Warning: this is an htmlized version!
The original is here, and
the conversion rules are here.
% (find-angg "LATEX/2019ebl-mesa-slides.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2019ebl-mesa-slides.tex" :end))
% (defun d () (interactive) (find-pdf-page      "~/LATEX/2019ebl-mesa-slides.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2019ebl-mesa-slides.pdf"))
% (defun b () (interactive) (find-zsh "bibtex 2019ebl-mesa-slides; makeindex 2019ebl-mesa-slides"))
% (defun e () (interactive) (find-LATEX "2019ebl-mesa-slides.tex"))
% (defun u () (interactive) (find-latex-upload-links "2019ebl-mesa-slides"))
% (find-xpdfpage "~/LATEX/2019ebl-mesa-slides.pdf")
% (find-sh0 "cp -v  ~/LATEX/2019ebl-mesa-slides.pdf /tmp/")
% (find-sh0 "cp -v  ~/LATEX/2019ebl-mesa-slides.pdf /tmp/pen/")
%   file:///home/edrx/LATEX/2019ebl-mesa-slides.pdf
%               file:///tmp/2019ebl-mesa-slides.pdf
%           file:///tmp/pen/2019ebl-mesa-slides.pdf
% http://angg.twu.net/LATEX/2019ebl-mesa-slides.pdf

% «.defs»			(to "defs")
% «.title-page»			(to "title-page")
% «.abstract»			(to "abstract")
%
% «.start-with-DM»		(to "start-with-DM")
% «.PURO»			(to "PURO")
% «.DM-PURO»			(to "DM-PURO")
% «.BMOs»			(to "BMOs")
% «.graphical-reprs»		(to "graphical-reprs")
% «.set-comprehensions»		(to "set-comprehensions")
% «.set-comprehensions-2»	(to "set-comprehensions-2")
% «.spoiler»			(to "spoiler")
% «.abuse-of-language»		(to "abuse-of-language")
% «.abuse-of-language-2»	(to "abuse-of-language-2")
% «.lambda-in-DM»		(to "lambda-in-DM")
% «.substitution»		(to "substitution")
% «.substitution-2»		(to "substitution-2")
% «.substitution-and-lambda»	(to "substitution-and-lambda")
%
% «.dm-at-puro»			(to "dm-at-puro")
% «.dm-layers»			(to "dm-layers")
% «.set-comprehensionsb»	(to "set-comprehensionsb")
% «.set-comprehensionsb-2»	(to "set-comprehensionsb-2")
% «.positional»			(to "positional")
% «.propositions»		(to "propositions")
% «.propositions-2»		(to "propositions-2")
% «.propositions-3»		(to "propositions-3")
% «.context-sequents»		(to "context-sequents")
% «.context-sequents-2»		(to "context-sequents-2")
%
% «.dicas-GA»			(to "dicas-GA")
% «.smalltalk»			(to "smalltalk")


\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor}   % (find-es "tex" "xcolor")
%\usepackage{color}                % (find-LATEX "edrx15.sty" "colors")
%\usepackage{colorweb}             % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
\usepackage{proof}   % For derivation trees ("%:" lines)
\input diagxy        % For 2D diagrams ("%D" lines)
\xyoption{curve}     % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15}               % (find-LATEX "edrx15.sty")
\input edrxaccents.tex            % (find-LATEX "edrxaccents.tex")
\input edrxchars.tex              % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex           % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex               % (find-LATEX "edrxgac2.tex")
\input 2017planar-has-defs.tex    % (find-LATEX "2017planar-has-defs.tex")
%
% (find-angg ".emacs.papers" "latexgeom")
% (find-LATEXfile "2016-2-GA-VR.tex" "{geometry}")
% (find-latexgeomtext "total={6.5in,8.75in},")
\usepackage[paperwidth=11.5cm, paperheight=9.5cm,
            %total={6.5in,4in},
            %textwidth=4in,  paperwidth=4.5in,
            %textheight=5in, paperheight=4.5in,
            %a4paper,
            top=1.5cm, bottom=.5cm, left=1cm, right=1cm, includefoot
           ]{geometry}
%
\begin{document}

\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"}  % (find-LATEX "dednat6load.lua")
%L dofile "edrxtikz.lua"  -- (find-LATEX "edrxtikz.lua")
%L dofile "edrxpict.lua"  -- (find-LATEX "edrxpict.lua")
\pu

\setlength{\parindent}{0em}


%  ____        __     
% |  _ \  ___ / _|___ 
% | | | |/ _ \ |_/ __|
% | |_| |  __/  _\__ \
% |____/ \___|_| |___/
%                     
% «defs»  (to ".defs")
% «colors» (to ".colors")
% (find-angg ".emacs.papers" "xcolor")
\long\def\ColorRed   #1{{\color{Red1}#1}}
\long\def\ColorBrown #1{{\color{Brown}#1}}
\long\def\ColorBook  #1{{\color{brown}#1}}
\long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}}
\long\def\ColorViolet#1{{\color{Violet!50!black}#1}}
\long\def\ColorGreen #1{{\color{SpringDarkHard}#1}}
\long\def\ColorGreen #1{{\color{SpringGreenDark}#1}}
\long\def\ColorGreen #1{{\color{SpringGreen4}#1}}
\long\def\ColorGray  #1{{\color{GrayLight}#1}}
\long\def\ColorGray  #1{{\color{black!30!white}#1}}

\def\V{\mathbf{T}}
\def\F{\mathbf{F}}
\def\smile{\ensuremath{{=})}}
\def\frown{\ensuremath{{=}(}}
\def\smirk{\ensuremath{{=}/}}

\def\und#1#2{\underbrace{#1}_{#2}}
\def\und#1#2{\underbrace{#1}_{\text{#2}}}
\def\ug#1{\und{#1}{gen}}
\def\uf#1{\und{#1}{filt}}
\def\ue#1{\und{#1}{expr}}
\def\uC#1{\und{#1}{context}}
\def\uCH#1{\und{#1}{context / hypotheses}}
\def\uvt#1{\und{#1}{v:T}}
\def\uterm#1{\und{#1}{term}}
\def\utype#1{\und{#1}{type}}
\def\uconc#1{\und{#1}{conclusion}}

\def\Sets{\mathsf{Sets}}
\def\TALA{\mathsf{TA}_λ^→}
\def\app {\mathsf{app}}
\def\pair{\mathsf{pair}}

\def\picturedotsa(#1,#2)(#3,#4)#5{%
  \vcenter{\hbox{%
  \beginpicture(#1,#2)(#3,#4)%
  \pictaxes%
  \pictdots{#5}%
  \end{picture}%
  }}%
}

\def\myvcenter#1{\begin{matrix}#1\end{matrix}}

\def\setofst#1#2{\{\,#1\;|\;#2\,\}}
\def\setofsc#1#2{\{\,#1\;;\;#2\,\}}

\setlength{\parindent}{0em}

\def\O{\mathcal{O}}
\def\T{\mathbf{T}}
\def\F{\mathbf{F}}
\def\antitabular{\hskip-5.5pt}


%  _____ _ _   _      
% |_   _(_) |_| | ___ 
%   | | | | __| |/ _ \
%   | | | | |_| |  __/
%   |_| |_|\__|_|\___|
%                     
% «title-page»  (to ".title-page")

\begin{center}

{\Large \bf

Como ensinar

Matemática Discreta

para calouros com

português muito ruim

}

\msk

Eduardo Ochs (UFF, Rio das Ostras, RJ, Brazil)

\footnotesize

\url{http://angg.twu.net/math-b.html\#ebl2019-m}

\end{center}


\newpage

\noedrxfooter



%     _    _         _                  _   
%    / \  | |__  ___| |_ _ __ __ _  ___| |_ 
%   / _ \ | '_ \/ __| __| '__/ _` |/ __| __|
%  / ___ \| |_) \__ \ |_| | | (_| | (__| |_ 
% /_/   \_\_.__/|___/\__|_|  \__,_|\___|\__|
%                                           
% «abstract»  (to ".abstract")

{\bf Mesa redonda: ``Algumas abordagens para

disciplinas de Lógica em cursos de graduação''

Resumo (da minha apresentação na mesa):

}

\msk

Considere a seguinte situação: um curso de Matemática Discreta para
calouros, com conteúdo muito grande, num campus em que entram muitos
alunos muito fracos com muito pouca base matemática e português muito
ruim; além disso nos pedem pra que ensinemos o máximo possível nesse
curso e não deixemos passar alunos que não tiverem aprendido o
suficiente, porque este curso de Matemática Discreta é pré-requisito
para cursos que exigem uma certa maturidade matemática, e ele deve
servir como ``filtro''... como estruturar um curso assim pra que ele
funcione bem?

\newpage

{\bf (Resumo, continuação)}

O problema mais básico aqui é: que linguagem utilizar? Os alunos
sempre começam tentando discutir suas idéias em português, tanto entre
si quanto com o professor, mas o português deles é impreciso demais, e
não há tempo hábil para debugá-lo no curso! Então precisamos ir
introduzindo desde o início notações matemáticas precisas que sejam
fáceis o suficiente de usar, e aí usar sempre exemplos em notação
matemática... a linguagem matemática adequada vira a base que torna as
discussões em português possíveis.

\newpage

{\bf (Resumo, continuação)}

Nesta palestra vou mostrar como esta ``linguagem matemática adequada
para calouros'' pode ser dividida em três camadas: uma camada mais
básica, em que tudo pode ser calculado até o resultado final num
número finito de passos sem precisar de criatividade praticamente
nenhuma; uma camada média, em que alguns objetos infinitos, como
$\mathbb{N}$ ou $\mathbb{Z}$, passam a ser permitidos; e uma camada
acima destas que inclui uma linguagem para provas formais. Além disto
vou mostrar modos de visualizar vários dos objetos matemáticos do
curso, e discutir alguns pontos em que esta abordagem do curso ainda
tem ``buracos''.



% (emap 2 "eduardo")
% (ema    "eduardo")
% (lodp 1 "title-page")
% (lod    "title-page")
% (ntyp 7 "motivation-3")
% (nty    "motivation-3")

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (ntyp 9 "start-with-DM")
% (nty    "start-with-DM")



\newpage



%  ____  __  __         _     ____  _   _ ____   ___  
% |  _ \|  \/  |   __ _| |_  |  _ \| | | |  _ \ / _ \ 
% | | | | |\/| |  / _` | __| | |_) | | | | |_) | | | |
% | |_| | |  | | | (_| | |_  |  __/| |_| |  _ <| |_| |
% |____/|_|  |_|  \__,_|\__| |_|    \___/|_| \_\\___/ 
%                                                     
% «dm-at-puro» (to ".dm-at-puro")
% (lodp 2 "dm-at-puro")
% (lod    "dm-at-puro")

{\bf Discrete Mathematics at PURO/UFF}

I teach in a campus that UFF has in Rio das Ostras,

in the countryside of the state of Rio de Janeiro...

The entrance of the campus looks like this:

\msk

\begin{tabular}{c}
  % http://angg.twu.net/blergh.html
  % (xz                 "~/LATEX/2019logicday-PURO.jpg")
  \includegraphics[height=120pt]{2019logicday-PURO.jpg} \\
\end{tabular}
\quad
$⇐$
\quad
\begin{tabular}[c]{l}
``PURO'': \\
Pólo Universitário \\
de Rio das Ostras \\
\end{tabular}

\newpage

%  ____  _             _              _ _   _       ____  __  __ 
% / ___|| |_ __ _ _ __| |_  __      _(_) |_| |__   |  _ \|  \/  |
% \___ \| __/ _` | '__| __| \ \ /\ / / | __| '_ \  | | | | |\/| |
%  ___) | || (_| | |  | |_   \ V  V /| | |_| | | | | |_| | |  | |
% |____/ \__\__,_|_|   \__|   \_/\_/ |_|\__|_| |_| |____/|_|  |_|
%                                                                
% «start-with-DM» (to ".start-with-DM")
% (ntyp 9 "start-with-DM")
% (nty    "start-with-DM")

{\bf (Let's start with) Discrete Mathematics}

I teach in a city called Rio das Ostras, in the countryside of

the state of Rio de Janeiro, in a big federal university (``UFF''),

but in one of its smallest campi, away from the capital.

I sometimes teach Discrete Mathematics to Computer Science

students there.

\msk

Many of the students there --- even in CompSci --- enter the

university with very little knowledge of:

1) how to deal with variables,

2) how to write their calculations,

3) how to test their ideas.

\msk

Discrete Mathematics is a first-semester course there.

Let me explain my approach to fix (1), (2), and (3).


\newpage



%  ____  __  __     ____    ____  _   _ ____   ___  
% |  _ \|  \/  |   / __ \  |  _ \| | | |  _ \ / _ \ 
% | | | | |\/| |  / / _` | | |_) | | | | |_) | | | |
% | |_| | |  | | | | (_| | |  __/| |_| |  _ <| |_| |
% |____/|_|  |_|  \ \__,_| |_|    \___/|_| \_\\___/ 
%                  \____/                           
%
% «DM-PURO» (to ".DM-PURO")
% (ntyp 11 "DM-PURO")
% (nty     "DM-PURO")

{\bf Discrete Mathematics at PURO/UFF}

% ``PURO'' = Pólo Universitário de Rio das Ostras.

I structured the Discrete Mathematics (``DM'') course

in three layers.

\msk

{\bf Layer 1} consists of \ColorRed{calculating things} and learning

how to use \ColorRed{mathematical notation} and \ColorRed{definitions}.

Layer 2 introduces some infinite objects, like $\N$ and $\Z$.

Layer 3 introduces a \ColorRed{formal} language for doing proofs.

\msk

Everything in Layer 1 can be calculated in a \ColorRed{finite}

number of steps with \ColorRed{very little creativity}.

\msk

One of the basic things that we learn in Layer 1 is

{\bf set comprehensions} --- that {\color{DarkGreen!75!black}(ta-daaa! Magic!!!!!!)}

are the base for \ColorRed{$λ$-calculus} and \ColorRed{Type Theory}.

% (find-sh "dict comprehension")

\newpage

%  ____  __  __  ___      
% | __ )|  \/  |/ _ \ ___ 
% |  _ \| |\/| | | | / __|
% | |_) | |  | | |_| \__ \
% |____/|_|  |_|\___/|___/
%                         
% «BMOs» (to ".BMOs")
% (ntyp 12 "BMOs")
% (nty     "BMOs")

{\bf Basic Mathematical Objects}

Here's a definition (``for adults'') of the

mathematical objects that we deal with

in Level 1. Notation: $\mathcal{O}$ is the set of BMOs.

\msk

a) Numbers belong to $\O$; $\Z⊂\O$.

b) The truth-values belong to $\O$: $\{\T, \F\}⊂\O$.

c) $\O$ is closed by ``finite lists'' and ``finite sets''.

\ColorViolet{d) Finite strings belong to $\O$.}

\msk

\def\str#1{\ensuremath{\text{``{\tt#1}''}}}

Item (d) is only introduced at the end of the course,

when we show that ``valid expressions'' can be defined

formally... \str{1+2*(3+4)} is ``valid'', but \str{)+)} is not.

\msk

\ColorRed{Some graphical representations are allowed.}


\newpage

%   ____                 _     _           _ 
%  / ___|_ __ __ _ _ __ | |__ (_) ___ __ _| |
% | |  _| '__/ _` | '_ \| '_ \| |/ __/ _` | |
% | |_| | | | (_| | |_) | | | | | (_| (_| | |
%  \____|_|  \__,_| .__/|_| |_|_|\___\__,_|_|
%                 |_|                        
%
% «graphical-reprs» (to ".graphical-reprs")
% (ntyp 13 "graphical-reprs")
% (nty     "graphical-reprs")

{\bf Some graphical representations}

We define graphical representations for:

a) (finite) subsets of $\Z^2$,

b) functions whose domains are (a),

c) directed graphs...


% (lodp 8 "positional")
% (lod    "positional")

%D diagram 12345
%D 2Dx     100 +12 +12
%D 2D  100     1 
%D 2D
%D 2D  +12 2       3
%D 2D
%D 2D  +12     4
%D 2D
%D 2D  +15     5
%D 2D
%D (( 1 2 -> 1 3 -> 2 4 -> 3 4 -> 4 5 ->
%D ))
%D enddiagram
%D
\pu

\unitlength=8pt \def\closeddot{\circle*{0.4}}
\def\closeddot{\circle*{0.5}}

\msk

\resizebox{!}{55pt}{%
$\begin{array}{c}
  K =
  \csm{        & (1,3), &        \\
        (0,2), &        & (2,2), \\
               & (1,1), &        \\
               & (1,0)  &        \\
      }
  = \;\picturedotsa(0,0)(2,3){ 1,3 0,2 2,2 1,1 1,0 }\;
  = \;\picturedots (0,0)(2,3){ 1,3 0,2 2,2 1,1 1,0 }\;
  %
  \\[15pt]
  %
  f =
  \csm{            & ((1,3),1), &            \\
        ((0,2),0), &            & ((2,2),2), \\
                   & ((1,1),1), &            \\
                   & ((1,0),1)  &            \\
      }
  = 
  \sm{    & 1 &   \\
        0 &   & 2 \\
          & 1 &   \\
          & 1 &   \\
      }
  %
  \\
  %
  (V,A)
  = \left( \{1,2,3,4,5\}, \csm{(1,2),(1,3),\\(2,4),(3,4),\\(4,5)} \right)
  = \diag{12345}
  \\
  \end{array}
$}


\newpage

%   ____                               _                    _                 
%  / ___|___  _ __ ___  _ __  _ __ ___| |__   ___ _ __  ___(_) ___  _ __  ___ 
% | |   / _ \| '_ ` _ \| '_ \| '__/ _ \ '_ \ / _ \ '_ \/ __| |/ _ \| '_ \/ __|
% | |__| (_) | | | | | | |_) | | |  __/ | | |  __/ | | \__ \ | (_) | | | \__ \
%  \____\___/|_| |_| |_| .__/|_|  \___|_| |_|\___|_| |_|___/_|\___/|_| |_|___/
%                      |_|                                                    
%
% «set-comprehensions» (to ".set-comprehensions")
% (ntyp 14 "set-comprehensions")
% (nty     "set-comprehensions")

{\bf Layer 1: Set Comprehensions}

One of the first things that I present to students is

a syntax for \ColorRed{set comprehensions} using ``generators'',

``filters'' and a ``result expression''...

\unitlength=5pt \def\closeddot{\circle*{0.2}}

\bsk

$\begin{array}{lll}
  \{\uC{\ug{a∈\{1,2\}},
        \ug{b∈\{2,3\}},
        \uf{a<b}
    };
    \;
    \ue{(a,b)}
  \} 
  &=&
  \{(1,2),(1,3),(2,3)\} \\[-10pt]
  &=& \picturedotsa(0,0)(3,4){ 1,2 1,3 2,3 } \\
  \end{array}
$

\bsk


Note the `;' instead of a `$|$'!

These things can be calculated from left to right

using trees in a finite number of steps.

\newpage

%   ____                                 ____  
%  / ___|___  _ __ ___  _ __  _ __ ___  |___ \ 
% | |   / _ \| '_ ` _ \| '_ \| '__/ __|   __) |
% | |__| (_) | | | | | | |_) | |  \__ \  / __/ 
%  \____\___/|_| |_| |_| .__/|_|  |___/ |_____|
%                      |_|                     
%
% «set-comprehensions-2» (to ".set-comprehensions-2")
% (ntyp 15 "set-comprehensions-2")
% (nty     "set-comprehensions-2")

{\bf Layer 1: Set Comprehensions (2)}

I make the students work in groups, and they solve

the $5+19+16+9+16+7$ exercises quickly.

I suggest this table-ish way to draw the trees...

To calculate

$\setofsc {a∈\{1,2\}, b∈\{2,3\}, a<b} {10a+b} = \{12,13,23\}$

we draw:

\def\tbl#1#2{\fbox{$\begin{array}{#1}#2\end{array}$}}
\def\tbl#1#2{\fbox{$\sm{#2}$}}
\def\tbl#1#2{\fbox{$\mat{#2}$}}
\def\tbl#1#2{$\mat{#2}$}
% "Stop":
% (find-es "tex" "vrule")
\def\S{\omit\vrule\phantom{$\scriptstyle($}\hss}   % stop

\msk

\tbl{ccc}{
 a & b & a<b & 10a+b \\\hline
 1 & 2 & \V & 12 \\
 1 & 3 & \V & 13 \\
 2 & 2 & \F & \S \\
 2 & 3 & \V & 23 \\
}

\msk

the vertical bar means ``abort''.

Valid \ColorRed{values for the context}: $(1,2,\V)$, $(1,3,\V)$, $(2,3,\V)$. 

\newpage

%  ____              _ _           
% / ___| _ __   ___ (_) | ___ _ __ 
% \___ \| '_ \ / _ \| | |/ _ \ '__|
%  ___) | |_) | (_) | | |  __/ |   
% |____/| .__/ \___/|_|_|\___|_|   
%       |_|                        
%
% «spoiler» (to ".spoiler")
% (ntyp 16 "spoiler")
% (nty     "spoiler")

{\bf Layer 1: Set Comprehensions --- SPOILER}

Spoiler: the idea of \ColorRed{context} will be reused in many other

contexts later, but with slightly different notations...

Compare:

\msk

$\begin{array}{rl}
 1) & \setofsc {a∈\{1,2\}, b∈\{2,3\}, a<b} {10a+b} = \{12,13,23\} \\
 2) & a⠆\{1,2\}, b⠆\{2,3\}, a<b ⊢ (10a+b)⠆\N \\
 3) & a⠆\{1,2\}, b⠆\{2,3\} ⊢ a<b   \qquad\text{\ColorRed{$⇐$ this is false!}} \\
 4) & A⠆\Sets, B⠆\Sets ⊢ A⠆\Sets \\
 5) & A⠆\Sets, B⠆\Sets ⊢ A×B⠆\Sets \\
 6) & A⠆\Sets, B⠆\Sets, a⠆A, f⠆A→B ⊢ f(a)⠆B \\
 7) & A⠆\Sets, B⠆\Sets, a⠆A, b⠆B ⊢ (a,b)⠆A×B \\
 8) & A⠆\Sets, B⠆\Sets, a⠆A ⊢ (λb⠆B.(a,b))⠆B→A×B \\
 \end{array}
$


\newpage

%     _    _                         __            _      __  
%    / \  | |__  _   _ ___  ___ _   / /   __ _    | |__   \ \ 
%   / _ \ | '_ \| | | / __|/ _ (_) | |   / _` |   | '_ \   | |
%  / ___ \| |_) | |_| \__ \  __/_  | |  | (_| |_  | |_) |  | |
% /_/   \_\_.__/ \__,_|___/\___(_) | |   \__,_( ) |_.__/   | |
%                                   \_\       |/          /_/ 
%
% «abuse-of-language» (to ".abuse-of-language")
% (ntyp 17 "abuse-of-language")
% (nty     "abuse-of-language")

{\bf An abuse of language}

Remember that I make the students

do $5+19+16+9+16+7$ exercises about set comprehensions...

some of the exercises are about cartesian products, and

some introduce new notations, like:

\msk

$\{x∈\{2,3,4\} ,y∈\{2,3,4\}, y=3; (x,y)\}$

$\{\ColorRed{x,y}∈\{2,3,4\}, y=3; (x,y)\}$

$\{\ColorRed{(x,y)}∈\{2,3,4\}^2, y=3; (x,y)\}$

\msk

This abuse of language will be incredibly important later

when we discuss type systems. We will allow things like:

\msk

$A⠆\Sets, B⠆\Sets, \ColorRed{(a,b)}⠆A×B, f⠆A→B ⊢ fa⠆B$ 

\msk

How do we make $(a,b)$ behave as \ColorRed{a} variable?

(In the singular!)

\newpage

%     _    _                       ________  
%    / \  | |__  _   _ ___  ___   / /___ \ \ 
%   / _ \ | '_ \| | | / __|/ _ \ | |  __) | |
%  / ___ \| |_) | |_| \__ \  __/ | | / __/| |
% /_/   \_\_.__/ \__,_|___/\___| | ||_____| |
%                                 \_\    /_/ 
%
% «abuse-of-language-2» (to ".abuse-of-language-2")
% (ntyp 18 "abuse-of-language-2")
% (nty     "abuse-of-language-2")

{\bf An abuse of language (2)}

Short answer:

$\ColorRed{(a,b)}$ becomes a ``long name'' for a variable \ColorRed{$p$},

$\ColorRed{a}$ becomes an abbreviation for $\ColorRed{π(a,b)}$, i.e., $\ColorRed{πp}$,

$\ColorRed{b}$ becomes an abbreviation for $\ColorRed{π'(a,b)}$, i.e., $\ColorRed{π'p}$,

\msk

$A⠆\Sets, B⠆\Sets, \ColorRed{(a,b)}⠆A×B, f⠆A→B ⊢ f(\ColorRed{a})⠆B$

becomes:

$A⠆\Sets, B⠆\Sets, \ColorRed{p}⠆A×B, f⠆A→B ⊢ f(\ColorRed{πp})⠆B$

\msk

(More on ``long names'' later!)




\newpage

%  _                    _         _         _         ____  __  __ 
% | |    __ _ _ __ ___ | |__   __| | __ _  (_)_ __   |  _ \|  \/  |
% | |   / _` | '_ ` _ \| '_ \ / _` |/ _` | | | '_ \  | | | | |\/| |
% | |__| (_| | | | | | | |_) | (_| | (_| | | | | | | | |_| | |  | |
% |_____\__,_|_| |_| |_|_.__/ \__,_|\__,_| |_|_| |_| |____/|_|  |_|
%                                                                  
% «lambda-in-DM» (to ".lambda-in-DM")
% (ntyp 19 "lambda-in-DM")
% (nty     "lambda-in-DM")

{\bf $λ$-notation in Discrete Mathematics}

In DM we see \ColorRed{functions} as \ColorRed{sets of input-output pairs}...

If $\begin{array}[t]{rrcl} f: & \{1,2,3\} &→& \{10,20,30\} \\ & x & \mto & 10x \end{array}$

then $f = \csm{(1,10),\\ (2,20),\\ (3,30)\\ }$.

\msk

The students learn that, e.g.,

\msk

$\csm{(1,10),\\ (2,20),\\ (3,30)}(2) = 20$, and
$\csm{(1,10),\\ (2,20),\\ (3,30)}(4) = \ColorRed{\mathbf{ERROR}}$.

\msk

We see (in passing) that

$(\ColorRed{λ}x∈\{1,2,3\}.10x)
 = \{ x∈\{1,2,3\}; (x,10x) \}
 = \csm{(1,10),\\ (2,20),\\ (3,30)}
$.


\newpage

%  ____        _         _   _ _         _   _             
% / ___| _   _| |__  ___| |_(_) |_ _   _| |_(_) ___  _ __  
% \___ \| | | | '_ \/ __| __| | __| | | | __| |/ _ \| '_ \ 
%  ___) | |_| | |_) \__ \ |_| | |_| |_| | |_| | (_) | | | |
% |____/ \__,_|_.__/|___/\__|_|\__|\__,_|\__|_|\___/|_| |_|
%                                                          
% «substitution» (to ".substitution")
% (ntyp 20 "substitution")
% (nty     "substitution")
% (gam181p 3 "substituicao")
% (gam181    "substituicao")

{\bf (Simultaneous) substitution}

I also teach, right in the beginning of the course,

a \ColorRed{notation} for (simultaneous) substitution...

(Because I can't rely on the students' Portuguese!...)

Examples:

$$\def\newa{\psm{∫⊙\\◻}}
  \begin{array}{l}
  %
  ((x+y)·z) \subst{ 
    x:=a+y \\
    y:=b+z \\
    z:=c+x \\
  } \\
  =\;\;
  ((a+y)+(b+z))·(c+x) \\[20pt]
  %
  (\text{Vanessão 20 reais}) \bmat{\text{a} := \newa} \\
  =\;\;
  (\text{V$\newa$ness$\widetilde{\newa}$o 20 re$\newa$is}) \\[5pt]
  \end{array}
$$


\newpage

%  ____        _         _   _ _         _   _               ____  
% / ___| _   _| |__  ___| |_(_) |_ _   _| |_(_) ___  _ __   |___ \ 
% \___ \| | | | '_ \/ __| __| | __| | | | __| |/ _ \| '_ \    __) |
%  ___) | |_| | |_) \__ \ |_| | |_| |_| | |_| | (_) | | | |  / __/ 
% |____/ \__,_|_.__/|___/\__|_|\__|\__,_|\__|_|\___/|_| |_| |_____|
%                                                                  
% «substitution-2» (to ".substitution-2")
% (ntyp 21 "substitution-2")
% (nty     "substitution-2")
% (gam181p 3 "substituicao")
% (gam181    "substituicao")
% (gam181    "substituicao" "equações")

{\bf (Simultaneous) substitution (2)}

This is useful to test equations,

\msk

$\begin{array}{l}
  (x^2-4=0) \bmat{x:=3} = (9-4=0) = 𝐛F \\[2pt]
  (x^2-4=0) \bmat{x:=2} = (4-4=0) = 𝐛T \\
\end{array}
$

\msk

and to define a way to calculate expressions with quantifiers:

\msk

$\begin{array}{rcl}
  (∀a∈\{2,3,5\}.a^2<10) &=& (a^2<10)[a:=2] \;∧ \\&&
                            (a^2<10)[a:=3] \;∧ \\&&
                            (a^2<10)[a:=5] \\
                        &=& (2^2<10) ∧
                            (3^2<10) ∧
                            (4^2<10) \\
                        &=& (4<10) ∧
                            (9<10) ∧
                            (16<10) \\
                        &=& \V ∧ \V ∧ \F \\
                        &=& \F \\
  \end{array}
$

\newpage

%  ____        _         _     _                    _         _       
% / ___| _   _| |__  ___| |_  | |    __ _ _ __ ___ | |__   __| | __ _ 
% \___ \| | | | '_ \/ __| __| | |   / _` | '_ ` _ \| '_ \ / _` |/ _` |
%  ___) | |_| | |_) \__ \ |_  | |__| (_| | | | | | | |_) | (_| | (_| |
% |____/ \__,_|_.__/|___/\__| |_____\__,_|_| |_| |_|_.__/ \__,_|\__,_|
%                                                                     
% «substitution-and-lambda» (to ".substitution-and-lambda")
% (ntyp 22 "substitution-and-lambda")
% (nty     "substitution-and-lambda")

{\bf Substitution and $λ$-calculus}

...and I mention, \ColorRed{very} briefly, that we can use substitution

to calculate with $λ$-terms:

\msk

$\begin{array}{rcl}
  (λx∈\{1,2,3\}.10x)(2) &=& (10x)[x:=2] \\
  &=& 10·2 \\
  &=& 20 \\
 \end{array}
$

\msk

\ColorRed{Some} students later take an optional seminar course that is

a \ColorRed{very basic} introduction to $λ$-calculus and Category Theory...

In it they learn how to handle \ColorRed{untyped} $λ$-terms...



\newpage



%  ____  __  __         _     ____  _   _ ____   ___     ________  
% |  _ \|  \/  |   __ _| |_  |  _ \| | | |  _ \ / _ \   / /___ \ \ 
% | | | | |\/| |  / _` | __| | |_) | | | | |_) | | | | | |  __) | |
% | |_| | |  | | | (_| | |_  |  __/| |_| |  _ <| |_| | | | / __/| |
% |____/|_|  |_|  \__,_|\__| |_|    \___/|_| \_\\___/  | ||_____| |
%                                                       \_\    /_/ 

{\bf Discrete Mathematics at PURO/UFF (2)}

Discrete Mathematics is taught to first-semester

Computer Science students there.

Most of these students enter the university with

{\sl very little knowledge} of how to use variables,

and when they attempt to spell out their ideas in Portuguese,

either speaking or writing, they are \ColorRed{too imprecise}...

They ask ``can I do xxx yyy?'' and if I say ``yes'' they

write weird atrocities in the test, and when I mark them

as wrong they blame me (``you said I could do that!'');

if I say ``no, you can't do that'' then they do other

atrocites and blame me, too.

{\ColorRed{I don't have time to debug their Portuguese!}}



\newpage

%  ____  __  __   _                           
% |  _ \|  \/  | | | __ _ _   _  ___ _ __ ___ 
% | | | | |\/| | | |/ _` | | | |/ _ \ '__/ __|
% | |_| | |  | | | | (_| | |_| |  __/ |  \__ \
% |____/|_|  |_| |_|\__,_|\__, |\___|_|  |___/
%                         |___/               
%
% «dm-layers» (to ".dm-layers")
% (lodp 4 "dm-layers")
% (lod    "dm-layers")

{\bf Discrete Mathematics at PURO/UFF (3)}

...so I decided that I would stress mathetical notation ---

Almost all ideas on the blackboard (whiteboard, actually)

would have examples in mathematical notation.

\ssk

I structured the course of Discrete Mathematics

in three layers (presented more or less in parallel):

\ssk

Layer 1: \ColorRed{Calculating} things

in a system with numbers, truth-values, sets and lists

where everything can be calculated in a \ColorRed{finite} number

of steps with almost no creativity required.

\ssk

Layer 2: some infinite objects, like $\N$ and $\Z$, are allowed;

we learn how to ``calculate'', e.g., $∃k∈\Z.10k=23$

\ssk

Layer 3: we add formal proofs.

\newpage

{\bf Layer 1: Calculating things}

...in a system with numbers, truth-values, sets and lists

where everything can be calculated in a \ColorRed{finite} number

of steps with almost no creativity required.

Example:

$\antitabular
 \begin{array}{rcl}
  (∀a∈\{2,3,5\}.a^2<10) &=& (a^2<10)[a:=2] \;∧ \\&&
                            (a^2<10)[a:=3] \;∧ \\&&
                            (a^2<10)[a:=5] \\
                        &=& (2^2<10) ∧
                            (3^2<10) ∧
                            (4^2<10) \\
                        &=& (4<10) ∧
                            (9<10) ∧
                            (16<10) \\
                        &=& \V ∧ \V ∧ \F \\
                        &=& \F \\
  \end{array}
$

Note the substituion operator:

$(a^2<10)[a:=3] = (3^2<10)$.

\newpage

%   ____                               _                    _                 
%  / ___|___  _ __ ___  _ __  _ __ ___| |__   ___ _ __  ___(_) ___  _ __  ___ 
% | |   / _ \| '_ ` _ \| '_ \| '__/ _ \ '_ \ / _ \ '_ \/ __| |/ _ \| '_ \/ __|
% | |__| (_) | | | | | | |_) | | |  __/ | | |  __/ | | \__ \ | (_) | | | \__ \
%  \____\___/|_| |_| |_| .__/|_|  \___|_| |_|\___|_| |_|___/_|\___/|_| |_|___/
%                      |_|                                                    
%
% «set-comprehensionsb» (to ".set-comprehensionsb")
% (lodp 6 "set-comprehensions")
% (lod    "set-comprehensions")

{\bf Layer 1: Set Comprehensions}

I wrote a lengthy explanation of set comprehensions,

using ``generators'', ``filters'' and a ``result expression''.

The students started by learning how to calculate things

like these (note the `;' instead of a `$|$'; these `$\{\ldots;\ldots\}$'s

are calculated from left to right!):

\unitlength=5pt \def\closeddot{\circle*{0.4}}
\unitlength=5pt \def\closeddot{\circle*{0.2}}

$$\begin{array}{lll}
\{\ug{a∈\{1,2\}},
  \ug{b∈\{2,3\}},
  \uf{a≠b}; \ue{(a,b)}\} \\[10pt]
 = \;\; \{(1,2),(1,3),(2,3)\} \\[5pt]
 = \;\; \picturedotsa(0,0)(3,4){ 1,2 1,3 2,3 } \\
\end{array}
$$

...then $\setofst{a∈\{2,3,4\}}{a^2<10}$

and $\setofst{10a+b}{a∈\{1,2\},b∈\{3,4\}}$.


\newpage

% «set-comprehensionsb-2» (to ".set-comprehensionsb-2")
% (lodp 7 "set-comprehensions-2")
% (lod    "set-comprehensions-2")

{\bf Layer 1: Set Comprehensions (2)}

The ``lengthy explanation of set comprehensions''

using ``generators'', ``filters'' and a ``result expression'', has:

2 pages of explanations,

2 pages of exercises (5+19+16+9+16+7 exercises),

1 page of answers, all using a graphical notation ---

for example:

2)
$     A = \picturedotsa(0,0)(4,4){     1,2 2,1     }
\quad B = \picturedotsa(0,0)(4,4){     1,2 2,1 3,0 }
\quad C = \picturedotsa(0,0)(4,4){ 0,3 1,2 2,1 3,0 }
\quad D = \picturedotsa(0,0)(4,4){ 0,3 .5,2.5 1,2 1.5,1.5 2,1 2.5,.5 3,0 }
$

\msk

$
\quad E = \picturedotsa(0,0)(4,4){ 1,3 2,3 3,3   1,4 2,4 3,4 }
\quad F = \picturedotsa(0,0)(4,4){ 3,1 4,1   3,2 4,2   3,3 4,3 }
\quad G = \picturedotsa(0,0)(4,4){ 1,3 2,3 3,3   1,4 2,4 3,4 }
\quad H = \picturedotsa(0,0)(4,4){ 3,2 4,2 }
$

\msk

$
\quad I = \picturedotsa(0,0)(4,4){ 1,3 2,3       1,4         }
\quad J = \picturedotsa(0,0)(4,4){     2,3 3,3   1,4 2,4 3,4 }
\quad K = \picturedotsa(0,0)(4,4){     1,4 2,4 3,4 4,4
                                      1,3 2,3 3,3 4,3
                                      1,2 2,2 3,2 4,2
                                      1,1 2,1 3,1 4,1 }
\quad L = \picturedotsa(0,0)(4,4){ 0,4 1,4 2,4 3,4 4,4
                                  0,3 1,3 2,3 3,3 4,3
                                  0,2 1,2 2,2 3,2 4,2
                                  0,1 1,1 2,1 3,1 4,1
                                  0,0 1,0 2,0 3,0 4,0 }
$

\newpage

%  ____           _ _   _                   _ 
% |  _ \ ___  ___(_) |_(_) ___  _ __   __ _| |
% | |_) / _ \/ __| | __| |/ _ \| '_ \ / _` | |
% |  __/ (_) \__ \ | |_| | (_) | | | | (_| | |
% |_|   \___/|___/_|\__|_|\___/|_| |_|\__,_|_|
%                                             
% «positional» (to ".positional")
% (lodp 8 "positional")
% (lod    "positional")

{\bf Positional notations}

...then we adapt the graphical notation for subsets of $\Z^2$...

we define a convention for omitting the axes,

\unitlength=8pt \def\closeddot{\circle*{0.4}}
\def\closeddot{\circle*{0.5}}

$$K =
  \csm{        & (1,3), &        \\
        (0,2), &        & (2,2), \\
               & (1,1), &        \\
               & (1,0)  &        \\
      }
  = \;\picturedotsa(0,0)(2,3){ 1,3 0,2 2,2 1,1 1,0 }\;
  = \;\picturedots (0,0)(2,3){ 1,3 0,2 2,2 1,1 1,0 }\;
$$

we define a positional notation for functions,
%
$$f =
  \csm{            & ((1,3),1), &            \\
        ((0,2),0), &            & ((2,2),2), \\
                   & ((1,1),1), &            \\
                   & ((1,0),1)  &            \\
      }
  = 
  \sm{    & 1 &   \\
        0 &   & 2 \\
          & 1 &   \\
          & 1 &   \\
      }
$$

and for subsets,
partial functions,
and characteristic functons:
%
$$% A =
  \sm{   &  &   \\
       · &   &  \\
         &  &   \\
         & · &   \\
     }
  ⊂
  \sm{   &  &   \\
        &   &  \\
         &  &   \\
         &  &   \\
     }
  % = K
  \qquad
  % g =
  \sm{    & 1 &   \\
        · &   & 2 \\
          & 1 &   \\
          & · &   \\
      }
  % : A → \N
  \qquad
  \sm{   & 1 &   \\
       0 &   & 1 \\
         & 1 &   \\
         & 0 &   \\
     }
$$

\newpage

%  ____                            _ _   _                 
% |  _ \ _ __ ___  _ __   ___  ___(_) |_(_) ___  _ __  ___ 
% | |_) | '__/ _ \| '_ \ / _ \/ __| | __| |/ _ \| '_ \/ __|
% |  __/| | | (_) | |_) | (_) \__ \ | |_| | (_) | | | \__ \
% |_|   |_|  \___/| .__/ \___/|___/_|\__|_|\___/|_| |_|___/
%                 |_|                                      
%
% «propositions» (to ".propositions")
% (lodp 9 "propositions")
% (lod    "propositions")

{\bf Propositions}

Let $W = \{0,1,2,3\}×\{0,1,2\} =
     \picturedotsa(0,0)(3,2){ 0,2 1,2 2,2 3,2   0,1 1,1 2,1 3,1   0,0 1,0, 2,0, 3,0 }
    $ \; .

(Our ``set of worlds'').

A {\sl proposition on $A$} is a function $P:A→\{\F,\V\}$.

Let $P,Q,R$ be these propositions on $W$:

$P = \setofst{((x,y),z)}{(x,y)∈W, z=(x≤1 ∧ y≥1)}$

$Q = \setofst{((x,y),z)}{(x,y)∈W, z=(1≤x≤2 ∧ y≥1)}$

$R = \setofst{((x,y),z)}{(x,y)∈W, z=(0≤x≤2 ∧ y≤1)}$

or:

$\begin{array}{lcc}
 P = P(x,y) = (x≤1 ∧ y≥1)    &=& \sm{\V&\V&\F&\F \\ \V&\V&\F&\F \\ \F&\F&\F&\F} \\[7pt]
 Q = Q(x,y) = (1≤x≤2 ∧ y≥1)  &=& \sm{\F&\V&\V&\F \\ \F&\V&\V&\F \\ \F&\F&\F&\F} \\[7pt]
 R = R(x,y) = (0≤x≤2 ∧ y≤1)  &=& \sm{\F&\F&\F&\F \\ \V&\V&\V&\F \\ \V&\V&\V&\F} \\
 \end{array}
$

\newpage

% «propositions-2» (to ".propositions-2")
% (lodp 10 "propositions-2")
% (lod     "propositions-2")

{\bf Propositions (2)}

In a (long) series of exercises the students learned to visualize
these and lots of other propositions on $W$ --- actually this set of
propositions,

$\calS = \{
  ⊤,\;
  ⊥,\;
  P,\;
  Q,\;
  R,\;
  P∧Q,\;
  P∨Q,\;
  P→Q
  \}
$

and I asked them to draw the Hasse diagram of the partial order on
$\calS$. They got this:
%
%D diagram hasse-props
%D 2Dx     100 +20 +20 +15  +20
%D 2D  100     T 
%D 2D
%D 2D  +20     PvQ     P->Q R
%D 2D
%D 2D  +20 P       Q
%D 2D
%D 2D  +20     P&Q
%D 2D
%D 2D  +20     F
%D 2D
%D ren T F PvQ P&Q P->Q ==> ⊤ ⊥ P{∨}Q P{∧}Q P{→}Q
%D
%D (( F P&Q ->
%D    P&Q P -> P&Q Q ->
%D    P PvQ -> Q PvQ -> Q P->Q ->
%D    PvQ T -> P->Q T ->
%D    F R -> .curve= _10pt R T -> .curve= _10pt
%D ))
%D enddiagram
%D
%D diagram hasse-props-2
%D 2Dx     100 +20 +20 +15  +20
%D 2D  100     T 
%D 2D
%D 2D  +20     PvQ     P->Q R
%D 2D
%D 2D  +20 P       Q
%D 2D
%D 2D  +20     P&Q
%D 2D
%D 2D  +20     F
%D 2D
%D ren T    ==> \sm{1111\\1111\\1111}
%D ren F    ==> \sm{0000\\0000\\0000}
%D ren P    ==> \sm{1100\\1100\\0000}
%D ren Q    ==> \sm{0110\\0110\\0000}
%D ren R    ==> \sm{0000\\1110\\1110}
%D ren PvQ  ==> \sm{1110\\1110\\0000}
%D ren P&Q  ==> \sm{0100\\0100\\0000}
%D ren P->Q ==> \sm{0111\\0111\\1111}
%D
%D (( F P&Q ->
%D    P&Q P -> P&Q Q ->
%D    P PvQ -> Q PvQ -> Q P->Q ->
%D    PvQ T -> P->Q T ->
%D    F R -> .curve= _10pt R T -> .curve= _10pt
%D ))
%D enddiagram
%D
\pu
$$\resizebox{0.6\width}{!}{$
  \diag{hasse-props}
  $}
$$

\newpage

% «propositions-3» (to ".propositions-3")
% (lodp 11 "propositions-3")
% (lod     "propositions-3")

{\bf Propositions (3)}

Using `0's and `1's instead of `$\F$'s and `$\T$'s, what they got was:

\msk

$\diag{hasse-props-2}
 \quad
 \diag{hasse-props}
$

\newpage

%  ____                              _       
% / ___|  ___  __ _ _   _  ___ _ __ | |_ ___ 
% \___ \ / _ \/ _` | | | |/ _ \ '_ \| __/ __|
%  ___) |  __/ (_| | |_| |  __/ | | | |_\__ \
% |____/ \___|\__, |\__,_|\___|_| |_|\__|___/
%                |_|                         
%
% «context-sequents» (to ".context-sequents")
% (lodp 12 "context-sequents")
% (lod     "context-sequents")

{\bf Comprehensions $→$ contexts $→$ sequents}

The part at the left of the `;' in a `$\{\ldots;\ldots\}$'

is called the ``context''. For example:
%
$$\{\und{\ug{a∈\{1,2\}}, \ug{b∈\{2,3\}}, \uf{a≠b}, \ug{c∈\{1,\ldots,a+b\}}}{context};
    \ue{10a+c}\}
$$

The {\sl set of possible values} for this context is:
%
$$\{\uC{\ug{a∈\{1,2\}}, \ug{b∈\{2,3\}}, \uf{a≠b}, \ug{c∈\{1,\ldots,a+b\}}};
    \ue{(a,b,c)}\}
$$

\newpage

% «context-sequents-2» (to ".context-sequents-2")
% (lodp 13 "context-sequents-2")
% (lod     "context-sequents-2")

{\bf Comprehensions $→$ contexts $→$ sequents (2)}

This is surprisingly similar to contexts in sequents!
%
$$\uC{\ug{a∈\Z}, \ug{b∈\{1,2,3\}}, \uf{\mathsf{prime}(4a+b)}}⊢b=3$$

The sequent above can be seen as a (false!) proposition.

We used this in the course to debug proofs.

Our formal proofs were written as series of numbered lines,

each line starting by either ``Suppose'' of ``Then''.

Each ``Then'' line had an associated sequent ---

its context was made of all the open ``Suppose''s.

For each ``Then'' line in a valid proof its associated sequent

had to be a true proposition.



\newpage

%   ____    _    
%  / ___|  / \   
% | |  _  / _ \  
% | |_| |/ ___ \ 
%  \____/_/   \_\
%                
% «dicas-GA»  (to ".dicas-GA")

{\bf Dicas (do início do curso de Geometria Analítica)}

\msk

Você {\bf VAI TER QUE} aprender a \ColorRed{definir} seus objetos ---
pontos, retas, conjuntos, círculos, etc... isso provavelmente vai ser
algo novo pra você e é algo que precisa de MUITO treino. Dá pra passar
em Cálculo 1 e em Prog 1 só aprendendo a ``ler'' as definições que o
professor e os livros mostram, mas em Geometria Analítica NÃO DÁ, em
GA você vai ter que aprender a ler {\bf E A ESCREVER} definições.

\msk

2) Cada ``seja'' ou ``sejam'' que aparece nestas folhas é uma
definição, e você pode usá-los como exemplos de definições
bem-escritas (ééé!!!!) pra aprender jeitos de escrever as suas
definições.

3) Em ``matematiquês'' a gente quase não usa termos como ``ele'',
``ela'', ``isso'', ``aquilo'' e ``lá'' --- ao invés disso a gente dá
\ColorRed{nomes curtos} pros objetos ou usa expressões matemáticas pra
eles cujo resultado é o objeto que a gente quer (como nas pags $\_$ e
$\_$)... mas {\sl quando a gente está discutindo problemas no papel ou
  no quadro} a gente pode ser referir a determinados objetos {\sl
  apontando pra eles com o dedo} e dizendo ``esse aqui''.



\newpage

%  ____                  _ _ _____     _ _    
% / ___| _ __ ___   __ _| | |_   _|_ _| | | __
% \___ \| '_ ` _ \ / _` | | | | |/ _` | | |/ /
%  ___) | | | | | | (_| | | | | | (_| | |   < 
% |____/|_| |_| |_|\__,_|_|_| |_|\__,_|_|_|\_\
%                                             
% «smalltalk»  (to ".smalltalk")

{\bf Dan Ingalls interview on SmallTalk}

It started to hit home in the Spring of '74 after I taught Smalltalk
to 20 PARC nonprogrammer \ColorRed{adults}. They were able to get
\ColorRed{through the initial material faster than the children}, but
just as it looked like an overwhelming success was at hand, they
started to crash on problems that didn't look to me to be much harder
than the ones they had just been doing well on. One of them was a
project thought up by one of the adults, which was to make a little
database system that could act like a card file or rolodex. They
\ColorRed{couldn't even come close} to programming it. I was very
surprised because I ``knew'' that such a project was \ColorRed{well
  below the mythical ``two pages''} for end-users we were working
within. That night I worote it out, and the next day I showed all of
them how to do it. Still, none of them were able to do it by
themselves. Later, I sat in the room pondering the board from my talk.
Finally, I counted the number of \ColorRed{nonobvious ideas} in this
little program. They came to \ColorRed{17}. And some of them were like
the concept of the arch in building design: very hard to discover, if
you don't already know them.

The connection to literacy was painfully clear. It isn't enough to
just learn to read and write. There is also a literature that renders
ideas. Language is used to read and write about them, but at some
point the organization of ideas starts to dominate mere language
abilities. And it help greatly to have some powerful ideas under one's
belt to better acquire more powerful ideas [Papert 70s]. So, we
decided we should teach design. And Adele came up with another
brillian stroke to deal with this. She decided that what was needed
was in \ColorRed{intermediary between the vague ideas about the
  problem and the very detailed} writing and debugging that had to be
done to get it to run in Smalltalk. She called the intermediary forms
design templates.



\end{document}

% Local Variables:
% coding: utf-8-unix
% ee-tla: "ems"
% End: