale="3.5pt", meta="s"}):addcells():output() %R w:tomp({def="zfWbig#1#2#3#4#5", scale="25pt", meta=nil}):addcells():addarrows("w"):output() %R w:tomp({def="zdagW", scale="20pt", meta=nil}):addbullets():addarrows() :output() %R W:tomp({def="zdagOW", scale="28pt", meta=nil}):addcells():addarrowsexcept("w", "(2,4)0"):output() % \pu $\resizebox{!}{80pt}{$ (\Opens\left(\zdagHouse\right), ⊂_1) = \def\h{\zfHouse}\zdagOHouse $} $ \newpage % «finite-topologies-2» (to ".finite-topologies-2") % (eb5p 7 "finite-topologies-2") % (eb5 "finite-topologies-2") {\bf Finite topologies (2)} $\resizebox{!}{80pt}{$ (\Opens\left(\zdagGuill\right), ⊂_1) = \def\g{\zfGuill}\zdagOGuill $} $ \newpage % «finite-topologies-3» (to ".finite-topologies-3") % (eb5p 8 "finite-topologies-3") % (eb5 "finite-topologies-3") {\bf Finite topologies (3)} $\resizebox{!}{70pt}{$ (\Opens\left(\zdagW\right), ⊂_1) = \def\w{\zfW}\zdagOW $} $ Non-planar! Why? Answer: because the W has \ColorRed{three independent points!} \newpage % «finite-topologies-4» (to ".finite-topologies-4") % (eb5p 9 "finite-topologies-4") % (eb5 "finite-topologies-4") {\bf Finite topologies (4): 2CGs and ZHAs} A \ColorRed{2-column graph} never has three independent points. Trick: $\pile(25) = \{2▁,1▁,\;\;▁1,▁2,▁3,▁4,▁5\}$. % (oxap 8 "fig:2CGs-ZHA") % (oxa "fig:2CGs-ZHA") % \linethickness{0.3pt} % %L tdims = TCGDims {qrh=5, q=15, crh=12, h=60, v=25, crv=7} -- with v arrows %L tspec_PA = TCGSpec.new("46; 11 22 34 45, 25") %L tspec_PAQ = TCGSpec.new("46; 11 22 34 45, 25", ".???", "???.?.") %L tspec_PA :mp ({zdef="O_A(P)"}) :addlrs():print() :output() %L tspec_PAQ:mp ({zdef="O_A(P),J"}):addlrs():print() :output() %L tspec_PA :tcgq({tdef="(P,A)", meta="1pt p"}, "lr q h v ap") :output() %L tspec_PAQ:tcgq({tdef="(P,A),Q", meta="1pt p"}, "lr q h v ap") :output() %L %L tspec_PAC = TCGSpec.new("46; 11 22 34 45, 25", "?...", "???...") %L tspec_PAC:mp ({zdef="closed-op"}) :addlrs():print() :output() %L tspec_PAC:tcgq({tdef="closed-op", meta="1pt p"}, "lr q h v ap") :output() %L \pu \bsk $\resizebox{!}{60pt}{$ (\Opens\tcg{(P,A)}, ⊂_1) \;\;=\;\; \zha{O_A(P)} $} $ \newpage % «famous-J-operator» (to ".famous-J-operator") % (eb5p 10 "famous-J-operator") % (eb5 "famous-J-operator") {\bf A famous J-operator: $(13∨)$} \bsk $\resizebox{!}{60pt}{$ \tcg{closed-op} \squigbij \zha{closed-op} \\ $} $ \newpage % «strange-J-operator» (to ".strange-J-operator") % (eb5p 11 "strange-J-operator") % (eb5 "strange-J-operator") {\bf A strange J-operator} \bsk $\resizebox{!}{60pt}{$ \tcg{(P,A),Q} \squigbij \zha{O_A(P),J} $} $ \newpage % _ _ _ ______ _ _ % | | ___ __ _(_) ___ (_)_ __ __ _ |__ / | | | / \ % | | / _ \ / _` | |/ __| | | '_ \ / _` | / /| |_| | / _ \ % | |__| (_) | (_| | | (__ | | | | | | (_| | / /_| _ |/ ___ \ % |_____\___/ \__, |_|\___| |_|_| |_| \__,_| /____|_| |_/_/ \_\ % |___/ % % «logic-in-a-ZHA» (to ".logic-in-a-ZHA") % (eb5p 12 "logic-in-a-ZHA") % (eb5 "logic-in-a-ZHA") % (lodp 27 "ipl-on-a-topology-2") % (lod "ipl-on-a-topology-2") {\bf Logic in a ZHA (visually!!!)} Notation: a 2-column graph is \ColorRed{$(P,A)$} --- (points, arrows) --- its order topology is \ColorRed{$\Opens_A(P)$}, and a Planar Heyting Algebra (a ZHA) is $\ColorRed{H}⊂\Z^2$. The correspondence is written as \ColorRed{$(P,A) \squigbij H$} and formally it means $\Opens_A(P) ≅ H$. There are two ways to define $⊤,⊥∈H$ and $∧,∨,→∈⊤$... \msk 1) Via topology, in $\Opens_A(P)$: $⊤:=P$, $⊥:=∅$, $Q∧R:=Q∩R$, $Q∨R:=Q∪R$, $R→S := \ColorRed{𝐬{Int}}((T∖R)∪S)$ \newpage % «logic-in-a-ZHA-2» (to ".logic-in-a-ZHA-2") % (eb5p 13 "logic-in-a-ZHA-2") % (eb5 "logic-in-a-ZHA-2") {\bf Logic in a ZHA (visually!!!) (2)} 2) Via order. For example: $\begin{array}{rcl} (Q→(R→S)) &↔& ((Q∧R)→S) \\ (Q≤(R→S)) &↔& ((Q∧R)≤S) \\ \setofst{Q∈H}{Q≤(R→S)} &=& \setofst{Q∈H}{(Q∧R)≤S} \\ (R→S) &=& \sup \; \setofst{Q∈H}{(Q∧R)≤S} \\ &=& ⋃ \; \setofst{Q∈H}{(Q∧R)≤S} \\ \end{array} $ \newpage % «logic-in-a-ZHA-3» (to ".logic-in-a-ZHA-3") % (eb5p 14 "logic-in-a-ZHA-3") % (eb5 "logic-in-a-ZHA-3") {\bf Logic in a ZHA (visually!!!) (3)} \bsk \bsk % (ph1p 11 "HAs") % (ph1 "HAs") %R local QoRai, PoQai, PnnP = %R 1/ T \, 1/ T \, 1/ T \ %R | . . | | . . | | . | %R | . . . | | . . . | | . . | %R | . o . i | | . o . . | |d . n| %R |. Q . . .| |. P . . .| | P . | %R | . . R . | | . . Q . | \ F / %R | . a . | | . . . | %R | . . | | . . | %R \ F / \ F / %R local T = {a="(∧)", o="(∨)", i="(\\!→\\!)", n="(¬)", d="(\\!\\!¬¬\\!)", %R T="·", F="·", T="⊤", F="⊥", } %R PoQai:tozmp({def="PoQai", scale="12pt", meta=nil}):addcells(T):addcontour():output() %R QoRai:tozmp({def="QoRai", scale="12pt", meta=nil}):addcells(T):addcontour():output() %R PnnP :tozmp({def="PnnP" , scale="12pt", meta=nil}):addcells(T):addcontour():output() %R %R PoQai:tozmp({def="lozfive", scale="12pt", meta=nil}):addlrs():addcontour():output() \pu $$% \lozfive \qquad \QoRai %\qquad \PoQai $$ \newpage % «J-operators» (to ".J-operators") % (eb5p 15 "J-operators") % (eb5 "J-operators") {\bf J-operators} A J-operator on a Heyting Algebra $H$ is an operation $J:H→H$, abbreviated as `$·^*$', obeying $P≤P^*=P^{**}$ and $(P∧Q)^*=P^*∧Q^*$. Some famous J-operators: $(¬¬)$, $(A∨)$, $(A→)$ (for $A∈H$). \msk A J-operator induces an equivalence relation: $P ∼_J Q$ iff $P^*=Q^*$. For many years I didn't have \ColorRed{ANY} visual intuition on what J-operators were, or could be. When we play with J-operators on ZHAs we discover that: Each equivalence class $[P]^J$ has a top element, a bottom element, and all element in between; and $P^*$ is always the top element of $[P]^J$... So we only need to \ColorRed{draw} the equivalence classes! \newpage % «famous-J-operator-2» (to ".famous-J-operator-2") % (eb5p 16 "famous-J-operator-2") % (eb5 "famous-J-operator-2") {\bf A famous J-operator: $(13∨)$} \bsk $\resizebox{!}{60pt}{$ \tcg{closed-op} \squigbij \zha{closed-op} \\ $} $ \newpage % «strange-J-operator-2» (to ".strange-J-operator-2") % (eb5p 17 "strange-J-operator-2") % (eb5 "strange-J-operator-2") {\bf A strange J-operator} \bsk $\resizebox{!}{60pt}{$ \tcg{(P,A),Q} \squigbij \zha{O_A(P),J} $} $ \newpage % «question-marks» (to ".question-marks") % (eb5p 18 "question-marks") % (eb5 "question-marks") {\bf Question marks} Every set of question marks $Q⊆P$ in $(P,A)$ induces an equivalence relation on $H≅\Opens_A(P)$. Two subsets $S,S'⊆P$ are 𝐢{$Q$-equivalent} when $S$ and $S'$ only differ in points of $Q$, i.e.: $S∖Q = S'∖Q$. Here $Q=\{4▁,3▁,2▁,$ \; $▁1,▁2,▁3,▁5,\}$, and: $\pile(22) ∼_Q \pile(23) \not∼_Q \pile(24)$, $12^* = 23$, \;\; $22 ∼_J \pile23 \not∼_J 24$. $\resizebox{!}{45pt}{$ \tcg{(P,A),Q} \squigbij \zha{O_A(P),J} $} $ \newpage % «question-marks-2» (to ".question-marks-2") % (eb5p 19 "question-marks-2") % (eb5 "question-marks-2") $\pile(22) ∼_Q \pile(23) \not∼_Q \pile(24)$, $12^* = 23$, \;\; $22 ∼_J \pile23 \not∼_J 24$. $\resizebox{!}{70pt}{$ \tcg{(P,A),Q} \squigbij \zha{O_A(P),J} $} $ \newpage % «geometric-morphisms» (to ".geometric-morphisms") % (eb5p 20 "geometric-morphisms") % (eb5 "geometric-morphisms") {\bf Toposes, geometric morphisms, internal diagrams} Internal diagrams are a tool to \ColorRed{lower the lever of abstraction}. This is a \ColorRed{geometric morphism} between toposes. %D diagram internal-gm %D 2Dx 100 +20 +30 +20 %D 2D 100 A1 B1 <-| B2 C1 %D 2D | | | | %D 2D | | <-> | | %D 2D v v v v %D 2D +30 A2 B3 |-> B4 C2 %D 2D %D 2D +20 D1 <=> D2 %D 2D %D 2D +20 E1 --> E2 %D 2D %D 2D +20 F1 F2 %D 2D %D ren A1 A2 ==> f^*f_*D D %D ren B1 B2 B3 B4 ==> f^*C C D f_*D %D ren C1 C2 ==> C f_*f^*C %D ren B3 B4 ==> D f_*D %D ren D1 D2 ==> \calE \calF %D ren E1 E2 ==> \calE \calF %D ren F1 F2 ==> \phantom{\catA} \phantom{\catB} %D %D (( A1 A2 -> .plabel= l εD %D C1 C2 -> .plabel= r ηC %D %D B1 B2 <-| %D B1 B3 -> B2 B4 -> %D B3 B4 |-> %D B1 B4 harrownodes nil 20 nil <-> %D %D D1 D2 <- sl^ .plabel= a f^* %D D1 D2 -> sl_ .plabel= b f_* %D E1 E2 -> .plabel= a f %D %D F1 place F2 place %D )) %D enddiagram %D %D diagram internal-zgm %D 2Dx 100 +20 +30 +20 %D 2D 100 A1 B1 <-| B2 C1 %D 2D | | | | %D 2D | | <-> | | %D 2D v v v v %D 2D +30 A2 B3 |-> B4 C2 %D 2D %D 2D +20 D1 <=> D2 %D 2D %D 2D +20 E1 --> E2 %D 2D %D 2D +20 F1 F2 %D 2D %D ren A1 A2 ==> f^*f_*D D %D ren B1 B2 B3 B4 ==> f^*C C D f_*D %D ren C1 C2 ==> C f_*f^*C %D ren B3 B4 ==> D f_*D %D ren D1 D2 ==> \Set^\catA \Set^\catB %D ren E1 E2 ==> \Set^\catA \Set^\catB %D ren F1 F2 ==> \catA \catB %D %D (( A1 A2 -> .plabel= l εD %D C1 C2 -> .plabel= r ηC %D %D B1 B2 <-| %D B1 B3 -> B2 B4 -> %D B3 B4 |-> %D B1 B4 harrownodes nil 20 nil <-> %D %D D1 D2 <- sl^ .plabel= a f^* %D D1 D2 -> sl_ .plabel= b f_* %D E1 E2 -> .plabel= a f %D %D F1 F2 -> .plabel= a f %D )) %D enddiagram %D \pu \msk $\resizebox{!}{70pt}{$ \diag{internal-gm} $} $ \newpage % «geometric-morphisms-2» (to ".geometric-morphisms-2") % (eb5p 21 "geometric-morphisms-2") % (eb5 "geometric-morphisms-2") {\bf Toposes, geometric morphisms, internal diagrams (2)} Let $\catA$ and $\catB$ be 2CGs regarded as categories. Then a functor $f:\catA→\catB$ induces a geometric morphism... \msk $\resizebox{!}{60pt}{$ \diag{internal-zgm} $} $ \msk And if we draw the internal views of $\catA$, $\catB$, $C$, $D$... \newpage % «geometric-morphisms-3» (to ".geometric-morphisms-3") % (eb5p 22 "geometric-morphisms-3") % (eb5 "geometric-morphisms-3") %R sesw = {[" w"]="↙", [" e"]="↘"} %R %R local zcB, zpBC, zpBRD %R = 3/ 1 \, 3/ C_1 \, 3/ !Dt \ %R | w e | | w e | | w e | %R | 2 3 | |C_2 C_3 | |D_2 D_3 | %R | e w e | | e w e | | e w e | %R | 4 5 | | C_4 C_5| | D_4 D_5| %R | e w | | e w | | e w | %R \ 6 / \ C_6 / \ 1 / %R %R local zpBRLC %R = 3/ !Ct \ %R | w e | %R |C_2 C_3 | %R | e w e | %R | C_4 C_5| %R | e w | %R \ 1 / %R %R local zcA, zpALC, zpAD %R = 3/ 2 3 \, 3/C_2 C_3 \, 3/D_2 D_3 \ %R | e w e | | e w e | | e w e | %R \ 4 5 / \ C_4 C_5/ \ D_4 D_5/ %R %R zcB :tozmp({def="zcB", scale="7pt", meta="s p"}):addcells(sesw):output() %R zpBC :tozmp({def="zpBC", scale="7pt", meta="s p"}):addcells(sesw):output() %R zpBRD :tozmp({def="zpBRD" , scale="7pt", meta="s p"}):addcells(sesw):output() %R zpBRLC:tozmp({def="zpBRLC", scale="7pt", meta="s p"}):addcells(sesw):output() %R zcA :tozmp({def="zcA", scale="7pt", meta="s p"}):addcells(sesw):output() %R zpALC :tozmp({def="zpALC", scale="7pt", meta="s p"}):addcells(sesw):output() %R zpAD :tozmp({def="zpAD", scale="7pt", meta="s p"}):addcells(sesw):output() %D diagram internal-zgm-particular-case %D 2Dx 100 +50 +55 +50 %D 2D 100 A1 B1 <-| B2 C1 %D 2D | | | | %D 2D | | <-> | | %D 2D v v v v %D 2D +50 A2 B3 |-> B4 C2 %D 2D %D 2D +30 D1 <=> D2 %D 2D %D 2D +20 E1 --> E2 %D 2D %D 2D +30 F1 F2 %D 2D %D ren A1 B1 B2 C1 ==> \zpALC \zpALC \zpBC \zpBC %D ren A2 B3 B4 C2 ==> \zpAD \zpAD \zpBRD \zpBRLC %D ren D1 D2 ==> \Set^\catA \Set^\catB %D ren E1 E2 ==> \Set^\catA \Set^\catB %D ren F1 F2 ==> \catA \catB %D ren F1 F2 ==> \zcA \zcB %D %D (( A1 A2 -> .plabel= l εD %D C1 C2 -> .plabel= r ηC %D %D B1 B2 <-| %D B1 B3 -> B2 B4 -> %D B3 B4 |-> %D B1 B4 harrownodes nil 20 nil <-> %D %D D1 D2 <- sl^ .plabel= a f^* %D D1 D2 -> sl_ .plabel= b f_* %D E1 E2 -> .plabel= a f %D %D F1 F2 -> .plabel= a f %D )) %D enddiagram %D \def\Ct{C_2 {×_{C_4}} C_3} \def\Dt{D_2 {×_{D_4}} D_3} \pu $\resizebox{!}{100pt}{$ \diag{internal-zgm-particular-case} $} $ \newpage % «a-factorization» (to ".a-factorization") % (eb5p 23 "a-factorization") % (eb5 "a-factorization") {\bf A factorization} The Elephant presents in its sections A4.2 and A4.5 two factorizations of geometric morphisms that can be combined in a single diagram (next slide). An arbitrary geometry morphism $g:\calA→\calD$ can be factored in an essentially unique way as a surjection followed by an inclusion ([EA4.2.10]), and an inclusion $i:\calB→\calD$ can be factored in an essentially unique way as a dense g.m.\ followed by a closed g.m.\ ([EA4.5.20]). A canonical way to build these factorizations is by taking $\calB := \calA_\bbG$, where $\bbG$ is a certain comonad on $\calA$ ([EA4.2.8]), and taking $\calC := \sh_j(\calD)$, where $j$ is a certain local operator on $\calD$. \newpage % «a-factorization-2» (to ".a-factorization-2") % (eb5p 24 "a-factorization-2") % (eb5 "a-factorization-2") {\bf A factorization (2)} \bsk %D diagram factorization-1 %D 2Dx 100 +50 +40 +40 %D 2D 100 A0 A3 %D 2D %D 2D +12 B0 B1 B3 %D 2D %D 2D +12 C1 C2 C3 %D 2D %D 2D +12 D1 D2 %D 2D %D ren A0 A3 ==> \calA \calD %D ren B0 B1 B3 ==> \calA \calB \calD %D ren C1 C2 C3 ==> \calB \calC \calD %D ren D1 D2 ==> \calA_\bbG \sh_j(\calD) %D %D (( A0 A3 -> .plabel= a \vtext{g}{\anygm} %D B0 B1 -> .plabel= a \vtext{s}{surjection} %D B1 B3 -> .plabel= a \vtext{i}{inclusion} %D C1 C2 -> .plabel= a \vtext{d}{dense} %D C2 C3 -> .plabel= a \vtext{c}{closed} %D D1 place %D D2 place %D )) %D enddiagram %D %D diagram factorization-2 %D 2Dx 100 +55 +45 +45 %D 2D 100 A0 A3 %D 2D %D 2D +12 B0 B1 B3 %D 2D %D 2D +12 C1 C2 C3 %D 2D %D 2D +12 D1 D2 %D 2D %D 2D +20 a0 a3 %D 2D %D 2D +12 b0 b1 b3 %D 2D %D 2D +12 c1 c2 c3 %D 2D %D ren A0 A3 ==> \Set^\catA \Set^\catD %D ren B0 B1 B3 ==> \Set^\catA \Set^\catB \Set^\catD %D ren C1 C2 C3 ==> \Set^\catB \Set^\catC \Set^\catD %D ren D1 D2 ==> (\Set^\catA)_\bbG \sh_j(\Set^\catD) %D %D ren a0 a3 ==> \catA \catD %D ren b0 b1 b3 ==> \catA \catB \catD %D ren c1 c2 c3 ==> \catB \catC \catD %D %D (( A0 A3 -> .plabel= a \vtext{g}{\anygm} %D B0 B1 -> .plabel= a \vtext{s}{surjection} %D B1 B3 -> .plabel= a \vtext{i}{inclusion} %D C1 C2 -> .plabel= a \vtext{d}{dense} %D C2 C3 -> .plabel= a \vtext{c}{closed} %D D1 place %D D2 place %D a0 a3 -> .plabel= a g %D b0 b1 -> .plabel= a s %D b1 b3 -> .plabel= a i %D c1 c2 -> .plabel= a d %D c2 c3 -> .plabel= a c %D )) %D enddiagram %D %D diagram fact-characterization %D 2Dx 100 +20 +30 +20 +45 +20 +30 +20 +35 +20 +30 +20 +20 +20 +30 +20 %D 2D 100 A0 A1 A2 A3 B0 B1 B2 B3 %D 2D %D 2D +20 A4 A5 A6 A7 B4 B5 B6 B7 %D 2D %D 2D +20 A8 A9 B8 B9 %D 2D %D 2D +20 a8 a9 b8 b9 %D 2D %D 2D +20 C0 C1 C2 C3 D0 D1 D2 D3 %D 2D %D 2D +20 C4 C5 C6 C7 D4 D5 D6 D7 %D 2D %D 2D +20 C8 C9 D8 D9 %D 2D %D 2D +20 c8 c9 d8 d9 %D 2D %D ren A4 A5 A6 A0 ==> A A s_*A s^*s_*A %D ren A3 A2 A1 A7 ==> B B s^*B s_*s^*B %D ren A8 A9 a8 a9 ==> \Set^\catA \Set^\catB \catA \catB %D %D ren B4 B5 B6 B0 ==> B B i_*B i^*i_*B %D ren B3 B2 B1 B7 ==> D D i^*D i_*i^*D %D ren B8 B9 b8 b9 ==> \Set^\catB \Set^\catD \catB \catD %D %D ren C4 C5 C6 C0 ==> B B d_*B d^*d_*B %D ren C3 C2 C1 C7 ==> kC C d^*C d_*d^*kC %D ren C8 C9 c8 c9 ==> \Set^\catB \Set^\catC \catB \catC %D %D ren D4 D5 D6 D0 ==> C C c_*C c^*c_*C %D ren D3 D2 D1 D7 ==> D D c^*D c_*c^*D %D ren D8 D9 d8 d9 ==> \Set^\catC \Set^\catD \catC \catD %D %D (( A0 A4 -> .plabel= l {} %D A3 A7 -> .plabel= r \text{(monic)} %D A1 A2 <-| A1 A5 -> A2 A6 -> A5 A6 |-> %D A1 A6 harrownodes nil 20 nil <-> %D A8 A9 <- sl^ .plabel= a s^* %D A8 A9 -> sl_ .plabel= b s_* %D a8 a9 -> .plabel= a s %D )) %D %D (( B0 B4 -> .plabel= l \text{(iso)} %D B3 B7 -> .plabel= r {} %D B1 B2 <-| B1 B5 -> B2 B6 -> B5 B6 |-> %D B1 B6 harrownodes nil 20 nil <-> %D B8 B9 <- sl^ .plabel= a i^* %D B8 B9 -> sl_ .plabel= b i_* %D b8 b9 -> .plabel= a i %D )) %D %D (( C0 C4 -> .plabel= l {} %D C3 C7 -> .plabel= r \sm{\text{(monic}\\\text{on\;c.p.s)}} %D C1 C2 <-| C1 C5 -> C2 C6 -> C5 C6 |-> %D C1 C6 harrownodes nil 20 nil <-> %D C8 C9 <- sl^ .plabel= a d^* %D C8 C9 -> sl_ .plabel= b d_* %D c8 c9 -> .plabel= a d %D )) %D %D (( D0 D4 -> .plabel= l {} %D D3 D7 -> .plabel= r {} %D D1 D2 <-| D1 D5 -> D2 D6 -> D5 D6 |-> %D D1 D6 harrownodes nil 20 nil <-> %D D8 D9 <- sl^ .plabel= a c^* %D D8 D9 -> sl_ .plabel= b c_* %D d8 d9 -> .plabel= a c %D )) %D %D enddiagram %D \pu \def\vtext#1#2{#1\text{ (#2)}} \def\anygm{any g.m.} $ \diag{factorization-1} $ \newpage % «a-factorization-3» (to ".a-factorization-3") % (eb5p 25 "a-factorization-3") % (eb5 "a-factorization-3") {\bf A factorization (3)} \bsk $ \diag{factorization-2} $ \newpage % «a-factorization-4» (to ".a-factorization-4") % (eb5p 26 "a-factorization-4") % (eb5 "a-factorization-4") {\bf A factorization (4)} \msk \resizebox{1.0\textwidth}{!}{$% \diag{fact-characterization} $} \msk These factorizations are almost completely opaque to people who know just the basics of toposes... how can we?... \newpage % produce a version ``for % children'' of them in the sense of section \ref{cats-for-children}? % % \newpage % ____ _ _ % / ___|| |__ __ _ _ __ ___ __ _ _ __ __| | _ __ ___ _____ __ % \___ \| '_ \ / _` | '_ \ / _ \ / _` | '_ \ / _` | | '_ ` _ \ / _ \ \ / / % ___) | | | | (_| | |_) | __/ | (_| | | | | (_| | | | | | | | (_) \ V / % |____/|_| |_|\__,_| .__/ \___| \__,_|_| |_|\__,_| |_| |_| |_|\___/ \_/ % |_| % % «shape-and-movement» (to ".shape-and-movement") % (eb5p 27 "shape-and-movement") % (eb5 "shape-and-movement") {\bf Shape and movement} This is how I remember the Frobenius Property: % %D diagram Frob-std %D 2Dx 100 +45 +35 +10 +30 %D 2D 100 B0 ================> B1 %D 2D ^ ^ ^ %D 2D | / | %D 2D - \ - %D 2D +20 B2 ========> B3 <--> B3' %D 2D - / - %D 2D | \ | %D 2D v v v %D 2D +20 B4 <================ B5 %D 2D %D 2D +15 b0 |---------------> b1 %D 2D %D (( B0 .tex= P B1 .tex= Σ_fP %D B2 .tex= P∧f^*Q B3 .tex= Σ_f(P∧f^*Q) B3' .tex= (Σ_fP)∧Q %D B4 .tex= f^*Q B5 .tex= Q %D b0 .tex= A b1 .tex= B %D )) %D (( %D B0 B1 |-> B2 B0 -> B3 B1 -> B3' B1 -> %D B4 B5 <-| B2 B4 -> B3 B5 -> B3' B5 -> %D B2 B3 |-> B3 B3' -> sl^ .plabel= a \nat B3 B3' <- sl_ .plabel= b 𝐬{Frob} %D B0 B2 midpoint B1 B3 midpoint harrownodes nil 20 nil |-> %D B2 B4 midpoint B3 B5 midpoint harrownodes nil 20 nil |-> %D )) %D (( b0 b1 -> .plabel= a f %D )) %D enddiagram % % (idap 1 "mental-space") % (ida "mental-space") % (ida "mental-space" "frob-sketch.eps") % (idap 19 "pres-frob-bcc") % (ida "pres-frob-bcc") \bsk \bsk $\pu \def∧{{\land}} % \resizebox{!}{40pt}{$\diag{Frob-std}$} \quad \myvcenter{ \includegraphics[scale=0.8]{frob-sketch.eps} } $ \bsk \bsk \ColorBrown{(From ``Internal Diagrams and Archetypal Reasoning in Category Theory'' (Ochs 2013))} \newpage % _____ _ % |_ _| _ _ __ ___ ___ _ _ ___| |_ ___ _ __ ___ ___ % | || | | | '_ \ / _ \ / __| | | / __| __/ _ \ '_ ` _ \/ __| % | || |_| | |_) | __/ \__ \ |_| \__ \ || __/ | | | | \__ \ % |_| \__, | .__/ \___| |___/\__, |___/\__\___|_| |_| |_|___/ % |___/|_| |___/ % {\bf Formalizing diagrams in type systems} ...so I got lots of diagrams for things in CT --- for example, the construction that uses a comonad in the \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "eb5" % End: